Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review
Abstract
:1. Introduction
2. Geopolymer
3. Geopolymer-Based S/S Process
3.1. S/S of Heavy Metals
3.1.1. S/S of Cationic Metals
Pb
Zn
Cd
Cs
Other Cations
3.1.2. S/S of Anionic Metals
Cr
Se
Other Anions
3.2. S/S of Organic Pollutants
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jerry, A.N. Solid-Waste Management; Encyclopedia Britannica, Inc.: New York, NY, USA, 2015. [Google Scholar]
- Who, D. Waste production must peak this century. Nature 2013, 502, 31. [Google Scholar]
- Aprianti, E.; Shafigh, P.; Bahri, S.; Farahani, J.N. Supplementary cementitious materials origin from agricultural waste—A review. Constr. Build. Mater. 2015, 74, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Kinnunen, P.; Ismailov, A.; Solismaa, S.; Sreenivasan, H.; Räisänen, M.-L.; Levänen, E.; Illikainen, M. Recycling mine tailings in chemically bonded ceramics—A review. J. Clean. Prod. 2018, 174, 634–649. [Google Scholar] [CrossRef] [Green Version]
- Salemdeeb, R.; zu Ermgassen, E.K.; Kim, M.H.; Balmford, A.; Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: A comparative analysis of food waste management options. J. Clean. Prod. 2017, 140, 871–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, M.-S.; Huang, K.-H. Recycling and reuse of industrial waste in Taiwan. Waste Manag. 2001, 21, 93–97. [Google Scholar] [CrossRef]
- Taghipour, M.; Jalali, M. Heavy Metal Release from Some Industrial Waste: Influence of Organic and Inorganic Acids, Clay Minerals, and Nanoparticles. Pedosphere 2018, 28, 70–83. [Google Scholar] [CrossRef]
- Luo, H.W.; Cheng, Y.; He, D.Q.; Yang, E.H. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 2019, 668, 90–103. [Google Scholar] [CrossRef]
- Wang, S.; Jin, H.; Deng, Y.; Xiao, Y. Comprehensive utilization status of red mud in China: A critical review. J. Clean. Prod. 2021, 289, 125136. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Luo, D.; Chong, Z.; Li, E.; Kong, X. A review of municipal solid waste in China: Characteristics, compositions, influential factors and treatment technologies. Environ. Dev. Sustain. 2021, 23, 6603–6622. [Google Scholar] [CrossRef]
- Singh, J.; Ordoñez, I. Resource recovery from post-consumer waste: Important lessons for the upcoming circular economy. J. Clean. Prod. 2016, 134, 342–353. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Visvanathan, C. Hazardous waste disposal. Resour. Conserv. Recycl. 1996, 16, 201–212. [Google Scholar] [CrossRef]
- Shi, C.; Fernández-Jiménez, A. Stabilization/solidification of hazardous and radioactive waste with alkali-activated cements. J. Hazard. Mater. 2006, 137, 1656–1663. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Tyrer, M.; Hills, C.D.; Yang, X.; Carey, P. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Manag. 2009, 29, 390–403. [Google Scholar] [CrossRef]
- Kiventerä, J.; Piekkari, K.; Isteri, V.; Ohenoja, K.; Tanskanen, P.; Illikainen, M. Solidification/stabilization of gold mine tailings using calcium sulfoaluminate-belite cement. J. Clean. Prod. 2019, 239, 118008. [Google Scholar] [CrossRef]
- Fan, C.C.; Wang, B.M.; Zhang, T.T. Review on Cement Stabilization/Solidification of Municipal Solid Waste Incineration Fly Ash. Adv. Mater. Sci. Eng. 2018, 2018, 5120649. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Blasco, I.; Duran, A.; Sirera, R.; Fernández, J.; Alvarez, J.I. Solidification/stabilization of toxic metals in calcium aluminate cement matrices. J. Hazard. Mater. 2013, 260, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Lamberet, S. Durability of Ternary Binders Based on Portland Cement, Calcium Aluminate Cement and Calcium Sulfate; École Polytechnique Fédérale de Lausanne: Lausanne, Switzerland, 2004. [Google Scholar]
- Swift, P.; Kinoshita, H.; Collier, N.; Utton, C. Phosphate modified calcium aluminate cement for radioactive waste encapsulation. Adv. Appl. Ceram. 2013, 112, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fryda, H.; Vetter, G.; Ollitrault-Fichet, R.; Boch, P.; Capmas, A. Formation of chabazite in mixes of calcium aluminate cement and silica fume used for caesium immobilization. Adv. Cem. Res. 1996, 8, 29–39. [Google Scholar] [CrossRef]
- Walling, S.A.; Provis, J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016, 116, 4170–4204. [Google Scholar] [CrossRef]
- Ortego, J.D.; Barroeta, Y.; Cartledge, F.K.; Akhter, H. Leaching effects on silicate polymerization. An FTIR and silicon-29 NMR study of lead and zinc in portland cement. Environ. Sci. Technol. 1991, 25, 1171–1174. [Google Scholar] [CrossRef]
- Chen, W.; Hong, J.; Xu, C. Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement. J. Clean. Prod. 2015, 103, 61–69. [Google Scholar] [CrossRef]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Wang, L.; Cho, D.-W.; Tsang, D.C.W.; Cao, X.; Hou, D.; Shen, Z.; Alessi, D.S.; Ok, Y.S.; Poon, C.S. Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environ. Int. 2019, 126, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Ryu, G.S.; Lee, Y.B.; Koh, K.T.; Chung, Y.S. The mechanical properties of fly-ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 2013, 47, 409–418. [Google Scholar] [CrossRef]
- Rożek, P.; Król, M.; Mozgawa, W. Spectroscopic studies of fly-ash-based geopolymers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 283–289. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. 2016, 109, 17–24. [Google Scholar] [CrossRef]
- Seneviratne, C.; Gunasekara, C.; Law, D.W.; Setunge, S.; Robert, D. Creep, shrinkage and permeation characteristics of geopolymer aggregate concrete: Long-term performance. Arch. Civ. Mech. Eng. 2020, 20, 140. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Bingxue, Z.; Guarecuco, R.; Thomas, T.; Minghui, Y. Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: A critical review. J. Clean. Prod. 2019, 213, 42–58. [Google Scholar] [CrossRef]
