Effect of Extraction Methods and In Vitro Bio-Accessibility of Microencapsulated Lemon Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Extraction Method on TPC, TFC, and Post-In Vitro Digestion of Lemon Extract (LE)
2.2. Microcapsule Analysis
2.2.1. Moisture Content and Water Activity (aw)
2.2.2. Solubility in Water
2.2.3. Hygroscopicity
2.2.4. Surface Morphology Study by Scanning Electron Microscope (SEM)
2.3. Microencapsulation Efficiency (ME)
2.4. TPC, TFC and In Vitro Relative Bio-Accessibility (RB)
3. Materials and Methods
3.1. Raw Material and Sample Preparation
3.2. Lemon Extract (LE) Preparation
3.3. Microencapsulation of LE
3.4. Microcapsule Analysis
3.4.1. Moisture Content and Water Activity
3.4.2. Dissolution Time
3.4.3. Hygroscopicity Assay
3.4.4. Morphology and Particle Size
3.5. Determination of Total Polyphenolic and Flavonoid Content
3.6. In Vitro Digestion and Relative Bio-Accessibility (RB)
3.7. Microencapsulation Efficiency (ME)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Food and Agriculture Organization of the United Nations (FAO). Citrus Fruit Statistical Compendium 2020. Stat. Bull. 2021, 2020, 1–40. [Google Scholar] [CrossRef]
- Fruits from Chile Citrus. Available online: https://fruitsfromchile.com/fruit/citrus/ (accessed on 1 June 2022).
- Comité de Cítricos limones. Available online: https://www.comitedecitricos.cl/productos/limones (accessed on 1 June 2022).
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Scarlett, C.J.; Bowyer, M.C.; Vuong, Q. Van Impact of different solvents on the recovery of bioactive compounds and antioxidant properties from lemon (Citrus limon L.) pomace waste. Food Sci. Biotechnol. 2016, 25, 971–977. [Google Scholar] [CrossRef] [PubMed]
- İnan, Ö.; Özcan, M.M.; Aljuhaimi, F. Effect of location and Citrus species on total phenolic, antioxidant, and radical scavenging activities of some Citrus seed and oils. J. Food Process. Preserv. 2018, 42, e13555. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Ramirez, M.J.; Orrego, C.E.; Teixeira, J.A.; Mussatto, S.I. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem. 2017, 237, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Ninčević Grassino, A.; Ostojić, J.; Miletić, V.; Djaković, S.; Bosiljkov, T.; Zorić, Z.; Ježek, D.; Rimac Brnčić, S.; Brnčić, M. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innov. Food Sci. Emerg. Technol. 2020, 64, 102424. [Google Scholar] [CrossRef]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Giovagnoli-Vicuña, C.; Cañas-Sarazúa, R. Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chem. 2019, 278, 751–759. [Google Scholar] [CrossRef]
- Casquete, R.; Castro, S.M.; Villalobos, M.C.; Serradilla, M.J.; Queirós, R.P.; Saraiva, J.A.; Códoba, M.G.; Teixeira, P. High Pressure Research: An High pressure extraction of phenolic compounds from citrus peels. High Press. Res. 2014, 34, 447–451. [Google Scholar] [CrossRef]
- Casquete, R.; Castro, S.M.; Martín, A.; Ruiz-Moyano, S.; Saraiva, J.A.; Córdoba, M.G.; Teixeira, P. Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innov. Food Sci. Emerg. Technol. 2015, 31, 37–44. [Google Scholar] [CrossRef]
- Nishad, J.; Saha, S.; Kaur, C. Enzyme- and ultrasound-assisted extractions of polyphenols from Citrus sinensis (cv. Malta) peel: A comparative study. J. Food Process. Preserv. 2019, 43, e14046. [Google Scholar] [CrossRef]
- de Sousa Sabino, L.B.; Alves Filho, E.G.; Fernandes, F.A.N.; de Brito, E.S.; da Silva Júnior, I.J. Optimization of pressurized liquid extraction and ultrasound methods for recovery of anthocyanins present in jambolan fruit (Syzygium cumini L.). Food Bioprod. Process. 2021, 127, 77–89. [Google Scholar] [CrossRef]
