Natural Bioactive Compounds in Organic and Conventional Fermented Food
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Microbiological Testing
4.1.1. Isolation of Lactic Acid Bacteria from the Tested Food Samples
4.1.2. Determination of Bacteriocinogenic Properties of Lactic Bacteria against Pathogens
4.2. Evaluation of the Content of Bioactive Compounds
4.2.1. Determination of Vitamin C Content
4.2.2. Determination of β-Carotene Content
4.2.3. Determination of Calcium Content
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lima, G.P.P.; Vianello, F. Review on the main differences between organic and conventional plant-based foods. Int. J. Food Sci. Technol. 2011, 46, 1–13. [Google Scholar] [CrossRef]
- Matt, D.; Rembiałkowska, E.; Luik, A.; Peetsman, E.; Pehme, S. Quality of Organic vs. Conventional Food and Effects on Health. Estonian University of Life Sciences. 2011. Available online: https://orgprints.org/id/eprint/19504/1/Report_2011_(1).pdf (accessed on 5 May 2022).
- Rembiałkowska, E. Organic farming as a system to provide better vegetable quality. Acta Hortic. 2003, 604, 473–479. [Google Scholar] [CrossRef]
- Rembiałkowska, E. Quality of plant products from organic agriculture. J. Sci. Food. Agric. 2007, 87, 2757–2762. [Google Scholar] [CrossRef]
- Crinnion, W.J. Organic foods contain higher levels of certain nutrients, lower levels of pesticides, and may provide health benefits for the consumer. Altern. Med. Rev. 2010, 15, 4–12. [Google Scholar]
- Williams, C.M. Nutritional quality of organic food: Shades of grey or Shades of green? Proc. Nutr. Soc. 2002, 61, 19–24. [Google Scholar] [CrossRef]
- Ismail, A.; Cheah, S.F. Determination of vitamin C, β-carotene and riboflavin contents in five green vegetables organically and conventionally grown. Malays. J. Nutr. 2003, 9, 31–39. [Google Scholar]
- Kapoulas, N.; Koukounaras, A.; Ilic, Z.S. Nutritional quality of lettuce and onion as companion plants from organic and conventional production in north Greece. Sci. Hortic. 2017, 219, 310–318. [Google Scholar] [CrossRef]
- Biel, W.; Gaweda, D.; Jaroszewska, A.; Hury, G. Content of minerals in soybean seeds as influenced by farming system, variety and row spacing. J. Elem. 2018, 23, 863–873. [Google Scholar] [CrossRef]
- Laursen, K.H.; Schjoerring, J.K.; Olesen, J.E.; Askegaard, M.; Halekoh, U.; Husted, S. Multielemental fingerprinting as a tool for authentication of organic wheat, barley, faba bean, and potato. J. Agric. Food Chem. 2011, 59, 4385–4396. [Google Scholar] [CrossRef]
- Pasolli, E.; De Filippis, F.; Mauriello, I.E.; Cumbo, F.; Walsh, A.M.; Leech, J.; Cotter, P.D.; Segata, N.; Ercolini, D. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Sangija, F.; Martin, H.; Matemu, A. Effect of lactic acid fermentation on the nutritional quality and consumer acceptability of African nightshade. Food Sci. Nutr. 2022, 1–15. [Google Scholar] [CrossRef]
- Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef]
- Corthesy, B.; Gaskins, H.R.; Mercenier, A. Cross-talk between probiotic bacteria and the host immune system. J. Nutr. 2007, 137, 781S–790S. [Google Scholar] [CrossRef] [Green Version]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef]
- Hanuš, O.; Vorlíček, Z.; Sojková, K.; Rozsypal, R.; Vyletělová, M.; Roubal, P.; Gencurova, V.; Pozdisek, J.; Landová, H. A comparison of selected milk indicators in organic herds with conventional herd as reference. Folia Vet. 2008, 52, 155–159. [Google Scholar]
- Franco, W.; Pérez-Díaz, I.M.; Johanningsmeier, S.D.; McFeeters, R.F. Characteristics of spoilage-associated secondary cucumber fermentation. Appl. Environ. Microb. 2012, 78, 1273–1284. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hlaing, M.M.; Glagovskaia, O.; Augustin, M.A.; Terefe, N.S. Fermentation by probiotic Lactobacillus gasseri strains enhances the carotenoid and fibre contents of carrot juice. Foods 2020, 9, 1803. [Google Scholar] [CrossRef]
