Interpretation of Strengthening Mechanism of Densified Wood from Supramolecular Structures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Tensile Strength and Morphology of Densified Wood
2.2. Content of Intermolecular H-Bonds
2.3. Crystal Structure and Crystallinity
2.4. Correlation Analysis
3. Materials and Methods
3.1. Materials
3.2. The Preparation of Densified Wood
3.3. Chemical Composition Analysis
3.4. Scanning Electron Microscope (SEM) Analysis
3.5. Mechanical Properties
3.6. XRD Analysis
3.7. FT-IR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, Q.; Chen, C.; Li, T.; He, S.; Gao, J.; Wang, X.; Hu, L. Solar-assisted fabrication of large-scale, patternable transparent wood. Sci. Adv. 2021, 7, d7342. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Chen, Y.; Sorieul, M. Wood-based flexible electronics. ACS Nano 2020, 14, 3528–3538. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J. A radiative cooling structural material. Science 2019, 364, 760–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Song, J.; Zhao, X.; Yang, Z.; Pastel, G.; Xu, S.; Jia, C.; Dai, J.; Chen, C.; Gong, A. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 2018, 4, r3724. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shen, Q. Processing natural wood into bulk conducting materials. SN Appl. Sci. 2019, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gan, W.; Chen, C.; Giroux, M.; Zhong, G.; Goyal, M.M.; Wang, Y.; Ping, W.; Song, J.; Xu, S.; He, S. Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 2020, 32, 5280–5289. [Google Scholar] [CrossRef]
- Cheng, Z.; Wei, Y.; Liu, C.; Chen, Y.; Ma, Y.; Chen, H.; Liang, X.; Sun, N.X.; Zhu, H. Lightweight and construable magnetic wood for electromagnetic interference shielding. Adv. Eng. Mater. 2020, 22, 2000257. [Google Scholar] [CrossRef]
- Saito, T.; Kuramae, R.; Wohlert, J.; Berglund, L.A.; Isogai, A. An ultrastrong nanofibrillar biomaterial: The strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 2013, 14, 248–253. [Google Scholar] [CrossRef]
- Sakurada, I.; Nukushina, Y.; Ito, T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Ence Part A Polym. Chem. 1962, 57, 651–660. [Google Scholar] [CrossRef]
- Shinichiro, I.; Weihua, K.; Akira, I.; Tadahisa, I. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 2009, 10, 2571–2576. [Google Scholar]
- Keplinger, T.; Wittel, F.K.; Rüggeberg, M.; Burgert, I. Wood derived cellulose scaffolds—processing and mechanics. Adv. Mater. 2020, 33, 2001375. [Google Scholar] [CrossRef] [PubMed]
- Khakalo, A.; Tanaka, A.; Korpela, A.; Hauru, L.K.; Orelma, H. All-wood composite material by partial fiber surface dissolution with an ionic liquid. ACS Sustain. Chem. Eng. 2019, 7, 3195–3202. [Google Scholar] [CrossRef]
- Fang, Z.; Li, B.; Liu, Y.; Zhu, J.; Li, G.; Hou, G.; Zhou, J.; Qiu, X. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter 2020, 2, 1000–1014. [Google Scholar] [CrossRef]
- Frey, M.; Widner, D.; Segmehl, J.S.; Casdorff, K.; Keplinger, T.; Burgert, I. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Inter. 2018, 10, 5030–5037. [Google Scholar] [CrossRef] [PubMed]
- Khakalo, A.; Tanaka, A.; Korpela, A.; Orelma, H. Delignification and ionic liquid treatment of wood toward multifunctional high-performance structural materials. ACS Appl. Mater. Inter. 2020, 12, 23532–23542. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; Li, Y.; Quispe, N. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Mi, R.; Gan, W.; Dai, J.; Jiao, M.; Xie, H.; Yao, Y.; Xiao, S.; Hu, L. A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 2020, 32, 1906308. [Google Scholar] [CrossRef]
