Evaluation of Antioxidant and Cytotoxic Activity of Hydro-Ethanolic Extracts Obtained from Steiractinia aspera Cuatrec
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yields
2.2. Phytoconstituents
2.3. Antioxidant Analysis
2.4. Identification of Phenolic Compounds by HLPC-DAD
2.5. ABTS-Online
2.6. Cytotoxicity on Cancer Cell Lines
2.7. Evaluation of ROS Production by Flow Cytometry
2.8. Fractionation and Isolation of Phenolic Compounds
2.9. Compound Identification by Spectroscopic Techniques
3. Materials and Methods
3.1. Reagents
3.2. Plant Material
3.3. Extraction Techniques
3.3.1. Solid-Phase Matrix Dispersion Extraction (MSPD)
3.3.2. Ultrasound-Assisted Solvent Extraction (SE)
3.4. Analysis of Phytoconstituents
3.4.1. Determination of Total Phenols
3.4.2. Determination of Total Flavonoids
3.5. Assessment of Antioxidant Activity by Different Action Mechanisms
3.5.1. Total Reactive Antioxidant Properties Assay
3.5.2. Ferric Reducing Antioxidant Potential (FRAP) Assay
3.5.3. Hydrogen Peroxide Scavenging Activity
3.5.4. DPPH Radical Scavenging Assay
3.6. Analysis of Phenolic Compounds by HLPC-DAD
3.7. ABTS On-Line
3.8. Evaluation of Cytotoxic Activity
3.8.1. Cell Culture
3.8.2. Sulforhodamine B Cytotoxicity Assay
3.8.3. Evaluation of ROS by Flow Cytometry
3.9. Fractionation and Isolation of Phenolic Compounds
3.10. Identification of Compounds by NMR
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Güneş, A.; Kordali, Ş.; Turan, M.; Usanmaz Bozhüyük, A. Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicanal plants. Ind. Crops Prod. 2019, 137, 208–213. [Google Scholar] [CrossRef]
- Panero, J.L.; Crozier, B.S. Macroevolutionary dynamics in the early diversification of Asteraceae. Mol. Phylogenet. Evol. 2016, 99, 116–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohlmann, F.; Knoll, K.H.; Robinson, H.; King, R.M. Neue Eudesmanolide Aus Steiractinia Mollis*. Phytochemislry 1980, 19, 971–972. [Google Scholar] [CrossRef]
- Bohlmann, F.; Jakupovic, J.; Ates (Gören), N.; Schuster, A.; Pickardt, J.; King, R.M.; Robinson, H. Steiractinolide, eine neue Gruppe von Sesquiterpenlactonen. Liebigs Ann. Chem. 1983, 1983, 962–973. [Google Scholar] [CrossRef]
- Triana, J.; López, M.; Rico, M.; González-Platas, J.; Quintana, J.; Estévez, F.; León, F.; Bermejo, J. Sesquiterpenoid derivatives from Gonospermum elegans and their cytotoxic activity for HL-60 human promyelocytic cells. J. Nat. Prod. 2003, 66, 943–948. [Google Scholar] [CrossRef]
- Triana, J.; Eiroa, J.L.; Ortega, J.J.; León, F.; Brouard, I.; Torres, F.; Quintana, J.; Estévez, F.; Bermejo, J. Sesquiterpene lactones from Gonospermum gomerae and G. fruticosum and their cytotoxic activities. J. Nat. Prod. 2008, 71, 2015–2020. [Google Scholar] [CrossRef]
- Triana, J.; Eiroa, J.L.; Morales, M.; Pérez, F.J.; Brouard, I.; Marrero, M.T.; Estévez, S.; Quintana, J.; Estévez, F.; Castillo, Q.A.; et al. A chemotaxonomic study of endemic species of genus Tanacetum from the Canary Islands. Phytochemistry 2013, 92, 87–104. [Google Scholar] [CrossRef]
- Turk, A.; Ahn, J.H.; Jo, Y.H.; Song, J.Y.; Khalife, H.K.; Gali-Muhtasib, H.; Kim, Y.; Hwang, B.Y.; Lee, M.K. NF-κB inhibitory sesquiterpene lactones from Lebanese Laurus nobilis. Phytochem. Lett. 2019, 30, 120–123. [Google Scholar] [CrossRef]