- Oloo, B.O.; Shitandi, A.A.; Mahungu, S.; Malinga, J.B.; Ogata, R.B. Effects of lactic acid fermentation on the retention of β-carotene content in orange fleshed sweet potatoes. Int. J. Food Stud. 2014, 3, 13–33. [Google Scholar] [CrossRef]
- Bartkiene, E. Lactic acid fermentation of tomato: Effects on cis/trans lycopene isomer ratio, beta-carotene mass fraction and formation of L(+)- and D(−)-lactic acid. Food Technol. Biotechnol. 2013, 51, 471–478. [Google Scholar]
- Garcia-Burgos, M.; Moreno-Fernandez, J.; Alferez, M.J.; Diaz-Castro, J.; Lopez-Aliaga, I. New perspectives in fermented dairy products and their health relevance. J. Funct. Foods 2020, 72, 104059. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Worthington, V. Nutritional quality of organic versus conventional fruits, vegetables, and grains. J. Altern. Complement. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Püssa, T.; Matt, D.; Luik, A.; Gozdowski, D.; Rembiałkowska, E. Beetroot (Beta vulgaris L.) and naturally fermented beetroot juices from organic and conventional production: Metabolomics, antioxidant levels and anticancer activity. J. Sci. Food. Agric. 2014, 94, 2618–2629. [Google Scholar] [CrossRef]
- Sikora, M.; Hallmann, E.; Rembiałkowska, E. Comparison of the nutritional value of red beet roots from organic and conventional production. In Proceedings of the Bioacademy 2008—Proceedings, New Developments in Science and Research on Organic Agriculture, Lednice, Czech Republic, 3–5 September 2008; pp. 154–156. [Google Scholar]
- Sikora, M.; Klonowska, K.; Hallmann, E.; Rembiałkowska, E. Nutritive quality of red beet roots from organic and conventional production. In The Impact of Organic Production Methods on the Vegetable Product Quality, 1st ed.; Rembiałkowska, E., Agencja Reklamowo-Wydawnicza, A., Eds.; Grzegorczyk: Warsaw, Poland, 2010; pp. 209–220. [Google Scholar]
- Wunderlich, S.M.; Feldman, C.; Kane, S.; Hazhin, T. Nutritional quality of organic, conventional, and seasonally grown broccoli using vitamin C as a marker. Int. J. Food Sci. Nutr. 2008, 59, 34–45. [Google Scholar] [CrossRef]
- El-Bassel, H.A.; El-Gazzar, H.H. Comparable study between organic and nonorganic vegetables in their contents of some nutritive components. J. Med. Sci. Res. 2019, 2, 204–208. [Google Scholar] [CrossRef]
- Sikora, M.; Hallmann, E.; Rembiałkowska, E. The content of bioactive compound in carrots from organic and conventional production in the context of health prevention. Rocz. Panstw. Zakl. Hig. 2009, 60, 217–220. [Google Scholar]
- Pavlović, N.; Zdravković, M.; Mladenović, J.; Štrbanović, R.; Zdravković, J. Analysis of fresh and processed carrots and beets from organic and conventional production for the content of nutrients and antioxidant activity. Acta Agric. Slov. 2020, 25, 171–177. [Google Scholar] [CrossRef]
- Hallmann, E.; Rembiałkowska, E. Comparison of the nutritive quality of tomato fruits from organic and conventional production in Poland. In Proceedings of the 3rd International Congress of the European Integrated Project ‘Quality Low Input Food’ (QLIF), Stuttgart, Germany, 20–23 March 2007; Niggli, U., Leifert, C., Alfoldi, T., Luck, L., Willer, H., Eds.; pp. 131–134. [Google Scholar]
- Rossi, F.; Godani, F.; Bertuzzi, T.; Trevisan, M.; Ferrari, F.; Gatti, S. Health-promoting substances and heavy metal content in tomatoes grown with different farming techniques. Eur. J. Nutr. 2008, 47, 266–272. [Google Scholar] [CrossRef]
- Toledo, P.; Andren, A.; Bjork, L. Composition of raw milk from sustainable production systems. Internat. Dairy J. 2002, 12, 75–80. [Google Scholar] [CrossRef]