- Jakob, M.; Gaugeler, J.; Gindl-Altmutter, W. Effects of fiber angle on the tensile properties of partially delignified and densified wood. Materials 2020, 13, 5405. [Google Scholar] [CrossRef]
- Ray, U.; Zhu, S.; Pang, Z.; Li, T. Mechanics design in cellulose-enabled high-performance functional materials. Adv. Mater. 2021, 33, 2002504. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, S.; Jia, Z.; Parvinian, S.; Li, Y.; Vaaland, O.; Hu, L.; Li, T. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl. Acad. Sci. USA 2015, 112, 8971–8976. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666. [Google Scholar] [CrossRef]
- Wohlert, M.; Benselfelt, T.; Wågberg, L.; Furó, I.; Berglund, L.A.; Wohlert, J. Cellulose and the role of hydrogen bonds: Not in charge of everything. Cellulose 2021, 29, 1–23. [Google Scholar] [CrossRef]
- Meng, Q.; Li, B.; Li, T.; Feng, X. A multiscale crack-bridging model of cellulose nanopaper. J. Mech. Phys. Solids 2017, 103, 22–39. [Google Scholar] [CrossRef] [Green Version]
- Mittal, N.; Ansari, F.; Gowda, V.K.; Brouzet, C.; Chen, P.; Larsson, P.T.; Roth, S.V.; Lundell, F.; Wagberg, L.; Kotov, N.A. Multiscale control of nanocellulose assembly: Transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 2018, 12, 6378–6388. [Google Scholar] [CrossRef] [PubMed]
- Manrίquez, R.; López-Dellamary, F.A.; Frydel, J.; Emmler, T.; Breitzke, H.; Buntkowsky, G.; Limbach, H.; Shenderovich, I.G. Solid-state nmr studies of aminocarboxylic salt bridges in l-lysine modified cellulose. J. Phys. Chem. B 2009, 113, 934–940. [Google Scholar] [CrossRef]
- Han, X.; Ye, Y.; Lam, F.; Pu, J.; Jiang, F. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. J. Mater. Chem. A 2019, 7, 27023–27031. [Google Scholar] [CrossRef]
- Xiong, B.; Zhao, P.; Cai, P.; Zhang, L.; Hu, K.; Cheng, G. Nmr spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 2013, 20, 613–621. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Y.; Yue, X. Changes of hydrogen bonding and aggregation structure of cellulose fiber due to microwave-assisted alkali treatment and its impacts on the application as fluff pulp. Cellulose 2017, 24, 967–976. [Google Scholar] [CrossRef]
- Ucuncu, T.; Durmaz, E.; Kaymakci, A. Characteristics of hot-compressed poplar wood boards. BioResources 2017, 12, 9038–9049. [Google Scholar]
- Wang, Q.; Xiao, S.; Shi, S.Q.; Cai, L. The effect of delignification on the properties of cellulosic fiber material. Holzforschung 2018, 72, 443–449. [Google Scholar] [CrossRef]
- Newman, R.H. Carbon-13 nmr evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 2004, 11, 45–52. [Google Scholar] [CrossRef]
- Duchemin, B.; Thuault, A.; Vicente, A.; Rigaud, B.; Fernandez, C.; Eve, S. Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 2012, 19, 1837–1854. [Google Scholar] [CrossRef]
- Evans, R.; Newman, R.H.; Roick, U.C.; Suckling, I.D.; Wallis, A.F. Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, x-ray diffraction and solid state nmr results. Holzforschung 1995, 49, 498–504. [Google Scholar] [CrossRef]
- Funahashi, R.; Okita, Y.; Hondo, H.; Zhao, M.; Saito, T.; Isogai, A. Different conformations of surface cellulose molecules in native cellulose microfibrils revealed by layer-by-layer peeling. Biomacromolecules 2017, 18, 3687–3694. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose iβ from synchrotron x-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082. [Google Scholar] [CrossRef]