- Ariffin, N.; Abdullah, M.M.A.B.; Zainol, M.R.R.M.A.; Murshed, M.F.; Faris, M.A.; Bayuaji, R. Review on adsorption of heavy metal in wastewater by using geopolymer. In Proceedings of the MATEC Web of Conferences, Ho Chi Minh City, Vietnam, 5–6 August 2016; p. 01023. [Google Scholar]
- Tan, T.H.; Mo, K.H.; Ling, T.-C.; Lai, S.H. Current development of geopolymer as alternative adsorbent for heavy metal removal. Environ. Technol. Innov. 2020, 18, 100684. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Liew, Y.-M.; Heah, C.-Y.; Kamarudin, H. Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci. 2016, 83, 595–629. [Google Scholar] [CrossRef]
- Cao, D.; Su, D.; Lu, B.; Yang, Y. Synthesis and structure characterization of geopolymeric material based on metakaolinite and phosphoric acid. Kuei Suan Jen Hsueh Pao/J. Chin. Ceram. Soc. 2005, 33, 1385–1389. [Google Scholar]
- Davidovits, J. Geopolymer Chemistry and Sustainable Development. In Proceedings of the World Congress Geopolymer, Saint-Quentin, France, 12 February 2006; pp. 9–15. [Google Scholar]
- Prasittisopin, L.; Sereewatthanawut, I. Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer. Front. Struct. Civ. Eng. 2018, 12, 16–25. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Zain, H.; Abdullah, M.M.A.B.; Hussin, K.; Ariffin, N.; Bayuaji, R. Review on various types of geopolymer materials with the environmental impact assessment. In Proceedings of the MATEC Web of Conferences, Ho Chi Minh City, Vietnam, 5–6 August 2016; p. 01021. [Google Scholar]
- Ahmari, S.; Zhang, L. Durability and leaching behavior of mine tailings-based geopolymer bricks. Constr. Build. Mater. 2013, 44, 743–750. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L. Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 2008, 91, 3864–3869. [Google Scholar] [CrossRef]
- Tchadjie, L.; Ekolu, S. Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. J. Mater. Sci. 2018, 53, 4709–4733. [Google Scholar] [CrossRef]
- Elimbi, A.; Tchakoute, H.; Njopwouo, D. Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr. Build. Mater. 2011, 25, 2805–2812. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D.; Brew, D.R.M.; Fletcher, R.A.; Vagana, R. Formation of aluminosilicate geopolymers from 1:1 layer-lattice minerals pre-treated by various methods: A comparative study. J. Mater. Sci. 2007, 42, 4667–4674. [Google Scholar] [CrossRef]
- Abdullah, M.; Kamarudin, H.; Bnhussain, M.; Khairul Nizar, I.; Rafiza, A.R.; Zarina, Y. The relationship of NaOH molarity, Na2SiO3/NaOH ratio, fly ash/alkaline activator ratio, and curing temperature to the strength of fly-ash-based geopolymer. In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2011; pp. 1475–1482. [Google Scholar]
- Abdul Rahim, R.; Rahmiati, T.; Azizli, K.A.; Man, Z.; Nuruddin, M.F.; Ismail, L. Comparison of using NaOH and KOH activated fly-ash-based geopolymer on the mechanical properties. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2015; pp. 179–184. [Google Scholar]
- Sturm, P.; Gluth, G.; Simon, S.; Brouwers, H.; Kühne, H.-C. The effect of heat treatment on the mechanical and structural properties of one-part geopolymer-zeolite composites. Thermochim. Acta 2016, 635, 41–58. [Google Scholar] [CrossRef]
- Rożek, P.; Król, M.; Mozgawa, W. Geopolymer-zeolite composites: A review. J. Clean. Prod. 2019, 230, 557–579. [Google Scholar] [CrossRef]
- Rees, C.A.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloids Surf. A Physicochem. Eng. Asp. 2008, 318, 97–105. [Google Scholar] [CrossRef]
- Tian, Q.; Nakama, S.; Sasaki, K. Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. Sci. Total Environ. 2019, 687, 1127–1137. [Google Scholar] [CrossRef]
- Kuenzel, C.; Grover, L.M.; Vandeperre, L.; Boccaccini, A.R.; Cheeseman, C.R. Production of nepheline/quartz ceramics from geopolymer mortars. J. Eur. Ceram. Soc. 2013, 33, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Sontia Metekong, J.V.; Kaze, C.R.; Deutou, J.G.; Venyite, P.; Nana, A.; Kamseu, E.; Melo, U.C.; Tatietse, T.T. Evaluation of performances of volcanic-ash-laterite based blended geopolymer concretes: Mechanical properties and durability. J. Build. Eng. 2021, 34, 101935. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Wang, R.; Chen, F.; Jia, X.; Cong, P. Effects of reactive MgO on the reaction process of geopolymer. Materials 2019, 12, 526. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.-K.; Awang, A.Z.; Omar, W. Structural and material performance of geopolymer concrete: A review. Constr. Build. Mater. 2018, 186, 90–102. [Google Scholar] [CrossRef]
- Duruibe, J.O.; Ogwuegbu, M.; Egwurugwu, J. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Chen, Y.; Chen, F.; Zhou, F.; Lu, M.; Hou, H.; Li, J.; Liu, D.; Wang, T. Early solidification/stabilization mechanism of heavy metals (Pb, Cr and Zn) in Shell coal gasification fly ash based geopolymer. Sci. Total Environ. 2022, 802, 149905. [Google Scholar] [CrossRef]
- Hu, S.; Zhong, L.; Yang, X.; Bai, H.; Ren, B.; Zhao, Y.; Zhang, W.; Ju, X.; Wen, H.; Mao, S.; et al. Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals. Constr. Build. Mater. 2020, 254, 119273. [Google Scholar] [CrossRef]
- Guo, B.; Pan, D.a.; Liu, B.; Volinsky, A.A.; Fincan, M.; Du, J.; Zhang, S. Immobilization mechanism of Pb in fly-ash-based geopolymer. Constr. Build. Mater. 2017, 134, 123–130. [Google Scholar] [CrossRef]
- Sun, S.; Lin, J.; Zhang, P.; Fang, L.; Ma, R.; Quan, Z.; Song, X. Geopolymer synthetized from sludge residue pretreated by the wet alkalinizing method: Compressive strength and immobilization efficiency of heavy metal. Constr. Build. Mater. 2018, 170, 619–626. [Google Scholar] [CrossRef]