- Koperska, N.; Kędzierska-Matysek, M.; Litwińczuk, Z.; Wójcik-Saganek, A. Correlation between the content of macro- and microelements in milk obtained from organic and conventional farms. In Proceedings of the Conference materials of XVI Lublin Scientific Magnesology Conference—Chemical Elements and Health, Lublin, Poland, 25 May 2013; p. 64. [Google Scholar]
- Qin, N.; Faludi, G.; Beauclercq, S.; Pitt, J.; Desnica, N.; P’etursd’ottir, A.; Newton, E.E.; Angelidis, A.; Givens, I.; Juniper, D.; et al. Macromineral and trace element concentrations and their seasonal variation in milk from organic and conventional dairy herds. Food Chem. 2021, 359, 129865. [Google Scholar] [CrossRef]
- Halagarda, M.; Ptasinska-Marcinkiewicz, J.; Fijorek, K.A. Comparison of mineral elements content in conventional and organic milk from Southern Poland. Zywn.-Nauk. Technol. Jakosc 2018, 25, 137–150. [Google Scholar] [CrossRef]
- Kłobukowski, J.A.; Skibniewska, K.A.; Kowalski, I.M. Calcium bioavailability from dairy products and its release from food by in vitro digestion. J. Elem. 2014, 19, 277–288. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics 2020, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Belguesmia, Y.; Bendjeddou, K.; Kempf, I.; Boukherroub, R.; Drider, D. Heterologous biosynthesis of five new class II bacteriocins from Lactobacillus paracasei CNCM I-5369 with antagonistic activity against pathogenic Escherichia coli strains. Front. Microbiol. 2020, 11, 1198. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, C.; Tian, R.; Wang, W.; Ma, J.; Gu, L.; Liu, F.; Jiang, Z.; Hou, J. Screening beneficial bacteriostatic lactic acid bacteria in the intestine and studies of bacteriostatic substances. J. Zhejiang. Univ. Sci. B 2021, 22, 533–547. [Google Scholar] [CrossRef]
- Sezer, Ç.; Güven, A. Investigation of bacteriocin production capability of lactic acid bacteria isolated from foods. Kafkas Univ. Vet. Fak. 2009, 15, 45–50. [Google Scholar] [CrossRef]
- Choi, A.R.; Patra, J.K.; Kim, W.J.; Kang, S.S. Antagonistic activities and probiotic potential of lactic acid bacteria derived from a plant-based fermented food. Front. Microbiol. 2018, 9, 1963. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Xin, W.G.; Yang, L.Y.; Ying, J.P.; Zhao, Z.S.; Lin, L.B.; Xiu-Zhang, L.; Zhang, Q.L. A novel bacteriocin against Staphylococcus aureus from Lactobacillus paracasei isolated from Yunnan traditional fermented yogurt: Purification, antibacterial characterization, and antibiofilm activity. J. Dairy Sci. 2022, 105, 2094–2107. [Google Scholar] [CrossRef]
- Taylor, J. The estimation of numbers of bacteria by tenfold dilution series. J. Appl. Bacteriol. 1962, 25, 54–61. [Google Scholar] [CrossRef]
- Dopazo, C.P.; Lemos, M.L.; Lodeiros, C.; Bolinches, J.; Barja, J.L.; Toranzo, A.E. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J. Appl. Microbiol. 1988, 65, 97–101. [Google Scholar] [CrossRef]
- PN A-04019:1998; Food Products—Determination of Vitamin, C. Polish Committee for Standardization: Warsaw, Poland, 1998.
- PN-A-75101/12:1990; Fruit and Vegetable Products—Preparation of Samples and Physical and Chemical Test Methods—Determination of Carotenoids and Beta-Carotene Content. Polish Committee for Standardization: Warsaw, Poland, 1990.
- Minczewski, J.; Marczenko, Z. Chemia analityczna. Chemiczne metody analizy ilościowej (Analytical Chemistry. Chemical methods of quantitative analysis). In Wydawnictwo Naukowe PWN; Polish Scientific Publishers PWN: Warszawa, Poland, 2011; pp. 241–243. [Google Scholar]
- Statistica, Data Analysis Software System, Version 12; TIBCO Software Inc.: Palo Alto, CA, USA, 2019; Available online: https://www.tibco.com/products/data-science (accessed on 12 June 2021).