- Abbou, F.; Azzi, R.; Ouffai, K.; El Haci, I.A.; Belyagoubi-Benhammou, N.; Bensouici, C.; Benamar, H. Phenolic profile, antioxidant and enzyme inhibitory properties of phenolic-rich fractions from the aerial parts of Mentha pulegium L. S. Afr. J. Bot. 2022, 146, 196–204. [Google Scholar] [CrossRef]
- Hussain, S.; Rehman, A.U.; Luckett, D.J.; Blanchard, C.L.; Obied, H.K.; Strappe, P. Phenolic compounds with antioxidant properties from canola meal extracts inhibit adipogenesis. Int. J. Mol. Sci. 2020, 21, 1. [Google Scholar] [CrossRef] [Green Version]
- Hoang, H.T.; Moon, J.Y.; Lee, Y.C. Natural antioxidants from plant extracts in skincare cosmetics: Recent applications, challenges and perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Abu Bakar, M.S.; Ahmed, A.; Jeffery, D.M.; Hidayat, S.; Sukri, R.S.; Mahlia, T.M.I.; Jamil, F.; Khurrum, M.S.; Inayat, A.; Moogi, S.; et al. Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production. Bioresour. Technol. 2020, 318, 123913. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.A. Matrix solid-phase dispersion. J. Chromatogr. A 2000, 885, 115–127. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Plazas, M.; Prohens, J.; Cuñat, A.N.; Vilanova, S.; Gramazio, P.; Herraiz, F.J.; Andújar, I. Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) eggplants. Int. J. Mol. Sci. 2014, 15, 17221–17241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinowska, M.; Bajko, E.; Matejczyk, M.; Kaczyński, P.; Łozowicka, B.; Lewandowski, W. The study of anti-/pro-oxidant, lipophilic, microbial and spectroscopic properties of new alkali metal salts of 5-o-caffeoylquinic acid. Int. J. Mol. Sci. 2018, 19, 463. [Google Scholar] [CrossRef] [Green Version]
- Kluska, M.; Juszczak, M.; Żuchowski, J.; Stochmal, A.; Woźniak, K. Kaempferol and its glycoside derivatives as modulators of etoposide activity in HL-60 cells. Int. J. Mol. Sci. 2021, 22, 3520. [Google Scholar] [CrossRef]
- Moon, H.; Lertpatipanpong, P.; Hong, Y.; Kim, C.T.; Baek, S.J. Nano-encapsulated quercetin by soluble soybean polysaccharide/chitosan enhances anti-cancer, anti-inflammation, and anti-oxidant activities. J. Funct. Foods 2021, 87, 104756. [Google Scholar] [CrossRef]
- Viswanath, A.; Rao, A.L.; Babu, P.S. Simple Isolation and characterization of P-coumaric acid from Cynodon dactylon Linn. (Pers). Int. J. Pharm. Anal. Res. 2017, 6, 413–418. [Google Scholar]
- Elabbara, F.A.; Habel, A.M.; Bozkeh, N.M.A.; El-tuonsi, A.T.M. Caffeic anhydride from Solanum sodomeum (Solanaceae). Asian. J. Plant. Sci. Res. 2014, 4, 19–22. [Google Scholar]
- Seebacher, W.; Simic, N.; Weis, R.; Saf, R.; Kunert, O. Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn. Reson. Chem. 2003, 41, 636–638. [Google Scholar] [CrossRef]
- Ludeña, M.A. Método preparativo para la obtención de ácido ursólico a partir de Clinopodium. Rev. Colomb. Química 2018, 47, 10–15. [Google Scholar] [CrossRef]
- Augustin, J.M.; Drok, S.; Shinoda, T.; Sanmiya, K.; Nielsen, J.K.; Khakimov, B.; Olsen, C.E.; Hansen, E.H.; Kuzina, V.; Ekstrøm, C.T.; et al. UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. Plant Physiol. 2012, 160, 1881–1895. [Google Scholar] [CrossRef] [Green Version]
- Mariadoss, A.V.A.; Saravanakumar, K.; Sathiyaseelan, A.; Karthikkumar, V.; Wang, M.-H. Smart drug delivery of p-Coumaric acid loaded aptamer conjugated starch nanoparticles for effective triple-negative breast cancer therapy. Int. J. Biol. Macromol. 2022, 195, 22–29. [Google Scholar] [CrossRef]