- Ezhilarasi, P.N.; Indrani, D.; Jena, B.S.; Anandharamakrishnan, C. Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality. J. Food Eng. 2013, 117, 513–520. [Google Scholar] [CrossRef]
- Papoutsis, K.; Golding, J.B.; Vuong, Q.; Pristijono, P.; Stathopoulos, C.E.; Scarlett, C.J.; Bowyer, M. Encapsulation of citrus by-product extracts by spray-drying and freeze-drying using combinations of maltodextrin with soybean protein and ι-carrageenan. Foods 2018, 7, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgognoni, C.F.; Polakiewicz, B.; de Moraes Pitombo, R.N. Moisture sorption isotherm characteristics of freeze-dried d-limonene emulsions in modified chitosan and maltodextrin. Dry. Technol. 2008, 26, 956–962. [Google Scholar] [CrossRef]
- Lacerda, E.C.Q.; Calado, V.M.D.A.; Monteiro, M.; Finotelli, P.V.; Torres, A.G.; Perrone, D. Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydr. Polym. 2016, 151, 500–510. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Capanoglu, E.; Bilen, F.D.; Gonzales, G.B.; Grootaert, C.; Van de Wiele, T.; Van Camp, J. Bioaccessibility of Polyphenols from Plant-Processing Byproducts of Black Carrot (Daucus carota L.). J. Agric. Food Chem. 2016, 64, 2450–2458. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J. Food Sci. 2011, 76, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Khan, S.A.; Aslam, R.; Makroo, H.A. High pressure extraction and its application in the extraction of bio-active compounds: A review. J. Food Process Eng. 2019, 42, e12896. [Google Scholar] [CrossRef] [Green Version]
- Ovando-Martínez, M.; Gámez-Meza, N.; Molina-Domínguez, C.C.; Hayano-Kanashiro, C.; Medina-Juárez, L.A. Simulated Gastrointestinal Digestion, Bioaccessibility and Antioxidant Capacity of Polyphenols from Red Chiltepin (Capsicum annuum L. Var. glabriusculum) Grown in Northwest Mexico. Plant Foods Hum. Nutr. 2018, 73, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Lucas-Gonzalez, R.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Chia (Salvia hispanica L.) Seeds. Plant Foods Hum. Nutr. 2018, 73, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Aschoff, J.K.; Kaufmann, S.; Kalkan, O.; Neidhart, S.; Carle, R.; Schweiggert, R.M. In Vitro bioaccessibility of carotenoids, flavonoids, and vitamin C from differently processed oranges and orange juices (Citrus sinensis L.) osbeck. J. Agric. Food Chem. 2015, 63, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Conde-Islas, A.Á.; Jiménez-Fernández, M.; Cantú-Lozano, D.; Urrea-García, G.R.; Luna-Solano, G. Effect of the freeze-drying process on the physicochemical and microbiological properties of Mexican kefir grains. Processes 2019, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Mahdavee Khazaei, K.; Jafari, S.M.; Ghorbani, M.; Hemmati Kakhki, A. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydr. Polym. 2014, 105, 57–62. [Google Scholar] [CrossRef]
- Saikia, S.; Mahnot, N.K.; Mahanta, C.L. Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chem. 2015, 171, 144–152. [Google Scholar] [CrossRef]
- Fazaeli, M.; Emam-Djomeh, Z.; Kalbasi Ashtari, A.; Omid, M. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod. Process. 2012, 90, 667–675. [Google Scholar] [CrossRef]
- Mohd Nawi, N.; Muhamad, I.I.; Mohd Marsin, A. The physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas as affected by different wall materials. Food Sci. Nutr. 2015, 3, 91–99. [Google Scholar] [CrossRef]