Product | Production System | LAB Number (cfu/1 g or cfu/1 mL) | Vitamin C Content (mg/100 g or mg/100 mL) | β-Caroten Content (mg/100 mL) | Ca Content (mg/100 g) |
---|---|---|---|---|---|
pickled beet juice | org | 2.03 × 106 b | 28.56 | 0.2407 b | n.d. |
conv | 10.1 × 106 a | 31.25 | 1.0656 a | n.d. | |
LSD = 2.134 | n.s. | LSD = 0.134 | |||
pickled carrot juice | org | 2.00 × 104 a | 25.28 | 16.7481 | n.d. |
conv | 1.00 × 104 b | 32.05 | 17.0980 | n.d. | |
LSD = 0.863 | n.s. | n.s. | |||
pickled cucumbers | org | 1.00 × 105 b | 1.7822 a | n.d. | n.d. |
conv | 30.00 × 105 a | 0.8650 b | n.d. | n.d. | |
LSD = 12.828 | LSD = 0.331 | ||||
sauerkraut | org | 10.70 × 108 a | 5.3678 a | n.d. | n.d. |
conv | 0.12 × 108 b | 3.5538 b | n.d. | n.d. | |
LSD = 12.034 | LSD = 0.685 | ||||
yogurt | org | 75.6 × 107 a | n.d. | n.d. | 165.75 a |
conv | 0.033 × 107 b | n.d. | n.d. | 153.80 b | |
LSD = 12.745 | LSD = 7.473 | ||||
kefir | org | 61.6 × 106 a | n.d. | n.d. | 129.40 |
conv | 45.6 × 106 b | n.d. | n.d. | 127.52 | |
LSD = 8.743 | n.s. | ||||
buttermilk | org | 4.40 × 107 | n.d. | n.d. | 137.77 |
conv | 4.00 × 107 | n.d. | n.d. | 135.06 | |
n.s. | n.s. |
Product | Production System | Pathogen | Mean A | |||
---|---|---|---|---|---|---|
Escherichia coli | Salmonella Senftenberg | Listeria monocytogenes | Staphylococcus aureus | |||
pickled beet juice | org | 1.5 | 2.1 | 15.4 | 11.2 | 7.55 a |
conv | 1.7 | 1.9 | 13.9 | 9.8 | 6.82 b | |
Mean B | 1.60 c | 2.00 c | 14.65 a | 10.5 b | ||
LSD for: Factor A = 0.685, Factor B = 1.346; Interaction A/B = n.s. B/A = n.s. | ||||||
pickled carrot juice | org | 0.0 | 0.0 | 8.7 | 7.8 | 4.12 a |
conv | 0.0 | 0.0 | 9.2 | 8.4 | 4.40 a | |
Mean B | 0.00 | 0.00 | 8.95 a | 8.10 b | ||
LSD for: Factor A = n.s., Factor B = 0.65; Interaction A/B = n.s. B/A = n.s. | ||||||
pickled cucumbers | org | 2.0 | 1. | 10.5 | 8.9 | 5.75 a |
conv | 1.8 | 1.0 | 12.3 | 9.5 | 6.15 a | |
Mean B | 1.90 c | 1.30 c | 11.40 a | 9.17 b | ||
LSD for: Factor A = n.s., Factor B = 0.842; Interaction A/B = 0.857 B/A = 1.190 | ||||||
sauerkraut | org | 0.6 | 0.7 | 7.5 | 6.2 | 3.75 b |
conv | 0.9 | 1.0 | 9.1 | 7.1 | 4.53 a | |
Mean B | 0.75 c | 0.85 c | 8.30 a | 6.65 b | ||
LSD for: Factor A = 0.355., Factor B = 0.698; Interaction A/B = 0.711 B/A = 0.987 | ||||||
yogurt | org | 7.4 | 7.1 | 20.1 | 17.2 | 12.95 a |
conv | 6.1 | 6.6 | 19.4 | 15.6 | 11.92 b | |
Mean B | 6.75 c | 6.85 c | 19.73 a | 16.40 b | ||
LSD for: Factor A = 0.497, Factor B = 0.976; Interaction A/B = n.s. B/A = n.s. | ||||||
kefir | org | 4.5 | 4.6 | 17.6 | 14.3 | 10.25 b |
conv | 5.1 | 5.2 | 18.5 | 15.1 | 10.97 a | |
Mean B | 4.8 c | 4.9 c | 18.05 a | 14.7 b | ||
LSD for: Factor A = 0.382, Factor B = 0.751; Interaction A/B = n.s. B/A = n.s. | ||||||
buttermilk | org | 5.3 | 4.2 | 18.6 | 16.8 | 11.22 a |
conv | 4.9 | 3.6 | 18.5 | 16.1 | 10.77 b | |
Mean B | 5.10 c | 3.90 d | 18.55 a | 16.45 b | ||
LSD for: Factor A = 0.351, Factor B = 0.689; Interaction A/B = n.s. B/A = n.s. |
Product | Production System | Components | Nutritional Value in 100 g (100 mL) of the Product |
---|---|---|---|
Pickled cucumbers | org | cucumber, dill, horseradish, garlic, spring brine | energy value-fat-0.1 g, including saturated fatty acids-0.0 g; carbohydrates-1.9 g, including sugars-0.00 g; protein-0.6 g; salt-2.1 g |
conv | cucumbers, table salt, dill, horseradish, garlic, spices | energy value-50 kcal/12 kJ; fat-0 g, including saturated fatty acids-0 g; carbohydrates-1.9 g, including sugars-0 g; protein-1 g; salt-1 g | |