- Gudoityte, E.; Arandarcikaite, O.; Mazeikiene, I.; Bendokas, V.; Liobikas, J. Ursolic and oleanolic acids: Plant metabolites with neuroprotective potential. Int. J. Mol. Sci. 2021, 22, 4599. [Google Scholar] [CrossRef]
- Xiao, H.B.; Krucker, M.; Albert, K.; Liang, X.M. Determination and identification of isoflavonoids in Radix astragali by matrix solid-phase dispersion extraction and high-performance liquid chromatography with photodiode array and mass spectrometric detection. J. Chromatogr. A 2004, 1032, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Londoño-Londoño, J.; de Lima, V.R.; Lara, O.; Gil, A.; Pasa, T.B.C.; Arango, G.J.; Pineda, J.R.R. Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. Food Chem. 2010, 119, 81–87. [Google Scholar] [CrossRef]
- Badal, S.; Delgoda, R. Pharmacognosy, Fundamentals, Applications and Strategy; Elsevier, Ed.; Mica Haley: Boston, MA, USA, 2017; ISBN 9780128021040. [Google Scholar]
- Waterman, P.G.; Mole, S. Methods in Ecology: Analysis of Phenolic Plant Metabolites; Wiley-Blackwell: Oxford, UK, 1994. [Google Scholar]
- Montenegro, I.; Moreira, J.; Ramírez, I.; Dorta, F.; Sánchez, E.; Alfaro, J.F.; Valenzuela, M.; Jara-Gutiérrez, C.; Muñoz, O.; Alvear, M.; et al. Chemical Composition, Antioxidant and Anticancer Activities of Leptocarpha rivularis DC Flower Extracts. Molecules 2020, 26, 67. [Google Scholar] [CrossRef]
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH [rad] and ABTS [rad] assays: Estimation methods for EC 50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef]
- Mellado, M.; Soto, M.; Madrid, A.; Montenegro, I.; Jara-Gutiérrez, C.; Villena, J.; Werner, E.; Godoy, P.; Aguilar, L.F. In vitro antioxidant and antiproliferative effect of the extracts of Ephedra chilensis K Presl aerial parts. BMC Complement. Altern. Med. 2019, 19, 53. [Google Scholar] [CrossRef]
- Romay, C.; Pascual, C.; Lissi, E.A. The reaction between ABTS radical cation and antioxidants and its use to evaluate the antioxidant status of serum samples. Brazilian J. Med. Biol. Res. 1996, 29, 175–183. [Google Scholar]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from chinese green tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Koleva, I.I.; Niederländer, H.A.G.; Van Beek, T.A. Application of ABTS radical cation for selective on-line detection of radical scavengers in HPLC eluates. Anal. Chem. 2001, 73, 3373–3381. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Piasek, A.; Bartoszek, A.; Namiesnik, J. Application of a commercially available derivatization instrument and commonly used reagents to HPLC on-line determination of antioxidants. J. Food Compos. Anal. 2011, 24, 1073–1080. [Google Scholar] [CrossRef]
- Cano, A.; Alcaraz, O.; Acosta, M.; Arnao, M.B. On-line antioxidant activity determination: Comparison of hydrophilic and lipophilic antioxidant activity using the ABTS•+ assay. Redox Rep. 2002, 7, 103–109. [Google Scholar] [CrossRef]
- Shield, K.D.; Ferlay, J.; Jemal, A.; Sankaranarayanan, R.; Chaturvedi, A.K.; Bray, F.; Soerjomataram, I. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012. CA. Cancer J. Clin. 2017, 67, 51–64. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Rothe, G.; Valet, G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2’,7’-dichlorofluorescin. J. Leukoc. Biol. 1990, 47, 440–448. [Google Scholar] [CrossRef]
- Waters Corporation Columnas Preparativas Optimum Bed Density (OBD). Available online: https://www.waters.com/webassets/cms/library/docs/720002336es.pdf (accessed on 4 May 2021).
