Synergistic Treatment of Congo Red Dye with Heat Treated Low Rank Coal and Micro-Nano Bubbles
Abstract
:1. Introduction
2. Materials and Instruments
2.1. Reagent Preparation
2.2. Preparation of SC
2.3. Adsorption Experiments
2.4. Sample Characterization
3. Results and Discussion
3.1. The Characterization of Raw Coal and SC
3.2. Influence of pH and Time on Adsorption with or without Bubbles
3.3. Effect of Adsorbent Dosage
3.4. Kinetic Studies of CR Dye Adsorption
3.5. Adsorption Isotherms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Saya, L.; Gautam, D.; Malik, V.; Singh, W.R.; Hooda, S. Natural Polysaccharide Based Graphene Oxide Nanocomposites for Removal of Dyes from Wastewater: A Review. J. Chem. Eng. Data 2021, 66, 11–37. [Google Scholar] [CrossRef]
- Xu, D.; Hein, S.; Loo, S.L.; Wang, K. The Fixed-Bed Study of Dye Removal on Chitosan Beads at High pH. Ind. Eng. Chem. Res. 2008, 47, 8796–8800. [Google Scholar] [CrossRef]
- Huang, W.; Hu, Y.; Li, Y.; Zhou, Y.; Niu, D.; Lei, Z.; Zhang, Z. Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: The roles of cavity and surface functional groups. J. Taiwan Inst. Chem. Eng. 2018, 82, 189–197. [Google Scholar] [CrossRef]
- Kamran, U.; Bhatti, H.N.; Iqbal, M.; Jamil, S.; Zahid, M. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. J. Mol. Struct. 2019, 1179, 532–539. [Google Scholar] [CrossRef]
- Mella, B.; de Carvalho Barcellos, B.S.; da Silva Costa, D.E.; Gutterres, M. Treatment of Leather Dyeing Wastewater with Associated Process of Coagulation-Flocculation/Adsorption/Ozonation. Ozone-Sci. Eng. 2018, 40, 133–140. [Google Scholar] [CrossRef]
- Hao, Y.M.; Wang, Z.; Wang, Z.M.; He, J.J. Preparation of hierarchically porous carbon from cellulose as highly efficient adsorbent for the removal of organic dyes from aqueous solutions. Ecotox. Environ. Saf. 2019, 168, 298–303. [Google Scholar] [CrossRef]
- Yokwana, K.; Kuvarega, A.T.; Mhlanga, S.D.; Nxumalo, E.N. Mechanistic aspects for the removal of Congo red dye from aqueous media through adsorption over N-doped graphene oxide nanoadsorbents prepared from graphite flakes and powders. Phys. Chem. Earth 2018, 107, 58–70. [Google Scholar] [CrossRef]
- Ahmad, R.; Kumar, R. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon. Appl. Surf. Sci. 2010, 257, 1628–1633. [Google Scholar] [CrossRef]
- Ahmad, R.; Mondal, P.K. Application of Modified Water Nut Carbon as a Sorbent in Congo Red and Malachite Green Dye Contaminated Wastewater Remediation. Sep. Sci. Technol. 2010, 45, 394–403. [Google Scholar] [CrossRef]
- Capar, G.; Yetis, U.; Yilmaz, L. Membrane based strategies for the pre-treatment of acid dye bath wastewaters. J. Hazard. Mater. 2006, 135, 423–430. [Google Scholar] [CrossRef]
- Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.; Lee, J.H. Remediation of wastewater: Role of hydroxyl radicals. J. Photochem. Photobiol. B-Biol. 2014, 141, 210–216. [Google Scholar] [CrossRef]
- Daneshvar, N.; Khataee, A.R.; Rasoulifard, M.H.; Pourhassan, M. Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. J. Hazard. Mater. 2007, 143, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Maruthupandy, M.; Muneeswaran, T.; Chackaravarthi, G.; Vennila, T.; Anand, M.; Cho, W.S.; Quero, F. Synthesis of chitosan/SnO2 nanocomposites by chemical precipitation for enhanced visible light photocatalytic degradation efficiency of congo red and rhodamine-B dye molecules. J. Photochem. Photobiol. A-Chem. 2022, 430, 113972. [Google Scholar] [CrossRef]