- Nunes, G.L.; Boaventura, B.C.B.; Pinto, S.S.; Verruck, S.; Murakami, F.S.; Prudêncio, E.S.; De Mello Castanho Amboni, R.D. Microencapsulation of freeze concentrated Ilex paraguariensis extract by spray drying. J. Food Eng. 2015, 151, 60–68. [Google Scholar] [CrossRef]
- Caliskan, G.; Dirim, S.N. The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technol. 2016, 287, 308–314. [Google Scholar] [CrossRef]
- Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20. [Google Scholar] [CrossRef] [Green Version]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Influência da temperatura do ar de secagem e da concentração de agente carreador sobre as propriedades físico-químicas do suco de açaí em pó. Food Sci. Technol. 2009, 29, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, C.; Chung, M.M.S.; dos Santos, C.; Mayer, C.R.M.; Moraes, I.C.F.; Branco, I.G. Microencapsulation of an anthocyanin-rich blackberry (Rubus spp) by-product extract by freeze-drying. LWT 2017, 84, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, L.C.; Da Costa, J.M.C.; Afonso, M.R.A. Hygroscopic behavior of lyophilized acerola pulp powder. Rev. Bras. Eng. Agrícola Ambient. 2016, 20, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Rajam, R.; Anandharamakrishnan, C. Spray freeze drying method for microencapsulation of Lactobacillus plantarum. J. Food Eng. 2015, 166, 95–103. [Google Scholar] [CrossRef]
- Rocha-Parra, D.F.; Lanari, M.C.; Zamora, M.C.; Chirife, J. Influence of storage conditions on phenolic compounds stability, antioxidant capacity and colour of freeze-dried encapsulated red wine. LWT Food Sci. Technol. 2016, 70, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Oyinloye, T.M.; Yoon, W.B. Effect of freeze-drying on quality and grinding process of food produce: A review. Processes 2020, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chi, Y.J.; Xu, W. Comparisons on the Functional Properties and Antioxidant Activity of Spray-Dried and Freeze-Dried Egg White Protein Hydrolysate. Food Bioprocess Technol. 2012, 5, 2342–2352. [Google Scholar] [CrossRef]
- Dias, A.L.B.; Arroio Sergio, C.S.; Santos, P.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Ultrasound-assisted extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L.): Effects on the vegetable matrix and mathematical modeling. J. Food Eng. 2017, 198, 36–44. [Google Scholar] [CrossRef]
- Shinwari, K.J.; Rao, P.S. Thermal-assisted high hydrostatic pressure extraction of nutraceuticals from saffron (Crocus sativus): Process optimization and cytotoxicity evaluation against cancer cells. Innov. Food Sci. Emerg. Technol. 2018, 48, 296–303. [Google Scholar] [CrossRef]
- Ramírez, M.J.; Giraldo, G.I.; Orrego, C.E. Modeling and stability of polyphenol in spray-dried and freeze-dried fruit encapsulates. Powder Technol. 2015, 277, 89–96. [Google Scholar] [CrossRef]
- Bernardes, A.L.; Moreira, J.A.; Tostes, M.D.G.V.; Costa, N.M.B.; Silva, P.I.; Costa, A.G.V. In Vitro bioaccessibility of microencapsulated phenolic compounds of jussara (Euterpe edulis Martius) fruit and application in gelatine model-system. LWT Food Sci. Technol. 2019, 102, 173–180. [Google Scholar] [CrossRef]
- Giovagnoli-Vicunã, C.; Pizarro, S.; Briones-Labarca, V.; Delgadillo, Á. A Square Wave Voltammetry Study on the Antioxidant Interaction and Effect of Extraction Method for Binary Fruit Mixture Extracts. J. Chem. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Association of official analytical chemists—AOAC. Official Method of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Que, F.; Mao, L.; Fang, X.; Wu, T. Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. Int. J. Food Sci. Technol. 2008, 43, 1195–1201. [Google Scholar] [CrossRef]
