Electrodeposition of Cobalt Oxides on Carbon Nanotubes for Sensitive Bromhexine Sensing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrodeposition of CoOxNPs on SWCNTs/GCE
2.2. Surface Morphology of the Electrodes
2.3. Electrochemical Impedance Spectroscopy
2.4. Electrochemical Behavior of BHC on CoOx/SWCNT/GCE
2.5. Effect of pH
2.6. Effect of Scan Rate
2.7. Analytical Characteristics of the Proposed Electrode
2.8. Reproducibility, Repeatability and Interference Studies
2.9. Real Sample Analysis
3. Materials and Methods
3.1. Reagents and Materials
3.2. Apparatus
3.3. Modification of the GCE
3.4. Electrochemical Impedance Spectroscopy
3.5. Preparation of Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Li, T.; Sun, L.; Zhang, W.; Zheng, C.; Jiang, C.; Chen, M.; Chen, D.; Dai, Z.; Bao, S.; Shen, X. Bromhexine Hydrochloride Tablets for the Treatment of Moderate COVID-19: An Open-Label Randomized Controlled Pilot Study. Clin. Transl. Sci. 2020, 13, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Zanasi, A.; Mazzolini, M.; Kantar, A. A reappraisal of the mucoactive activity and clinical efficacy of bromhexine. Multidiscip. Respir. Med. 2017, 12, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansarin, K.; Tolouian, R.; Ardalan, M.; Taghizadieh, A.; Varshochi, M.; Teimouri, S.; Vaezi, T.; Valizadeh, H.; Saleh, P.; Safiri, S.; et al. Effect of bromhexine on clinical outcomes and mortality in COVID-19 patients: A randomized clinical trial. Bioimpacts 2020, 10, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Han, L.; Wang, Z.; Jiang, L.; Zhang, Q.; Wu, Q.; Su, J.; Lu, C.; Chen, G. An electrochemical sensor based on poly (procaterol hydrochloride)/carboxyl multi-walled carbon nanotube for the determination of bromhexine hydrochloride. RSC Adv. 2019, 9, 11901–11911. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Nanda, S. A validated high performance liquid chromatographic method for estimation of bromhexine and terbutaline in bulk and tablet dosage forms. Pharm. Methods 2011, 2, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Susmitha, K.; Thirumalachary, M.; Venkateshwarlu, G. Spectrophotometric Determination of Bromhexine HCl in Pure and Pharmaceutical Forms. ISRN Anal. Chem. 2013, 2013, 861851. [Google Scholar] [CrossRef]
- Kong, D.; Huang, S.; Cheng, J.; Zhuang, Q.; Liu, Y.; Lu, C.-H. Sensitive determination of bromhexine hydrochloride based on its quenching effect on luminol/H2O2 electrochemiluminescence system. Luminescence 2018, 33, 698–703. [Google Scholar] [CrossRef]
- Arafat, T. Bromhexine Determination by Diazotization Using Potentiometric Titration: Application to Content Uniformity. Anal. Lett. 1990, 23, 311–326. [Google Scholar] [CrossRef]
- Pinyou, P.; Blay, V.; Kamkaew, A.; Chansaenpak, K.; Kampaengsri, S.; Tongnark, M.; Reesunthia, I.; Khonru, T.; Jakmunee, J. Wiring Xanthine Oxidase Using an Osmium-Complex-Modified Polymer for Application in Biosensing. ChemElectroChem 2022, 9, e202101597. [Google Scholar] [CrossRef]
- Turchán, M.; Jara-Ulloa, P.; Bollo, S.; Nuñez-Vergara, L.J.; Squella, J.A.; Álvarez-Lueje, A. Voltammetric behaviour of bromhexine and its determination in pharmaceuticals. Talanta 2007, 73, 913–919. [Google Scholar] [CrossRef]
- Hanssen, B.L.; Siraj, S.; Wong, D.K.Y. Recent strategies to minimise fouling in electrochemical detection systems. Rev. Anal. Chem. 2016, 35, 1–28. [Google Scholar] [CrossRef]
- Zhou, L.; Li, X.; Zhu, B.; Su, B. An Overview of Antifouling Strategies for Electrochemical Analysis. Electroanalysis 2021, 34, 966–975. [Google Scholar] [CrossRef]
- Palacios-Santander, J.M.; Terzi, F.; Zanardi, C.; Pigani, L.; Cubillana-Aguilera, L.M.; Naranjo-Rodriguez, I.; Seeber, R. Electrocatalytic and antifouling properties of CeO2-glassy carbon electrodes. J. Solid State Electrochem. 2016, 20, 3125–3131. [Google Scholar] [CrossRef]