- Liang, C.; Qin, S.Z.; Ai, H.; Li, S.S.; Du, K.F. Novel amyloid-like porous lysozyme skeletons as “green” superadsorbent presenting ultrahigh capacity and rapid sequestration towards hazardous Congo red. Chem. Eng. J. 2022, 441, 136005. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Yarramuthi, V.; Kim, Y.; Lee, K.M.; Kim, D.S. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotox. Environ. Safe. 2018, 148, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Erto, A.; Giraldo, L.; Lancia, A.; Moreno-Pirajan, J.C. A Comparison Between a Low-Cost Sorbent and an Activated Carbon for the Adsorption of Heavy Metals from Water. Water Air Soil Pollut. 2013, 224, 10. [Google Scholar] [CrossRef]
- Wießner, A.; Remmler, M.; Kuschk, P.; Stottmeister, U. The treatment of a deposited lignite pyrolysis wastewater by adsorption using activated carbon and activated coke. Colloids Surf. A Physicochem. Eng. Asp. 1998, 139, 91–97. [Google Scholar] [CrossRef]
- Xia, Y.C.; Zhang, R.; Cao, Y.J.; Xing, Y.W.; Gui, X.H. Role of molecular simulation in understanding the mechanism of low-rank coal flotation: A review. Fuel 2020, 262, 17. [Google Scholar] [CrossRef]
- He, Q.Q.; Li, X.Y.; Miao, Z.Y.; Huang, S.M.; Wan, K.J. The relevance between water release behavior and pore evolution of hard lignite during the thermal-drying process. J. Energy Inst. 2019, 92, 1689–1696. [Google Scholar] [CrossRef]
- Rustam, S.; Intan, N.N.; Pfaendtner, J. Effect of graphitic anode surface functionalization on the structure and dynamics of electrolytes at the interface. J. Chem. Phys. 2021, 155, 134702. [Google Scholar] [CrossRef]
- Karabakan, A.; Karabulut, S.; Denizli, A.; Yurum, Y. Removal of silver(I) from aqueous solutions with low-rank Turkish coals. Adsorpt. Sci. Technol. 2004, 22, 135–144. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.F.; Cheng, F.Q.; Liu, Y. Enhanced phenol removal in an innovative lignite activated coke-assisted biological process. Bioresour. Technol. 2018, 260, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Chander, S. Removal and recovery of metal ions from acid mine drainage using lignite—A low cost sorbent. J. Hazard. Mater. 2006, 137, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Ruan, P.; Miao, Z.; Wan, K.; Gao, M.; Li, X.; Huang, S. Adsorption of direct yellow brown D3G from aqueous solution using loaded modified low-cost lignite: Performance and mechanism. Environ. Technol. 2021, 42, 1642–1651. [Google Scholar] [CrossRef]
- Agarwal, A.; Ng, W.J.; Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011, 84, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Z.; Hu, L.M.; Song, D.J.; Lin, F. Characteristics of Micro-Nano Bubbles and Potential Application in Groundwater Bioremediation. Water Environ. Res. 2014, 86, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Nakajima, M.; Ichikawa, S.; Nakamura, N.; Shiina, T. A comparative study of microbubble generation by mechanical agitation and sonication. Innov. Food Sci. Emerg. Technol. 2008, 9, 489–494. [Google Scholar] [CrossRef]
- Xiao, Z.G.; Bin Aftab, T.; Li, D.X. Applications of micro-nano bubble technology in environmental pollution control. Micro Nano Lett. 2019, 14, 782–787. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Q.H.; Ma, H.Z.; Huang, P.K.; Li, J.; Kikuchi, T. Effect of micro-bubbles on coagulation flotation process of dyeing wastewater. Sep. Purif. Technol. 2010, 71, 337–346. [Google Scholar] [CrossRef]
- He, Q.; Wang, G.; Chen, Z.; Miao, Z.; Wan, K.; Huang, S. Adsorption of anionic azo dyes using lignite coke by one-step short-time pyrolysis. Fuel 2020, 267, 117140. [Google Scholar] [CrossRef]
- Qian, L.; Zhao, Y.; Sun, S.; Che, H.; Chen, H.; Wang, D. Chemical/physical properties of char during devolatilization in inert and reducing conditions. Fuel Process. Technol. 2014, 118, 327–334. [Google Scholar] [CrossRef]