- Fan, C.; Wang, B.; Ai, H.; Qi, Y.; Liu, Z. A comparative study on solidification/stabilization characteristics of coal fly-ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash. J. Clean. Prod. 2021, 319, 128790. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S.; Zhang, Y. Immobilization forms of ZnO in the solidification/stabilization (S/S) of a zinc mine tailing through geopolymerization. J. Mater. Res. Technol. 2019, 8, 5728–5735. [Google Scholar] [CrossRef]
- Muhammad, F.; Huang, X.; Li, S.; Xia, M.; Zhang, M.; Liu, Q.; Shehzad Hassan, M.A.; Jiao, B.; Yu, L.; Li, D. Strength evaluation by using polycarboxylate superplasticizer and solidification efficiency of Cr6+, Pb2+ and Cd2+ in composite based geopolymer. J. Clean. Prod. 2018, 188, 807–815. [Google Scholar] [CrossRef]
- Ji, Z.; Pei, Y. Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals. Chemosphere 2019, 225, 579–587. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Z.; Pu, S.; Song, W. Solidification/Stabilization of Pb2+ and Cd2+ Contaminated Soil Using Fly Ash and GGBS Based Geopolymer. Arab. J. Sci. Eng. 2022, 47, 4385–4400. [Google Scholar] [CrossRef]
- Li, Q.; Sun, Z.; Tao, D.; Xu, Y.; Li, P.; Cui, H.; Zhai, J. Immobilization of simulated radionuclide 133Cs+ by fly-ash-based geopolymer. J. Hazard. Mater. 2013, 262, 325–331. [Google Scholar] [CrossRef]
- He, P.; Wang, R.; Fu, S.; Wang, M.; Cai, D.; Ma, G.; Wang, M.; Yuan, J.; Yang, Z.; Duan, X.; et al. Safe trapping of cesium into doping-enhanced pollucite structure by geopolymer precursor technique. J. Hazard. Mater. 2019, 367, 577–588. [Google Scholar] [CrossRef]
- Liu, X.; Ding, Y.; Lu, X. Immobilization of Simulated Radionuclide 90Sr by Fly Ash-Slag-Metakaolin–Based Geopolymer. Nucl. Technol. 2017, 198, 64–69. [Google Scholar] [CrossRef]
- Jang, J.G.; Park, S.M.; Lee, H.K. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. J. Hazard. Mater. 2016, 318, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Li, S.; Li, H.; Chai, X.; Bi, X.; Liu, J.; Ohnuki, T. Synthesis and characterization of Mn-slag based geopolymer for immobilization of Co. J. Clean. Prod. 2019, 234, 97–104. [Google Scholar] [CrossRef]
- Nikolić, V.; Komljenović, M.; Džunuzović, N.; Ivanović, T.; Miladinović, Z. Immobilization of hexavalent chromium by fly-ash-based geopolymers. Compos. Part B Eng. 2017, 112, 213–223. [Google Scholar] [CrossRef]
- Tian, Q.; Guo, B.; Sasaki, K. Immobilization mechanism of Se oxyanions in geopolymer: Effects of alkaline activators and calcined hydrotalcite additive. J. Hazard. Mater. 2020, 387, 121994. [Google Scholar] [CrossRef]
- Ji, Z.; Su, L.; Pei, Y. Synthesis and toxic metals (Cd, Pb, and Zn) immobilization properties of drinking water treatment residuals and metakaolin-based geopolymers. Mater. Chem. Phys. 2020, 242, 122535. [Google Scholar] [CrossRef]
- Ji, Z.; Pei, Y. Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO43- and Cr2O72-) in waste-based geopolymer. J. Hazard. Mater. 2020, 384, 121290. [Google Scholar] [CrossRef]
- Xia, M.; Muhammad, F.; Zeng, L.; Li, S.; Huang, X.; Jiao, B.; Shiau, Y.; Li, D. Solidification/stabilization of lead–zinc smelting slag in composite based geopolymer. J. Clean. Prod. 2019, 209, 1206–1215. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, X.; Sun, S.; Yang, W.; Fang, L.; Ma, R.; Lin, C.; Li, H. Lead zinc slag-based geopolymer: Demonstration of heavy metal solidification mechanism from the new perspectives of electronegativity and ion potential. Environ. Pollut. 2022, 293, 118509. [Google Scholar] [CrossRef]
- O’Connor, S.J.; MacKenzie, K.J.D.; Smith, M.E.; Hanna, J.V. Ion exchange in the charge-balancing sites of aluminosilicate inorganic polymers. J. Mater. Chem. 2010, 20, 10234–10240. [Google Scholar] [CrossRef]
- Lan, T.; Guo, S.; Li, X.; Guo, J.; Bai, T.; Zhao, Q.; Yang, W.; Li, P. Mixed precursor geopolymer synthesis for removal of Pb(II) and Cd(II). Mater. Lett. 2020, 274, 127977. [Google Scholar] [CrossRef]
- Al-Zboon, K.; Al-Harahsheh, M.S.; Hani, F.B. Fly-ash-based geopolymer for Pb removal from aqueous solution. J. Hazard. Mater. 2011, 188, 414–421. [Google Scholar] [CrossRef]
- Onutai, S.; Kobayashi, T.; Thavorniti, P.; Jiemsirilers, S. Removal of Pb2+, Cu2+, Ni2+, Cd2+ from wastewater using fly ash based geopolymer as an adsorbent. In Key Engineering Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2018; pp. 373–378. [Google Scholar]
- Liu, Y.; Yan, C.; Zhang, Z.; Wang, H.; Zhou, S.; Zhou, W. A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution. Fuel 2016, 185, 181–189. [Google Scholar] [CrossRef]
- Feng, X.; Yan, S.; Jiang, S.; Huang, K.; Ren, X.; Du, X.; Xing, P. Green Synthesis of the Metakaolin/slag Based Geopolymer for the Effective Removal of Methylene Blue and Pb (II). Silicon 2021, 1–15. [Google Scholar] [CrossRef]
- Ma, X.; Xu, D.; Li, Y.; Ou, Z.; Howard, A. Synthesis of a new porous geopolymer from foundry dust to remove Pb2+ and Ni2+ from aqueous solutions. J. Clean. Prod. 2022, 349, 131488. [Google Scholar] [CrossRef]
- Demir, F.; Derun, E.M. Modelling and optimization of gold mine tailings based geopolymer by using response surface method and its application in Pb2+ removal. J. Clean. Prod. 2019, 237, 117766. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, F.; Han, Z.; Song, L.; Zhang, C.; Zhang, J. Adsorption of Cd2+ and Pb2+ by biofuel ash-based geopolymer synthesized by one-step hydrothermal method. Arab. J. Chem. 2021, 14, 103234. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Ding, S.; Zhang, H.; Xia, F.; Wang, J.; Zhou, M. Utilization of red mud in geopolymer-based pervious concrete with function of adsorption of heavy metal ions. J. Clean. Prod. 2019, 207, 789–800. [Google Scholar] [CrossRef]
- He, P.; Zhang, Y.; Zhang, X.; Chen, H. Diverse zeolites derived from a circulating fluidized bed fly ash based geopolymer for the adsorption of lead ions from wastewater. J. Clean. Prod. 2021, 312, 127769. [Google Scholar] [CrossRef]