- Shahid, M.M.; Rameshkumar, P.; Pandikumar, A.; Lim, H.N.; Ng, Y.H.; Huang, N.M. An electrochemical sensing platform based on a reduced graphene oxide–cobalt oxide nanocube@platinum nanocomposite for nitric oxide detection. J. Mater. Chem. A 2015, 3, 14458–14468. [Google Scholar] [CrossRef]
- Li, S.-J.; Du, J.-M.; Chen, J.; Mao, N.-N.; Zhang, M.-J.; Pang, H. Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: A two-dimensional hybrid for enzyme-free glucose sensing. J. Solid State Electrochem. 2014, 18, 1049–1056. [Google Scholar] [CrossRef]
- Salimi, A.; Mamkhezri, H.; Hallaj, R.; Soltanian, S. Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sens. Actuators B Chem. 2008, 129, 246–254. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, B.; Zheng, J.; Sheng, Q.; Zhang, H. Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Microchim. Acta 2011, 175, 251–257. [Google Scholar] [CrossRef]
- Li, S.-J.; Du, J.-M.; Zhang, J.-P.; Zhang, M.-J.; Chen, J. A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2. Microchim. Acta 2014, 181, 631–638. [Google Scholar] [CrossRef]
- Wahab, R.; Ahmad, N.; Alam, M.; Ahmad, J. The development of cobalt oxide nanoparticles based electrode to elucidate the rapid sensing of nitrophenol. Mater. Sci. Eng. B 2021, 265, 114994. [Google Scholar] [CrossRef]
- Lester, E.; Aksomaityte, G.; Li, J.; Gomez, S.; Gonzalez-Gonzalez, J.; Poliakoff, M. Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles. Prog. Cryst. Growth Charact. Mater. 2012, 58, 3–13. [Google Scholar] [CrossRef]
- Lakra, R.; Kumar, R.; Nath Thatoi, D.; Kumar Sahoo, P.; Soam, A. Synthesis and characterization of cobalt oxide (Co3O4) nanoparticles. Mater. Today Proc. 2021, 41, 269–271. [Google Scholar] [CrossRef]
- Wang, J.-F.; Bai, S.-X.; Ye, Y.-C.; Zhu, L.-A.; Zhang, H. A comparative study of rhenium coatings prepared on graphite wafers by chemical vapor deposition and electrodeposition in molten salts. Rare Met. 2021, 40, 202–211. [Google Scholar] [CrossRef]
- Li, X.-Y.; Qu, J.-K.; Yin, H.-Y. Electrolytic alloy-type anodes for metal-ion batteries. Rare Met. 2021, 40, 329–352. [Google Scholar] [CrossRef]
- Akhlaghi, N.; Najafpour-Darzi, G.; Younesi, H. Facile and green synthesis of cobalt oxide nanoparticles using ethanolic extract of Trigonella foenumgraceum (Fenugreek) leaves. Adv. Powder Technol. 2020, 31, 3562–3569. [Google Scholar] [CrossRef]
- Noorbakhsh, A.; Mirkalaei, M.M.; Yousefi, M.H.; Manochehri, S. Electrodeposition of Cobalt Oxide Nanostructure on the Glassy Carbon Electrode for Electrocatalytic Determination of para-Nitrophenol. Electroanalysis 2014, 26, 2716–2726. [Google Scholar] [CrossRef]
- Al-Hakemy, A.Z.; Nassr, A.B.A.A.; Naggar, A.H.; Elnouby, M.S.; Soliman, H.M.A.E.-F.; Taher, M.A. Electrodeposited cobalt oxide nanoparticles modified carbon nanotubes as a non-precious catalyst electrode for oxygen reduction reaction. J. Appl. Electrochem. 2017, 47, 183–195. [Google Scholar] [CrossRef]
- Liu, W.; Kamiko, M.; Yamada, I.; Yagi, S. Electrochemical deposition of amorphous cobalt oxides for oxygen evolution catalysis. RSC Adv. 2022, 12, 8731–8736. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Jin, W. Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater. Sci. Eng. B 2021, 272, 115341. [Google Scholar] [CrossRef]
- Power, A.C.; Gorey, B.; Chandra, S.; Chapman, J. Carbon nanomaterials and their application to electrochemical sensors: A review. Nanotechnol. Rev. 2018, 7, 19–41. [Google Scholar] [CrossRef]
- Blay, V.; Galian, R.E.; Muresan, L.M.; Pankratov, D.; Pinyou, P.; Zampardi, G. Research Frontiers in Energy-Related Materials and Applications for 2020–2030. Adv. Sustain. Syst. 2020, 4, 1900145. [Google Scholar] [CrossRef]
- Yu, W.; Tang, Y.; Sang, Y.; Liu, W.; Wang, S.; Wang, X. Preparation of a carboxylated single-walled carbon-nanotube-chitosan functional layer and its application to a molecularly imprinted electrochemical sensor to quantify semicarbazide. Food Chem. 2020, 333, 127524. [Google Scholar] [CrossRef] [PubMed]