- Dini, I.; Tenore, G.C.; Dini, A. Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT Food Sci. Technol. 2010, 43, 447–451. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrì, F.; Boutrou, R.; Corredig, F.M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stinco, C.M.; Fernández-vázquez, R.; Heredia, F.J.; Meléndez-martínez, A.J.; Vicario, I.M. Bioaccessibility, antioxidant activity and colour of carotenoids in ultrafrozen orange juices: Influence of thawing conditions. LWT Food Sci. Technol. 2013, 53, 458–463. [Google Scholar] [CrossRef]
Properties | ||||||
---|---|---|---|---|---|---|
Extraction Method | Coating | Water Activity (aw) | Moisture Content (g 100 g−1) | Solubility in Water (s) | Hygroscopicity (g 100 g−1) | Particle Size (µm) |
CE | M10 | 0.299 (0.002) a | 3.72 (0.15) a | 135.0 (1.4) a | 6.30 (0.34) a | 32.17 (4.63) a |
M20 | 0.296 (0.002) a | 3.71 (0.15) a | 225.2 (2.9) b | 6.19 (0.39) a | 41.78 (4.88) b | |
M30 | 0.283 (0.002) b | 3.65 (0.14) a | 232.5 (9.1) b | 6.14 (0.55) a | 43.58 (6.33) b | |
UAE | M10 | 0.298 (0.001) a | 3.66 (0.10) a | 137.1 (5.0) a | 6.28 (0.24) a | 35.85 (3.20) a |
M20 | 0.297 (0.002) a | 3.60 (0.20) a | 229.5 (3.3) b | 6.26 (0.57) a | 44.00 (4.95) b | |
M30 | 0.284 (0.003) b | 3.57 (0.30) a | 233.4 (7.8) b | 6.22 (0.59) a | 48.29 (8.20) b | |
HHPE | M10 | 0.299 (0.002) a | 3.72 (0.08) a | 138.0 (2.3) a | 6.32 (0.24) a | 34.56 (3.44) a |
M20 | 0.295 (0.003) a | 3.60 (0.06) a | 227.4 (2.9) b | 6.18 (0.14) a | 43.42 (5.20) b | |
M30 | 0.282 (0.002) b | 3.59 (0.10) a | 235.1 (6.0) b | 6.14 (0.33) a | 47.77 (9.40) b |
Extraction Method | |||||||
---|---|---|---|---|---|---|---|
CE | UAE | HHPE | |||||
Assay | Sample | Value | RB (%) | Value | RB (%) | Value | RB (%) |
TPC (mg GAE g−1) | M10 | 7.23 (0.22) a.A | 65.0 | 8.78 (0.04) b.A | 69.2 | 9.55 (0.09) c.A | 70.0 |
M20 | 8.55 (0.30) a.B | 71.2 | 10.23 (0.30) b.B | 74.5 | 11.05 (0.20) c.B | 74.9 | |
M30 | 8.87(0.15) a.B | 73.3 | 10.61 (0.50) b.AB | 76.1 | 11.68 (0.20) c.C | 77.2 | |
TFC (mg QE g−1) | M10 | 1.99 (0.01) a.A | 20.5 | 2.05 (0.01) b.A | 22.0 | 2.27 (0.01) c.A | 21.3 |
M20 | 2.29 (0.02) a.B | 22.1 | 2.26 (0.04) b.B | 25.1 | 2.39 (0.02) c.B | 25.7 | |
M30 | 2.35 (0.01) a.C | 23.4 | 2.32 (0.01) b.C | 25.4 | 2.48 (0.01) c.C | 25.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovagnoli-Vicuña, C.; Briones-Labarca, V.; Romero, M.S.; Giordano, A.; Pizarro, S. Effect of Extraction Methods and In Vitro Bio-Accessibility of Microencapsulated Lemon Extract. Molecules 2022, 27, 4166. https://doi.org/10.3390/molecules27134166
Giovagnoli-Vicuña C, Briones-Labarca V, Romero MS, Giordano A, Pizarro S. Effect of Extraction Methods and In Vitro Bio-Accessibility of Microencapsulated Lemon Extract. Molecules. 2022; 27(13):4166. https://doi.org/10.3390/molecules27134166
Chicago/Turabian StyleGiovagnoli-Vicuña, Claudia, Vilbett Briones-Labarca, María Soledad Romero, Ady Giordano, and Sebastián Pizarro. 2022. "Effect of Extraction Methods and In Vitro Bio-Accessibility of Microencapsulated Lemon Extract" Molecules 27, no. 13: 4166. https://doi.org/10.3390/molecules27134166
APA StyleGiovagnoli-Vicuña, C., Briones-Labarca, V., Romero, M. S., Giordano, A., & Pizarro, S. (2022). Effect of Extraction Methods and In Vitro Bio-Accessibility of Microencapsulated Lemon Extract. Molecules, 27(13), 4166. https://doi.org/10.3390/molecules27134166