Sauerkraut | org | white cabbage, carrots, non-iodized rock salt | energy value-71 kJ/17 kcal; fat-0.2 g, including saturated fatty acids-0.0 g; carbohydrates-2.3 g, including sugars-2.0 g; protein-0.9 g; salt-0.8 g |
conv | white cabbage, carrots, table salt | data not available | |
Pickled beet juice | org | beetroot, dill, horseradish, garlic, natural spring brine | energy value-76 kJ/18 kcal; fat-0.04 g, including saturated fatty acids-0.0 g; carbohydrates-3.6 g, including sugars-0.15 g; protein-0.9 g; salt-1.7 g |
conv | naturally pickled red beet extract, garlic, salt, spices, citric acid | energy value-50 kJ/12 kcal; fat-0.2 g, including saturated fatty acids-0.2 g; carbohydrates < 0.3 g, including sugars < 0.1 g; protein < 0.3 g; salt-1.85 g | |
Pickled carrot juice | org | organic pickled carrot juice | energy value-155 kJ/37 kcal; fat-0.1 g, including saturated fatty acids-0.08 g; carbohydrates-8.0 g, including sugars-7.7 g; protein-0.5 g; salt-0.15 g |
conv | pickled carrot juice (80%), apples (20%), mixed spices (salt, garlic, horseradish, allspice, bay leaf) | energy value-65 kJ/15 kcal; fat-0.00 g, including saturated fatty acids-0.00 g; carbohydrates-2.99 g, including sugars-2.45 g; protein-0.43 g; salt-0.93 g | |
Yogurt | org | whole milk, skimmed milk powder, lactic acid bacteria (Streptococcus thermophilus, Lactobacillus bulgaricus) | energy value-316 kJ/75 kcal; fat-3.8 g, including saturated fatty acids-2.4 g; carbohydrates-4.7 g, including sugars-4.7 g; protein-5.0 g; salt-0.15 g |
conv | milk, milk proteins, lactic acid bacteria | energy value-280 kJ/67 kcal; fat-3.1 g, including saturated fatty acids-2.1 g; carbohydrates-4.0 g, including sugars-4.0 g; protein-4.8 g; salt-0.17 g | |
Kefir | org | organic milk, lactic acid bacteria, and kefir yeast | energy value-208 kJ/50 kcal; fat-2.0 g, including saturated fatty acids-1.3 g; carbohydrates-4.7 g, including sugars-4.7 g; protein-3.2 g; salt-0.10 g |
conv | skim milk, cream (from milk), skim milk powder, lactic acid bacteria, kefir yeast | energy value-215 kJ/51 kcal; fat-1.5 g, including saturated fatty acids-0.9 g; carbohydrates-6.7 g, including sugars-6.7 g; protein-2.7 g; salt-0.10 g | |
Buttermilk | org | natural buttermilk, lactic acid bacteria | energy value-135 kJ/32 kcal; fat-0.7 g, including saturated fatty acids-0.4 g; carbohydrates-3.6 g, including sugars-3.6 g; protein-2.6 g; salt-0.1 g |
conv | natural pasteurized buttermilk, pasteurized milk, lactic acid bacteria | energy value-190 kJ/45 kcal; fat-1.5 g, including saturated fatty acids-0.9 g; carbohydrates-4.5 g, including sugars-4.5 g; protein-3.4 g; salt-0.04 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breza-Boruta, B.; Ligocka, A.; Bauza-Kaszewska, J. Natural Bioactive Compounds in Organic and Conventional Fermented Food. Molecules 2022, 27, 4084. https://doi.org/10.3390/molecules27134084
Breza-Boruta B, Ligocka A, Bauza-Kaszewska J. Natural Bioactive Compounds in Organic and Conventional Fermented Food. Molecules. 2022; 27(13):4084. https://doi.org/10.3390/molecules27134084
Chicago/Turabian StyleBreza-Boruta, Barbara, Anna Ligocka, and Justyna Bauza-Kaszewska. 2022. "Natural Bioactive Compounds in Organic and Conventional Fermented Food" Molecules 27, no. 13: 4084. https://doi.org/10.3390/molecules27134084
APA StyleBreza-Boruta, B., Ligocka, A., & Bauza-Kaszewska, J. (2022). Natural Bioactive Compounds in Organic and Conventional Fermented Food. Molecules, 27(13), 4084. https://doi.org/10.3390/molecules27134084