- Heister, E.; Lamprecht, C.; Neves, V.; Tîlmaciu, C.; Datas, L.; Flahaut, E.; Soula, B.; Hinterdorfer, P.; Coley, H.M.; Silva, S.R.P.; et al. Higher Dispersion Efficacy of Functionalized Carbon Nanotubes in Chemical and Biological Environments. ACS Nano 2010, 4, 2615–2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spataru, N.; Terashima, C.; Tokuhiro, K.; Sutanto, I.; Tryk, D.A.; Park, S.-M.; Fujishima, A. Electrochemical Behavior of Cobalt Oxide Films Deposited at Conductive Diamond Electrodes. J. Electrochem. Soc. 2003, 150, E337. [Google Scholar] [CrossRef] [Green Version]
- Floate, S.; Hyde, M.; Compton, R.G. Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: An analysis of the effect of ultrasound. J. Electroanal. Chem. 2002, 523, 49–63. [Google Scholar] [CrossRef]
- Salimi, A.; Hallaj, R.; Soltanian, S.; Mamkhezri, H. Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal. Chim. Acta 2007, 594, 24–31. [Google Scholar] [CrossRef]
- Kousar, A.; Peltola, E.; Laurila, T. Nanostructured Geometries Strongly Affect Fouling of Carbon Electrodes. ACS Omega 2021, 6, 26391–26403. [Google Scholar] [CrossRef]
- Kutluay, A.; Aslanoglu, M. Nickel nanoparticles functionalized multi-walled carbon nanotubes at platinum electrodes for the detection of bromhexine. Sens. Actuators B Chem. 2014, 192, 720–724. [Google Scholar] [CrossRef]
- Mika, J.; Moreira, J.C.; Nemeckova, A.; Zima, J.; Barek, J.; Dejmkova, H. Determination of bromhexine at a glassy carbon paste electrode using differential pulse voltammetry and flow injection analysis with amperometric detection. Monatsh. Chem. 2015, 146, 1211–1215. [Google Scholar] [CrossRef]
Electrode | Rct (Ω) |
---|---|
Bare GCE | 5910 |
CoOx/GCE | 9742 |
SWCNT/GCE | 120 |
CoOx/SWCNT/GCE | 70 |
Modified Electrode | Method | Linear Dynamic Range (µM) | LOD (µM) | Ref. |
---|---|---|---|---|
Poly(procaterol hydrochloride)/MWCNT/GCE | DPV | 0.2–1.0 and 1.0–8.0 | 0.1 | [4] |
Glassy Carbon Electrode (GCE) | DPV | 20–100 | 14 | [10] |
Ni-nanoparticles/MWCNT/Pt | SWV | 5–230 | 3.0 | [37] |
Glassy carbon paste-flow injection | Amperometry | 0.31–2.0 | 0.31 | [38] |
CoOx/SWCNT/GCE | Amperometry | 10–500 | 8.1 | This work |
Sample | Added (µM) | Found (µM) | %Recovery | %RSD 1 |
---|---|---|---|---|
Tablet 1 | - | 50.09 | - | 2.34 |
50 | 103.48 | 103.48 | 9.58 | |
100 | 152.14 | 101.37 | 5.54 | |
Liquid formulation 2 | - | 55.10 | - | 6.08 |
50 | 110.12 | 104.78 | 2.96 | |
100 | 171.15 | 110.34 | 1.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisnund, S.; Blay, V.; Muamkhunthod, P.; Thunyanon, K.; Pansalee, J.; Monkrathok, J.; Maneechote, P.; Chansaenpak, K.; Pinyou, P. Electrodeposition of Cobalt Oxides on Carbon Nanotubes for Sensitive Bromhexine Sensing. Molecules 2022, 27, 4078. https://doi.org/10.3390/molecules27134078
Lisnund S, Blay V, Muamkhunthod P, Thunyanon K, Pansalee J, Monkrathok J, Maneechote P, Chansaenpak K, Pinyou P. Electrodeposition of Cobalt Oxides on Carbon Nanotubes for Sensitive Bromhexine Sensing. Molecules. 2022; 27(13):4078. https://doi.org/10.3390/molecules27134078
Chicago/Turabian StyleLisnund, Sireerat, Vincent Blay, Pratchaya Muamkhunthod, Kittiya Thunyanon, Jaruwan Pansalee, Jirawan Monkrathok, Pachara Maneechote, Kantapat Chansaenpak, and Piyanut Pinyou. 2022. "Electrodeposition of Cobalt Oxides on Carbon Nanotubes for Sensitive Bromhexine Sensing" Molecules 27, no. 13: 4078. https://doi.org/10.3390/molecules27134078
APA StyleLisnund, S., Blay, V., Muamkhunthod, P., Thunyanon, K., Pansalee, J., Monkrathok, J., Maneechote, P., Chansaenpak, K., & Pinyou, P. (2022). Electrodeposition of Cobalt Oxides on Carbon Nanotubes for Sensitive Bromhexine Sensing. Molecules, 27(13), 4078. https://doi.org/10.3390/molecules27134078