- Wei, E.; Wang, K.; Muhammad, Y.; Chen, S.; Dong, D.; Wei, Y.; Fujita, T. Preparation and conversion mechanism of different geopolymer-based zeolite microspheres and their adsorption properties for Pb2+. Sep. Purif. Technol. 2022, 282, 119971. [Google Scholar] [CrossRef]
- Khalid, H.R.; Lee, N.; Park, S.M.; Abbas, N.; Lee, H.-K. Synthesis of geopolymer-supported zeolites via robust one-step method and their adsorption potential. J. Hazard. Mater. 2018, 353, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Abdelbaset, H.S.; Shama, S.A.; Hegazey, R.; Abdelrahman, E.A. Utilisation of waste for low-cost synthesis of chitosan composites with nanosized sodium aluminium silicate hydrate and geopolymer/zeolite A for the removal of Hg (II) and Pb (II) ions from aqueous media. Int. J. Environ. Anal. Chem. 2020, 1–19. [Google Scholar] [CrossRef]
- Su, Q.; He, Y.; Yang, S.; Wan, H.; Chang, S.; Cui, X. Synthesis of NaA-zeolite microspheres by conversion of geopolymer and their performance of Pb (II) removal. Appl. Clay Sci. 2021, 200, 105914. [Google Scholar] [CrossRef]
- Yan, C.; Guo, L.; Ren, D.; Duan, P. Novel composites based on geopolymer for removal of Pb(II). Mater. Lett. 2019, 239, 192–195. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, F.; Wang, L.; Rong, Y.; He, P.; Jia, D.; Yang, J. A green and low-cost hollow gangue microsphere/geopolymer adsorbent for the effective removal of heavy metals from wastewaters. J. Environ. Manag. 2019, 246, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Zhu, Z.; Song, W.; Wang, H.; Huo, W.; Zhang, J. A novel acidic phosphoric-based geopolymer binder for lead solidification/stabilization. J. Hazard. Mater. 2021, 415, 125659. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, C. Natural and human factors affect the distribution of soil heavy metal pollution: A review. Water Air Soil Pollut. 2020, 231, 350. [Google Scholar] [CrossRef]
- Nath, S.K. Fly ash and zinc slag blended geopolymer: Immobilization of hazardous materials and development of paving blocks. J. Hazard. Mater. 2020, 387, 121673. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.D.; Bell, M.F. The active dissolution of zinc in alkaline solution. J. Electroanal. Chem. Interfac. Electrochem. 1974, 55, 201–211. [Google Scholar] [CrossRef]
- Wang, L.; Geddes, D.A.; Walkley, B.; Provis, J.L.; Mechtcherine, V.; Tsang, D.C.W. The role of zinc in metakaolin-based geopolymers. Cem. Concr. Res. 2020, 136, 106194. [Google Scholar] [CrossRef]
- Waijarean, N.; MacKenzie, K.J.D.; Asavapisit, S.; Piyaphanuwat, R.; Jameson, G.N.L. Synthesis and properties of geopolymers based on water treatment residue and their immobilization of some heavy metals. J. Mater. Sci. 2017, 52, 7345–7359. [Google Scholar] [CrossRef]
- Al-Zboon, K.K.; Al-smadi, B.M.; Al-Khawaldh, S. Natural volcanic tuff-based geopolymer for Zn removal: Adsorption isotherm, kinetic, and thermodynamic study. Water Air Soil Pollut. 2016, 227, 248. [Google Scholar] [CrossRef]
- Kara, İ.; Yilmazer, D.; Akar, S.T. Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc (II) and nickel (II) ions from aqueous solutions. Appl. Clay Sci. 2017, 139, 54–63. [Google Scholar] [CrossRef]
- Darmayanti, L.; Notodarmojo, S.; Damanhuri, E.; Kadja, G.T.; Mukti, R.R. Preparation of alkali-activated fly-ash-based geopolymer and their application in the adsorption of copper (II) and zinc (II) ions. In Proceedings of the MATEC Web of Conferences, Bali, Indonesia, 24–25 October 2018; p. 06012. [Google Scholar]
- Khaksar Najafi, E.; Jamshidi Chenari, R.; Arabani, M. Sorption kinetics of lead and zinc ions by clay-fly ash geopolymers. Environ. Eng. Sci. 2021, 38, 729–741. [Google Scholar] [CrossRef]
- Lata, S.; Kaur, H.P.; Mishra, T. Cadmium bioremediation: A review. Int. J. Pharm. Sci. Res. 2019, 10, 4120–4128. [Google Scholar]
- Zhang, J.; Provis, J.L.; Feng, D.; van Deventer, J.S.J. Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J. Hazard. Mater. 2008, 157, 587–598. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, W.; Qiao, W.; Shi, Y.; Liu, X. Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization. Front. Environ. Sci. Eng. 2015, 9, 642–648. [Google Scholar] [CrossRef]
- Wang, Y.; Han, F.; Mu, J.; Zhao, S. Property and Mechanism of Immobilization of Cd(II) in Fly Ash Based Geopolymers. In Advances in Energy and Environmental Materials; Han, Y., Ed.; Springer: Singapore, 2018; pp. 707–716. [Google Scholar]
- El-Eswed, B.I. Chemical evaluation of immobilization of waste containing Pb, Cd, Cu and Zn in alkali-activated materials: A critical review. J. Environ. Chem. Eng. 2020, 8, 104194. [Google Scholar] [CrossRef]
- El-Eswed, B.I.; Yousef, R.I.; Alshaaer, M.; Hamadneh, I.; Al-Gharabli, S.I.; Khalili, F. Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int. J. Miner. Process. 2015, 137, 34–42. [Google Scholar] [CrossRef]
- Maleki, A.; Hajizadeh, Z.; Sharifi, V.; Emdadi, Z. A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. J. Clean. Prod. 2019, 215, 1233–1245. [Google Scholar] [CrossRef]
- Panda, L.; Jena, S.K.; Rath, S.S.; Misra, P.K. Heavy metal removal from water by adsorption using a low-cost geopolymer. Environ. Sci. Pollut. Res. 2020, 27, 24284–24298. [Google Scholar] [CrossRef] [PubMed]
- Javadian, H.; Ghorbani, F.; Tayebi, H.-a.; Asl, S.H. Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arab. J. Chem. 2015, 8, 837–849. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Fu, S.; Wang, M.; Duan, X.; Wang, Q.; Li, D.; Yang, Z.; Jia, D.; Zhou, Y. B2O3-assisted low-temperature crystallization of pollucite structures and their potential applications in Cs+ immobilization. J. Nucl. Mater. 2020, 540, 152314. [Google Scholar] [CrossRef]