- Zheng, M.Q.; Han, Y.X.; Xu, C.Y.; Zhang, Z.W.; Han, H.J. Selective adsorption and bioavailability relevance of the cyclic organics in anaerobic pretreated coal pyrolysis wastewater by lignite activated coke. Sci. Total Environ. 2019, 653, 64–73. [Google Scholar] [CrossRef]
- Belhachemi, M.; Rios, R.V.R.A.; Addoun, F.; Silvestre-Albero, J.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F. Preparation of activated carbon from date pits: Effect of the activation agent and liquid phase oxidation. J. Anal. Appl. Pyrolysis 2009, 86, 168–172. [Google Scholar] [CrossRef]
- Hu, J.H.; Chen, Y.Q.; Qian, K.Z.; Yang, Z.X.; Yang, H.P.; Li, Y.; Chen, H.P. Evolution of char structure during mengdong coal pyrolysis: Influence of temperature and K2CO3. Fuel Process. Technol. 2017, 159, 178–186. [Google Scholar] [CrossRef]
- Qi, Y.; Hann, W.; Subagyono, D.J.N.; Fei, Y.; Marshall, M.; Jackson, W.R.; Patti, A.F.; Chaffee, A.L. Characterisation of the products of low temperature pyrolysis of Victorian brown coal in a semi-continuous/flow through system. Fuel 2018, 234, 1422–1430. [Google Scholar] [CrossRef]
- Meng, F.R.; Xiao, K.M.; Li, X.C.; Wang, H.R.; Wang, G.Y.; Lu, L.M. Characteristics of Chars Prepared by Low-Temperature Co-Pyrolysis of Lignite and Biomass. Combust. Sci. Technol. 2020, 192, 513–530. [Google Scholar] [CrossRef]
- Hu, L.; He, L.; Wang, G.H. Drying kinetics characteristics of lignite using thermogravimetric analysis. Energy Sources Part A-Recovery Util. Environ. Eff. 2020, 42, 586–596. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, G.Y.; Zhao, Y.Y.; Zhao, M.S.; Tang, J.W. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data. Fuel 2017, 203, 924–931. [Google Scholar] [CrossRef]
- Intan, N.N.; Pfaendtner, J. Effect of Fluoroethylene Carbonate Additives on the Initial Formation of the Solid Electrolyte Interphase on an Oxygen-Functionalized Graphitic Anode in Lithium-Ion Batteries. Acs Appl. Mater. Interfaces 2021, 13, 8169–8180. [Google Scholar] [CrossRef]
- Hampton, M.A.; Nguyen, A.V. Nanobubbles and the nanobubble bridging capillary force. Adv. Colloid Interface Sci. 2010, 154, 30–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Seddon, J.R.T. Nanobubble-Nanoparticle Interactions in Bulk Solutions. Langmuir 2016, 32, 11280–11286. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.S.; Zong, Y.J.; Li, W.S.; Zhang, S.Y.; Wan, M.X. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method. Ultrason. Sonochem. 2014, 21, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.X.; Wang, L.Y.; Zhang, X.D.; Yang, W.J.; Song, G.L. Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor. Chem. Eng. J. 2015, 275, 315–321. [Google Scholar] [CrossRef]
- Mathialagan, T.; Viraraghavan, T. Adsorption of cadmium from aqueous solutions by perlite. J. Hazard. Mater. 2002, 94, 291–303. [Google Scholar] [CrossRef]
- Mercante, L.A.; Facure, M.H.M.; Locilento, D.A.; Sanfelice, R.C.; Migliorini, F.L.; Mattoso, L.H.C.; Correa, D.S. Solution blow spun PMMA nanofibers wrapped with reduced graphene oxide as an efficient dye adsorbent. New J. Chem. 2017, 41, 9087–9094. [Google Scholar] [CrossRef]
- Otero, M.; Rozada, F.; Calvo, L.F.; Garcia, A.I.; Moran, A. Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges. Biochem. Eng. J. 2003, 15, 59–68. [Google Scholar] [CrossRef]
- Tahir, S.S.; Rauf, N. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere 2006, 63, 1842–1848. [Google Scholar] [CrossRef]