- Ioelovich, M.; Leykin, A.; Figovsky, O. Study of cellulose paracrystallinity. BioResources 2010, 5, 1393–1407. [Google Scholar]
- Thulluri, C.; Balasubramaniam, R.; Velankar, H.R. Generation of highly amenable cellulose-iβ via selective delignification of rice straw using a reusable cyclic ether-assisted deep eutectic solvent system. Sci. Rep. UK 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Nishiyama, Y. Molecular interactions in nanocellulose assembly. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170047. [Google Scholar] [CrossRef]
- Chen, P.; Nishiyama, Y.; Wohlert, J. Quantifying the influence of dispersion interactions on the elastic properties of crystalline cellulose. Cellulose 2021, 28, 10777–10786. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Li, K.; Zhao, L.; He, B. Probing effect of papirindustriens forskningsinstitut (pfi) refining on aggregation structure of cellulose: Crystal packing and hydrogen-bonding network. Polymers 2020, 12, 2912. [Google Scholar] [CrossRef] [PubMed]
Samples | Lignin Content (%) | Cellulose Content (%) | Hemicellulose Content (%) | Density (g cm−3) | Tensile Strength (MPa) | Elastic Modulus (GPa) |
---|---|---|---|---|---|---|
NW | 24.7 (0.4) | 45.4 (0.5) | 19.2 (0.3) | 0.44(0.04) | 68.4 (20.4) | 5.9 (1.6) |
DW-W1 | 24.7 (0.2) | 45.3 (0.7) | 19.5 (0.7) | 1.06(0.05) | 168.9 (22.6) | 12.7 (2.1) |
DW-A1 | 20.4 (0.1) | 62.3 (1.2) | 8.9 (1.2) | 1.32(0.03) | 294.3 (46.8) | 13.7 (2.7) |
DW-A2 | 20.2 (0.5) | 64.7 (1.1) | 9.3 (1.2) | 1.31(0.00) | 353.0 (25.0) | 17.8 (2.5) |
DW-A3 | 19.3 (0.6) | 66.7 (0.9) | 8.5 (0.9) | 1.34(0.02) | 398.5 (36.7) | 22.5 (1.5) |
DW-A4 | 18.4 (0.4) | 68.7 (0.6) | 9.7 (1.1) | 1.33(0.02) | 356.1 (31.2) | 21.3 (2.0) |
DW-A8 | 18.4 (0.7) | 72.7 (0.8) | 8.7 (0.5) | 1.30(0.04) | 334.7 (41.5) | 17.1 (2.2) |
DW-A12 | 19.0 (0.5) | 74.3 (0.7) | 8.0 (0.7) | 1.26(0.02) | 296.2 (39.3) | 15.7 (1.2) |
Samples | O(6)H⋯O(3′) | O(3)H⋯O(5) | O(2)H⋯O(6) | Free OH(2) and OH(6) | R2 |
---|---|---|---|---|---|
NW | 10.8 | 46.1 | 29.6 | 13.5 | 0.9988 |
DW-W1 | 13.5 | 45.4 | 26.5 | 14.6 | 0.9988 |
DW-A1 | 22.2 | 29.5 | 31.1 | 17.2 | 0.9976 |
DW-A2 | 22.8 | 26.0 | 34.6 | 16.6 | 0.9976 |
DW-A3 | 21.7 | 26.1 | 34.2 | 18.0 | 0.9979 |
DW-A4 | 22.3 | 27.4 | 35.8 | 14.5 | 0.9976 |
DW-A8 | 21.9 | 24.8 | 35.0 | 18.3 | 0.9979 |
DW-A12 | 19.0 | 31.4 | 35.4 | 14.2 | 0.9984 |
Sample | CI (%) | Crystallite Size (nm) a | Interplanar Spacing (nm) b |
---|---|---|---|
NW | 60.82 | 3.3 | 0.398 |
DW-W1 | 65.84 | 3.2 | 0.396 |
DW-A1 | 69.54 | 3.8 | 0.393 |
DW-A2 | 73.75 | 3.8 | 0.392 |
DW-A3 | 73.86 | 3.8 | 0.391 |
DW-A4 | 75.87 | 4.2 | 0.393 |
DW-A8 | 74.75 | 4.2 | 0.393 |
DW-A12 | 74.20 | 4.0 | 0.391 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Zhao, L.; Ren, J.; He, B. Interpretation of Strengthening Mechanism of Densified Wood from Supramolecular Structures. Molecules 2022, 27, 4167. https://doi.org/10.3390/molecules27134167
Li K, Zhao L, Ren J, He B. Interpretation of Strengthening Mechanism of Densified Wood from Supramolecular Structures. Molecules. 2022; 27(13):4167. https://doi.org/10.3390/molecules27134167
Chicago/Turabian StyleLi, Kunpeng, Lihong Zhao, Junli Ren, and Beihai He. 2022. "Interpretation of Strengthening Mechanism of Densified Wood from Supramolecular Structures" Molecules 27, no. 13: 4167. https://doi.org/10.3390/molecules27134167
APA StyleLi, K., Zhao, L., Ren, J., & He, B. (2022). Interpretation of Strengthening Mechanism of Densified Wood from Supramolecular Structures. Molecules, 27(13), 4167. https://doi.org/10.3390/molecules27134167