- Kozai, N.; Sato, J.; Osugi, T.; Shimoyama, I.; Sekine, Y.; Sakamoto, F.; Ohnuki, T. Sewage sludge ash contaminated with radiocesium: Solidification with alkaline-reacted metakaolinite (geopolymer) and Portland cement. J. Hazard. Mater. 2021, 416, 125965. [Google Scholar] [CrossRef]
- Tian, Q.; Sasaki, K. Application of fly-ash-based materials for stabilization/solidification of cesium and strontium. Environ. Sci. Pollut. Res. 2019, 26, 23542–23554. [Google Scholar] [CrossRef]
- He, P.; Cui, J.; Wang, M.; Fu, S.; Yang, H.; Sun, C.; Duan, X.; Yang, Z.; Jia, D.; Zhou, Y. Interplay between storage temperature, medium and leaching kinetics of hazardous waste in Metakaolin-based geopolymer. J. Hazard. Mater. 2020, 384, 121377. [Google Scholar] [CrossRef]
- Bortnovsky, O.; Dědeček, J.; Tvarůžková, Z.; Sobalík, Z.; Šubrt, J. Metal ions as probes for characterization of geopolymer materials. J. Am. Ceram. Soc. 2008, 91, 3052–3057. [Google Scholar] [CrossRef]
- Ofer-Rozovsky, E.; Haddad, M.A.; Bar-Nes, G.; Borojovich, E.J.C.; Binyamini, A.; Nikolski, A.; Katz, A. Cesium immobilization in nitrate-bearing metakaolin-based geopolymers. J. Nucl. Mater. 2019, 514, 247–254. [Google Scholar] [CrossRef]
- Arbel Haddad, M.; Ofer-Rozovsky, E.; Bar-Nes, G.; Borojovich, E.J.C.; Nikolski, A.; Mogiliansky, D.; Katz, A. Formation of zeolites in metakaolin-based geopolymers and their potential application for Cs immobilization. J. Nucl. Mater. 2017, 493, 168–179. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, T.; Zhang, Z.; Ke, Z.; Shan, C.; Cao, X.; Ma, L.; Peng, S. A novel method to convert Cs-polluted soil into pollucite-base glass-ceramics for Cs immobilization. Chem. Eng. J. 2020, 385, 123844. [Google Scholar] [CrossRef]
- Bell, J.L.; Driemeyer, P.E.; Kriven, W.M. Formation of ceramics from metakaolin-based geopolymers: Part I—Cs-based geopolymer. J. Am. Ceram. Soc. 2009, 92, 1–8. [Google Scholar] [CrossRef]
- Chlique, C.; Lambertin, D.; Antonucci, P.; Frizon, F.; Deniard, P. XRD analysis of the role of cesium in sodium-based geopolymer. J. Am. Ceram. Soc. 2015, 98, 1308–1313. [Google Scholar] [CrossRef]
- He, P.; Jia, D. Low-temperature sintered pollucite ceramic from geopolymer precursor using synthetic metakaolin. J. Mater. Sci. 2013, 48, 1812–1818. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Z.-W.; Sun, X.-W. Immobilization of simulated 137CsCl using metakaolin based geopolymers obtained by hybrid hydrothermal-sintering processes. J. Radioanal. Nucl. Chem. 2021, 330, 1285–1298. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, J.; Hou, L.; Lu, Z. Rapid transformation from Cs-geopolymers to Cs-defined ceramics by microwave sintering. Ceram. Int. 2021, 47, 33089–33097. [Google Scholar] [CrossRef]
- Liu, L.-K.; Zhou, Z.-W.; Guo, J.-F.; Sun, X.-W.; Jiang, X.-S.; Sun, H.-L.; Chen, S. Hydrothermal-processed volcanic ash-based geopolymers for immobilization of sodium salt waste containing Cs. Ann. Nucl. Energy 2021, 158, 108251. [Google Scholar] [CrossRef]
- Bell, J.L.; Sarin, P.; Provis, J.L.; Haggerty, R.P.; Driemeyer, P.E.; Chupas, P.J.; van Deventer, J.S.J.; Kriven, W.M. Atomic structure of a cesium aluminosilicate geopolymer: A pair distribution function study. Chem. Mater. 2008, 20, 4768–4776. [Google Scholar] [CrossRef]
- Tian, Q.; Sasaki, K. A novel composite of layered double hydroxide/geopolymer for co-immobilization of Cs+ and SeO42− from aqueous solution. Sci. Total Environ. 2019, 695, 133799. [Google Scholar] [CrossRef]
- Chuang, L.; Liao, C. Sorption of cesium using KZnFc on phosphoric acid-based geopolymer. Ceramics–Silikáty 2015, 59, 125–134. [Google Scholar]
- Shao, S.; Ma, S.; He, P.; Jia, D.; Yang, H.; Duan, X.; Zhou, Y. In-situ reduced graphene oxide/geopolymer composites for efficient Cs+ immobilization. Open Ceram. 2021, 6, 100095. [Google Scholar] [CrossRef]
- Xiang, Y.; Hou, L.; Liu, J.; Li, J.; Lu, Z.; Niu, Y. Adsorption and enrichment of simulated 137Cs in geopolymer foams. J. Environ. Chem. Eng. 2021, 9, 105733. [Google Scholar] [CrossRef]
- Jing, Z.; Hao, W.; He, X.; Fan, J.; Zhang, Y.; Miao, J.; Jin, F. A novel hydrothermal method to convert incineration ash into pollucite for the immobilization of a simulant radioactive cesium. J. Hazard. Mater. 2016, 306, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Walkley, B.; Ke, X.; Hussein, O.H.; Bernal, S.A.; Provis, J.L. Incorporation of strontium and calcium in geopolymer gels. J. Hazard. Mater. 2020, 382, 121015. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.G.; Nagashima, M.; Ikeda, K. Treatment Technology of Hazardous Water Contaminated with Radioisotopes with Paper Sludge Ash-Based Geopolymer-Stabilization of Immobilization of Strontium and Cesium by Mixing Seawater. Materials 2018, 11, 1521. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.Y.; He, P.G.; Jia, D.C.; Fu, S.; Wang, M.; Wang, M.L.; Duan, X.M.; Yang, Z.H.; Zhou, Y. Immobilization behavior of Sr in geopolymer and its ceramic product. J. Am. Ceram. Soc. 2020, 103, 1372–1384. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, Z.; Wu, D.; Peng, X.; Xu, Y.; Li, N.; Qi, Y.; Li, P. Immobilization of strontium-loaded zeolite A by metakaolin based-geopolymer. Ceram. Int. 2017, 43, 4434–4439. [Google Scholar] [CrossRef]
- Kuenzel, C.; Cisneros, J.F.; Neville, T.P.; Vandeperre, L.J.; Simons, S.J.R.; Bensted, J.; Cheeseman, C.R. Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin. J. Nucl. Mater. 2015, 466, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Soonthornwiphat, N.; Kobayashi, Y.; Toda, K.; Kuroda, K.; Islam, C.R.; Otake, T.; Elakneswaran, Y.; Provis, J.L.; Sato, T. Encapsulation of Sr-loaded titanate spent adsorbents in potassium aluminosilicate geopolymer. J. Nucl. Sci. Technol. 2020, 57, 1181–1188. [Google Scholar] [CrossRef]
- Ke, X.; Bernal, S.A.; Sato, T.; Provis, J.L. Alkali aluminosilicate geopolymers as binders to encapsulate strontium-selective titanate ion-exchangers. Dalton Trans. 2019, 48, 12116–12126. [Google Scholar] [CrossRef] [Green Version]