- Gupta, V.K.; Rastogi, A. Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp from aqueous phase. J. Hazard. Mater. 2008, 153, 759–766. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Sun, Y.; Xu, X.R.; Meng, X.H.; Qu, J.B.; Wang, Z.; Liu, C.Y.; Qu, B. Preparation, characterization and application of activated carbon from corn cob by KOH activation for removal of Hg(II) from aqueous solution. Bioresour. Technol. 2020, 306, 6. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Peng, L.; Han, S.; Hao, C.; Jiang, C.; Wang, H.; Fan, X. Effective removal of heavy metals from water using porous lignin-based adsorbents. Chemosphere 2021, 279, 130504. [Google Scholar] [CrossRef]
- Khan, Z.; Al-Thabaiti, S.A. Chitosan capped trimetallic nanoparticles: Synthesis and their Congo red adsorbing activities. Int. J. Biol. Macromol. 2022, 194, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.W.; An, L.; Chen, J.; Bae, J.H.; Kim, Y.S. Preparation of amine-functionalized lignins for the selective adsorption of Methylene blue and Congo red. Chemosphere 2022, 295, 133815. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Kang, Y.; Wang, W.; Lv, X.; Wang, B.; Zhang, Q.; Cui, C.; Cui, S.; Jiao, S.; Pang, G.; et al. Chitosan modified inorganic nanowires membranes for ultra-fast and efficient removal of Congo red. Appl. Surf. Sci. 2021, 569, 150970. [Google Scholar] [CrossRef]
- Arab, C.; El Kurdi, R.; Patra, D. Zinc curcumin oxide nanoparticles for enhanced adsorption of Congo red: Kinetics and adsorption isotherms study. Mater. Today Chem. 2022, 23, 100701. [Google Scholar] [CrossRef]
- Arab, C.; El Kurdi, R.; Patra, D. Efficient removal of Congo red using curcumin conjugated zinc oxide nanoparticles as new adsorbent complex. Chemosphere 2021, 276, 130158. [Google Scholar] [CrossRef]
Conditions | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|
qe1 | K1 | R2 | qe2 | K2 | R2 | |
SC | 6.8295 | 0.0087 | 0.9080 | 15.6519 | 0.0031 | 0.9911 |
SC with MNBs | 2.2769 | 0.0090 | 0.8106 | 16.1447 | 0.0144 | 0.9996 |
Raw | 3.0155 | 0.0167 | 0.9288 | 9.1794 | 0.0152 | 0.9996 |
Raw with MNBs | 1.8687 | 0.0163 | 0.9040 | 12.3655 | 0.0275 | 0.9999 |
T/°C | Condition | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
b | q0(mg/g) | R2 | n | k | R2 | ||
25 | Raw coal | 0.0133 | 15.7530 | 0.9970 | 2.5649 | 1.4337 | 0.9637 |
Raw coal with MNBs | 0.0057 | 36.6435 | 0.9966 | 1.7014 | 0.8533 | 0.9879 | |
SC | 0.0028 | 63.4518 | 0.9552 | 1.3854 | 0.4847 | 0.9955 | |
SC with MNBs | 0.0010 | 169.4915 | 0.8781 | 1.1444 | 0.2741 | 0.9981 | |
35 | Raw coal | 0.0127 | 16.8606 | 0.9930 | 2.4592 | 1.3881 | 0.9432 |
Raw coal with MNBs | 0.0047 | 43.4972 | 0.9970 | 1.5827 | 0.7335 | 0.9875 | |
SC | 0.0022 | 77.5795 | 0.9262 | 1.3217 | 0.4148 | 0.9996 | |
SC with MNBs | 0.0008 | 201.6129 | 0.8573 | 1.1229 | 0.2566 | 0.9988 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, N.; Cui, R.; Peng, H.; Gao, R.; He, Q.; Miao, Z. Synergistic Treatment of Congo Red Dye with Heat Treated Low Rank Coal and Micro-Nano Bubbles. Molecules 2022, 27, 4121. https://doi.org/10.3390/molecules27134121
Han N, Cui R, Peng H, Gao R, He Q, Miao Z. Synergistic Treatment of Congo Red Dye with Heat Treated Low Rank Coal and Micro-Nano Bubbles. Molecules. 2022; 27(13):4121. https://doi.org/10.3390/molecules27134121
Chicago/Turabian StyleHan, Ning, Rong Cui, Haisen Peng, Ruize Gao, Qiongqiong He, and Zhenyong Miao. 2022. "Synergistic Treatment of Congo Red Dye with Heat Treated Low Rank Coal and Micro-Nano Bubbles" Molecules 27, no. 13: 4121. https://doi.org/10.3390/molecules27134121
APA StyleHan, N., Cui, R., Peng, H., Gao, R., He, Q., & Miao, Z. (2022). Synergistic Treatment of Congo Red Dye with Heat Treated Low Rank Coal and Micro-Nano Bubbles. Molecules, 27(13), 4121. https://doi.org/10.3390/molecules27134121