- Yunsheng, Z.; Wei, S.; Qianli, C.; Lin, C. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. J. Hazard. Mater. 2007, 143, 206–213. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, W.; She, W.; Sun, G. Synthesis and heavy metal immobilization behaviors of fly ash based gepolymer. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2009, 24, 819. [Google Scholar] [CrossRef]
- Chaudhary, R.; Khaleb, D.; Badur, S. Leaching behavior and effectiveness of curing days (7& 28) of solidified/stabilized fly ash based geopolymer (multi-metal bearing sludge): Experimental and modeling study. J. Environ. Sci. Eng. 2012, 54, 268–278. [Google Scholar] [PubMed]
- Van Jaarsveld, J.; Lukey, G.; Van Deventer, J.; Graham, A. The stabilisation of mine tailings by reactive geopolymerisation. Publ. Australas. Inst. Min. Metall. 2000, 5, 363–371. [Google Scholar]
- Sun, S.; Lin, J.; Fang, L.; Ma, R.; Ding, Z.; Zhang, X.; Zhao, X.; Liu, Y. Formulation of sludge incineration residue based geopolymer and stabilization performance on potential toxic elements. Waste Manag. 2018, 77, 356–363. [Google Scholar] [CrossRef]
- Ye, N.; Chen, Y.; Yang, J.; Liang, S.; Hu, Y.; Xiao, B.; Huang, Q.; Shi, Y.; Hu, J.; Wu, X. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. J. Hazard. Mater. 2016, 318, 70–78. [Google Scholar] [CrossRef]
- Luo, S.Y.; Zhao, S.J.; Zhang, P.P.; Li, J.; Huang, X.; Jiao, B.Q.; Li, D.W. Co-disposal of MSWI fly ash and lead–zinc smelting slag through alkali-activation technology. Constr. Build. Mater. 2022, 327, 127006. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Tang, Q.Y.; Xakalashe, B.S.; Fan, X.H.; Gan, M.; Chen, X.L.; Ji, Z.Y.; Huang, X.X.; Friedrich, B. Mechanical and environmental characteristics of red mud geopolymers. Constr. Build. Mater. 2022, 321, 125564. [Google Scholar] [CrossRef]
- Lee, W.K.; Park, E.Z.; Lee, J.H.; Yoo, Y.S. Effect on Compressive Strength by Mixing Ratio of MSWI Melting Slag/Bottom Ash. In Proceedings of the 10th International Symposium on Eco-Materials Processing and Design, Xi’an, China, 13–15 January 2009; pp. 631–634. [Google Scholar]
- Zhan, X.; Wang, L.a.; Hu, C.; Gong, J.; Xu, T.; Li, J.; Yang, L.; Bai, J.; Zhong, S. Co-disposal of MSWI fly ash and electrolytic manganese residue based on geopolymeric system. Waste Manag. 2018, 82, 62–70. [Google Scholar] [CrossRef]
- Cifrian, E.; Dacuba, J.; Llano, T.; Diaz-Fernandez, M.D.; Andres, A. Coal Fly Ash-Clay Based Geopolymer-Incorporating Electric Arc Furnace Dust (EAFD): Leaching Behavior and Geochemical Modeling. Appl. Sci. 2021, 11, 810. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Liu, T.; Wan, Q.; Zheng, D. Immobilization of vanadium and nickel in spent fluid catalytic cracking (SFCC) catalysts-based geopolymer. J. Clean. Prod. 2022, 332, 130112. [Google Scholar] [CrossRef]
- Liu, J.; Hu, L.; Tang, L.; Ren, J. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material. J. Hazard. Mater. 2021, 402, 123451. [Google Scholar] [CrossRef] [PubMed]
- Komnitsas, K.; Zaharaki, D.; Bartzas, G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl. Clay Sci. 2013, 73, 103–109. [Google Scholar] [CrossRef]
- Fernández-Pereira, C.; Luna-Galiano, Y.; Pérez-Clemente, M.; Leiva, C.; Arroyo, F.; Villegas, R.; Vilches, L.F. Immobilization of heavy metals (Cd, Ni or Pb) using aluminate geopolymers. Mater. Lett. 2018, 227, 184–186. [Google Scholar] [CrossRef]
- Sun, Z.; Vollpracht, A. Leaching of monolithic geopolymer mortars. Cem. Concr. Res. 2020, 136, 106161. [Google Scholar] [CrossRef]
- Kiventerä, J.; Sreenivasan, H.; Cheeseman, C.; Kinnunen, P.; Illikainen, M. Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime. J. Environ. Chem. Eng. 2018, 6, 6530–6536. [Google Scholar] [CrossRef]
- Sun, Z.; Vollpracht, A.; van der Sloot, H.A. pH dependent leaching characterization of major and trace elements from fly ash and metakaolin geopolymers. Cem. Concr. Res. 2019, 125, 105889. [Google Scholar] [CrossRef]
- Izquierdo, M.; Querol, X.; Davidovits, J.; Antenucci, D.; Nugteren, H.; Fernández-Pereira, C. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching. J. Hazard. Mater. 2009, 166, 561–566. [Google Scholar] [CrossRef]
- Zhou, S.; Li, J.; Rong, L.; Xiao, J.; Liu, Y.; Duan, Y.; Chu, L.; Li, Q.; Yang, L. Immobilization of uranium soils with alkali-activated coal gangue–based geopolymer. J. Radioanal. Nucl. Chem. 2021, 329, 1155–1166. [Google Scholar] [CrossRef]
- Li, J.; Duan, Y.; Zhou, S.; Rong, L.; Liu, Y.; Chu, L.; Li, Q.; Yang, L. Immobilization of uranium soil by geopolymer coupled with nHAP. Ceram. Int. 2021, 47, 30815–30825. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, W.; Chen, N.; Chen, D.; Su, M. Uranium stabilization in red mud by sintering: Mechanism and leachability. Ceram. Int. 2022, 48, 10403–10411. [Google Scholar] [CrossRef]
- Costa, M. Toxicity and carcinogenicity of Cr (VI) in animal models and humans. Crit. Rev. Toxicol. 1997, 27, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Al-Mashqbeh, A.; Abuali, S.; El-Eswed, B.; Khalili, F.I. Immobilization of toxic inorganic anions (Cr2O72−, MnO4− and Fe(CN)63−) in metakaolin based geopolymers: A preliminary study. Ceram. Int. 2018, 44, 5613–5620. [Google Scholar] [CrossRef]
- Huang, X.; Muhammad, F.; Yu, L.; Jiao, B.; Shiau, Y.; Li, D. Reduction/immobilization of chromite ore processing residue using composite materials based geopolymer coupled with zero-valent iron. Ceram. Int. 2018, 44, 3454–3463. [Google Scholar] [CrossRef]
- Muhammad, F.; Xia, M.; Li, S.; Yu, X.; Mao, Y.; Muhammad, F.; Huang, X.; Jiao, B.; Yu, L.; Li, D. The reduction of chromite ore processing residues by green tea synthesized nano zerovalent iron and its solidification/stabilization in composite geopolymer. J. Clean. Prod. 2019, 234, 381–391. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Wang, H.; Zhou, S.; Wu, H.; Lei, X. Detoxification/immobilization of hexavalent chromium using metakaolin-based geopolymer coupled with ferrous chloride. J. Environ. Chem. Eng. 2016, 4, 2084–2089. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Zhou, S.; Lei, X. Reduction/immobilization processes of hexavalent chromium using metakaolin-based geopolymer. J. Environ. Chem. Eng. 2017, 5, 373–380. [Google Scholar] [CrossRef]
- Zhang, J.; Provis, J.L.; Feng, D.; van Deventer, J.S.J. The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers. Cem. Concr. Res. 2008, 38, 681–688. [Google Scholar] [CrossRef]
- Sun, T.; Chen, J.; Lei, X.; Zhou, C. Detoxification and immobilization of chromite ore processing residue with metakaolin-based geopolymer. J. Environ. Chem. Eng. 2014, 2, 304–309. [Google Scholar] [CrossRef]
- Huang, X.; Huang, T.; Li, S.; Muhammad, F.; Xu, G.; Zhao, Z.; Yu, L.; Yan, Y.; Li, D.; Jiao, B. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceram. Int. 2016, 42, 9538–9549. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, S.-w.; Liu, L.-f.; Zhou, L. Green rust functionalized geopolymer of composite cementitious materials and its application on treating chromate in a holistic system. Chemosphere 2021, 263, 128319. [Google Scholar] [CrossRef]
- He, P.Y.; Zhang, Y.J.; Chen, H.; Han, Z.C.; Liu, L.C. Low-cost and facile synthesis of geopolymer-zeolite composite membrane for chromium(VI) separation from aqueous solution. J. Hazard. Mater. 2020, 392, 122359. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.F.; Song, W.F.; Li, J.Y.; Li, Q.H. Improved simultaneous adsorption of Cu(II) and Cr(VI) of organic modified metakaolin-based geopolymer. Arab. J. Chem. 2020, 13, 4811–4823. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, J.; Wang, J.; Zhan, L.; Ye, X.; Tan, H. Hydrothermal processing, characterization and leaching toxicity of Cr-added “fly ash-metakaolin” based geopolymer. Constr. Build. Mater. 2020, 251, 118931. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhang, L.; Chen, L.; Liu, Z.; Yin, X.; Sheng, D.; Diwu, J.; Wang, J.; Liu, N. Substitutional disorder of SeO32–/IO3–in the crystalline solid matrix: Insights into the fate of radionuclides 79Se and 129I in the environment. Inorg. Chem. 2017, 56, 3702–3708. [Google Scholar] [CrossRef]
- Guo, B.; Sasaki, K.; Hirajima, T. Solidification of ettringite after uptaking selenate as a surrogate of radionuclide in glass-ceramics by using industrial by-products. J. Mater. Sci. 2017, 52, 12999–13011. [Google Scholar] [CrossRef]
- Guo, B.; Sasaki, K.; Hirajima, T. Characterization of the intermediate in formation of selenate-substituted ettringite. Cem. Concr. Res. 2017, 99, 30–37. [Google Scholar] [CrossRef]
- Xie, W.; Liang, Q.; Qian, T.; Zhao, D. Immobilization of selenite in soil and groundwater using stabilized Fe–Mn binary oxide nanoparticles. Water Res. 2015, 70, 485–494. [Google Scholar] [CrossRef]
- Ogundiran, M.B.; Nugteren, H.W.; Witkamp, G.J. Immobilisation of lead smelting slag within spent aluminate—fly ash based geopolymers. J. Hazard. Mater. 2013, 248–249, 29–36. [Google Scholar] [CrossRef]
- Tian, Q.; Chen, C.; Wang, M.; Guo, B.; Zhang, H.; Sasaki, K. Effect of Si/Al molar ratio on the immobilization of selenium and arsenic oxyanions in geopolymer. Environ. Pollut. 2021, 274, 116509. [Google Scholar] [CrossRef]
- Chen, S.; Qi, Y.; Cossa, J.J.; Deocleciano Salomao Dos, S.I. Efficient removal of radioactive iodide anions from simulated wastewater by HDTMA-geopolymer. Prog. Nucl. Energy 2019, 117, 103112. [Google Scholar] [CrossRef]
- Wang, K.; Lei, H.; Muhammad, Y.; Chen, F.; Gao, F.; Wei, Y.; Fujita, T. Controlled preparation of cerium oxide loaded slag-based geopolymer microspheres (CeO2@SGMs) for the adsorptive removal and solidification of F− from acidic waste-water. J. Hazard. Mater. 2020, 400, 123199. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, K.; Shao, L.; Muhammad, Y.; Wei, Y.; Gao, F.; Wang, X.; Cui, X. Synthesis of Fe2O3-modified porous geopolymer microspheres for highly selective adsorption and solidification of F− from waste-water. Compos. Part B Eng. 2019, 178, 107497. [Google Scholar] [CrossRef]
- Niu, X.; Elakneswaran, Y.; Islam, C.R.; Provis, J.L.; Sato, T. Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer. J. Hazard. Mater. 2022, 429, 128373. [Google Scholar] [CrossRef]
- Tian, Q.; Sasaki, K. Application of fly-ash-based geopolymer for removal of cesium, strontium and arsenate from aqueous solutions: Kinetic, equilibrium and mechanism analysis. Water Sci. Technol. 2019, 79, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Mokhtar, M.; Albukhari, S.M.; Baamer, D.F.; Palmisano, L.; AlHammadi, A.A.; Abukhadra, M.R. Synthesis of zeolite/geopolymer composite for enhanced sequestration of phosphate (PO43−) and ammonium (NH4+) ions; equilibrium properties and realistic study. J. Environ. Manag. 2021, 300, 113723. [Google Scholar] [CrossRef] [PubMed]
- Runtti, H.; Luukkonen, T.; Niskanen, M.; Tuomikoski, S.; Kangas, T.; Tynjälä, P.; Tolonen, E.-T.; Sarkkinen, M.; Kemppainen, K.; Rämö, J. Sulphate removal over barium-modified blast-furnace-slag geopolymer. J. Hazard. Mater. 2016, 317, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Luukkonen, T.; Runtti, H.; Niskanen, M.; Tolonen, E.-T.; Sarkkinen, M.; Kemppainen, K.; Rämö, J.; Lassi, U. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers. J. Environ. Manag. 2016, 166, 579–588. [Google Scholar] [CrossRef]
- Montgomery, D.M.; Sollars, C.J.; Perry, R.; Tarling, S.E.; Barnes, P.; Henderson, E. Treatment of organic-contaminated industrial waste using cement-based stabilization/solidification—I. Microstructural analysis of cement-organic interactions. Waste Manag. Res. 1991, 9, 103–111. [Google Scholar] [CrossRef]
- Zhang, Y.J.; He, P.Y.; Zhang, Y.X.; Chen, H. A novel electroconductive graphene/fly-ash-based geopolymer composite and its photocatalytic performance. Chem. Eng. J. 2018, 334, 2459–2466. [Google Scholar] [CrossRef]
- Pimraksa, K.; Setthaya, N.; Thala, M.; Chindaprasirt, P.; Murayama, M. Geopolymer/Zeolite composite materials with adsorptive and photocatalytic properties for dye removal. PLoS ONE 2020, 15, e0241603. [Google Scholar] [CrossRef]
- Falah, M.; MacKenzie, K.J.D.; Knibbe, R.; Page, S.J.; Hanna, J.V. New composites of nanoparticle Cu(I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants. J. Hazard. Mater. 2016, 318, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Hua, P.; Sellaoui, L.; Franco, D.; Netto, M.S.; Luiz Dotto, G.; Bajahzar, A.; Belmabrouk, H.; Bonilla-Petriciolet, A.; Li, Z. Adsorption of acid green and procion red on a magnetic geopolymer based adsorbent: Experiments, characterization and theoretical treatment. Chem. Eng. J. 2020, 383, 123113. [Google Scholar] [CrossRef]
- Shao, N.; Tang, S.; Li, S.; Chen, H.; Zhang, Z. Defective analcime/geopolymer composite membrane derived from fly ash for ultrafast and highly efficient filtration of organic pollutants. J. Hazard. Mater. 2020, 388, 121736. [Google Scholar] [CrossRef] [PubMed]
- Nurddin, S.; Sufian, S.; Man, Z.; Rabat, N.; Ahmad, N. Synthesis of high-porosity hybrid geopolymer/alginate adsorbent for effective removal of methylene blue and optimization of parameters using RSM. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Shah Alam, Malaysia, 2020; p. 012082. [Google Scholar]
Materials | Heavy Metal Species (Content) | Curing Condition | Leaching Conditions or Methods | Leaching Concentration (mg·L−1) | Immobilization Efficiency | Reference |
---|---|---|---|---|---|---|
Coal gasification fly ash Metakaolin Steel slag | Pb (4 wt%) Zn (4 wt%) Cr (0.5 wt%) | Cured at room temperature for 3 and 7 days. | EPA Method 1311 | – | Pb (93.12–99.29%) Zn (93.85–96.74%) Cr (95.44–99.45%) | [57] |
Rare earth tailing Metakaolin | Pb (0.2 wt% to 1 wt%) | Cured at 60 °C for 8 h and then at room temperature for another 1, 3, and 7 d. | EPA Method 1311 | Pb (<0.1) Ba (<0.4) | Pb (>95%) Ba (>95%) | [58] |
Coal fly ash | Pb (1 wt% to 8 wt%) | Cured at 85 °C for 24 h and then at room temperature for another 7 days. | EPA Method 1311 | Pb (6–116) | Pb (>98.9%) | [59] |
Sludge residue | Zn (2726 mg/kg) Cu (1077 mg/kg) | Cured at room temperature for 7 days. | EPA Method 1311 | Zn (1.33) Cu (0.02) | Zn (>95%) Cu (>95%) | [60] |
Municipal solid waste incineration | Pb (2249 mg/kg) Zn (6368 mg/kg) Cd (282 mg/kg) | Cured at the temperature of 20 ± 2 °C and humidity higher than 90% for 7, 14, and 28 d. | HJT300-2007 | Pb (0.085) Zn (0.766) Cd (0.054) | Pb (>99%) Zn (>99%) Cd (>99%) | [61] |
Zinc mine tailing Metakaolin | Zn (2.1%) | Cured at 60 °C for 6 h and then cured at room temperature for 7 days. | EPA Method 1311 | Zn (2.77) | Zn (>99.09%) | [62] |
Fly Ash Ground Granulated Blast Furnace Slag | Pb (0.1–0.5%) Cd (0.1–0.5%) Cr (0.1–0.5%) | Cured at 70 °C for 24 h and then Curing at room temperature for 28 days. | HJ/T 300–2007 | – | Pb (91–99.99%) Cd (99.13–99.69%) Cr (91–97%) | [63] |
Drinking water treatment residue municipal waste incineration bottom ash | Pb (1–4%) Cd (1–4%) Zn (1–4%) | Cured at 80 °C for 8 h and then at room temperature for another 7, 14, and 28 days. | EPA Method 1311 | Pb (<10) Cd (<12) Zn (<3) | Pb (>99.43%) Cd (>99.43%) Zn (>99.43%) | [64] |
Fly ash Ground granulated blast-furnace slag | Pb (2%) Cd (2%) | Cured at a temperature of 20 ± 3 °C and relative humidity of 95% for 28 days. | EPA Method 1311 | Pb (0.14 to 2.55) Cd (<1) | Pb (92.98–94.67%) Cd (>99.943) | [65] |
Fly ash | Cs (2%) | Cured at 60 ± 0.5 °C for 28 days. | pH = 1 H2SO4 solution or 5% (wt) MgSO4 solution | – | Cs (<0.5%) | [66] |
Metakaolin | Cs (33.37 wt%) | Cured at 60 °C for 48 h, and calcined at low temperature (≤1000 °C) for 2 h. | EPA Method 1311 ANSI/ANS 16.1-2003 | – | Leaching rate: 2.51 × 10−4 g m−2 d−1 | [67] |
Fly ash Slag Metakaolin | Sr (1, 3, 5, 7, and 9 wt%) | Cured at 25 ± 1°C for 24 h and calcined at the temperature (≤1000 °C) for 2 h. | Deionized water | – | Leaching rate: <2 × 10−3 g m−2 d−1 | [68] |
Fly ash | Cs (10 g/L) Sr (10 g/L) | Cured at 60 °C for 24 h and then at room temperature for four weeks. | ANSI/ANS-16.1-2003 | – | Cs (95.95–96.79%) Sr (>99.96%) | [69] |
Mn slag Metakaolin | Co (1.13 wt%) | Cured at a temperature of 25 ± 0.5 °C and relative humidity of 90% for 30 days. | EPA Method 1311 | – | Co (>99.65%) | [70] |
Fly ash | Cr (0.5–2%) | Cured at room temperature and relative humidity of 90 ± 5% for 28 days. | SRPS EN 12457-2 | Cr (3.78) | – | [71] |
Metakaolin | Se (2%) | Cured at room temperature and relative humidity of 93 ± 2% for 28 days. | EPA Method 1311 | – | Se (24.15–93.74%) | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Q.; Bai, Y.; Pan, Y.; Chen, C.; Yao, S.; Sasaki, K.; Zhang, H. Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review. Molecules 2022, 27, 4570. https://doi.org/10.3390/molecules27144570
Tian Q, Bai Y, Pan Y, Chen C, Yao S, Sasaki K, Zhang H. Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review. Molecules. 2022; 27(14):4570. https://doi.org/10.3390/molecules27144570
Chicago/Turabian StyleTian, Quanzhi, Yingchu Bai, Yinhai Pan, Changshuai Chen, Shuo Yao, Keiko Sasaki, and Haijun Zhang. 2022. "Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review" Molecules 27, no. 14: 4570. https://doi.org/10.3390/molecules27144570
APA StyleTian, Q., Bai, Y., Pan, Y., Chen, C., Yao, S., Sasaki, K., & Zhang, H. (2022). Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review. Molecules, 27(14), 4570. https://doi.org/10.3390/molecules27144570