Plant Material | Extraction Yields, % ± s (n = 3) | |||
---|---|---|---|---|
SE | MSPD | |||
Fresh | Post-Distillation | Fresh | Post-Distillation | |
H | 11.7 ± 0.3 | 6.6 ± 0.35 | 15.4 ± 0.2 | 6.6 ± 0.4 |
F | 8.2 ± 0.3 | - | 10 ± 1.4 | 3.1 ± 0.5 |
PA | 9.4 ± 0.8 | 7.0 ± 0.8 | 13.7 ± 0.5 | 8.4 ± 0.3 |
Extraction Technique | Condition of Plant Material | Plant Material | Total Phenols | Total Flavonoids |
---|---|---|---|---|
(mg GAE/g Dry Weight) | (mg QE/g Dry Weight) | |||
SE | Fresh | H | 127 ± 7.9 a | 30 ± 2.9 a |
F | 129 ± 6.8 a | 21.0 ± 0.8 a | ||
PA | 128 ± 1.7 a | 31 ± 1.3 ab | ||
Post-distillation | H | 61.9 ± 0.3 ab | 21.3 ± 0.9 a | |
PA | 79 ± 4.1 a | 18 ± 1.2 a | ||
MSPD | Fresh | H | 135 ± 5.1 a | 29.7 ± 0.9 a |
F | 117 ± 3.9 a | 17.9 ± 0.9 a | ||
PA | 141 ± 2.8 ac | 27 ± 3.1 a | ||
Post-distillation | H | 66 ± 1.9 ab | 14.9 ± 0.8 ac | |
PA | 89 ± 2.7 a | 16.6 ± 0.9 a |
Extraction Technique | Condition of Plant Material | Plant Material | Antioxidant Assay, (Mechanism) | |||
---|---|---|---|---|---|---|
ABTS (SET) | FRAP (SET) | H2O2 (HAT) | DPPH (HAT) | |||
(μmolTrolox®/g Dry Weight) | (μmolTrolox®/g Dry Weight) | (IC50, mg/mL) | (IC50, mg/mL) | |||
SE | Fresh | H | 64 ± 1.4 a | 1290 ± 27 a | 7 ± 1.9 a | 0.67 ± 0.01 a,b |
F | 112 ± 3.9 a | 1320 ± 39 a | 4,8 ± 0.3 a,b | 0.63 ± 0.02 a,b,d | ||
PA | 130 ± 7.2 a | 1320 ± 56 a | 7,2 ± 0.3 a | 0.94 ± 0.01 a | ||
Post-distillation | H | 44 ± 1.6 a | 1300 ± 61 a | 7 ± 2.5 a | 3.42 ± 0.077 a,b,c,e | |
PA | 28 ± 1.14 a,b | 1030 ± 43 a | 6 ± 1.1 ab | 2.87 ± 0.032 a | ||
MSPD | Fresh | H | 147 ± 9.3 ac | 1340 ± 51 a | 4,5 ± 0.4 a,b,d | 0.81 ± 0.01 a |
F | 97 ± 2.3 a | 1310 ± 42 a | 8 ± 1.2 a | 0.790 ± 0.005 a | ||
PA | 109 ± 2.5 a | 1320 ± 51 a | 8 ± 1.2 a | 0.84 ± 0.01 a | ||
Post-distillation | H | 22 ± 10.7 a,b | 1240 ± 33 a | 8,6 ± 0.9 a,b,c,e | 4.13 ± 0.13 a,c | |
PA | 52 ± 1.7 a | 1290 ± 44 a | 10 ± 2.1 a,c | 1.86 ± 0.02 a | ||
Reference compounds | Gallic Acid | 1130 ± 10 d | 1720 ± 20 b | N.A | N.A | |
BHT | 1060 ± 20 e | 1520 ± 70 c | 2.53 ± 0.06 f | 0.060 ± 0.0001 f | ||
TROLOX® | N.A | N.A | 2.86 ± 0.03 g | 0.1067 ± 0.0057 g |
Extraction Technique | Condition of Plant Material | Plant Material | Cell Line, (IC50, µg/mL) | ||
---|---|---|---|---|---|
HT-29 | MCF-7 | MCF-10A | |||
SE | Fresh | H | >120 b | 87 ± 9.1 a | 80 ± 6.1 a |
F | >120 b | >120 b | 114 ± 2.4 a | ||
PA | >120 b | 115 ± 17 a | 92 ± 8.3 a | ||
Post-distillation | H | >120 b | 80 ± 11 a | 79 ± 1.2 a | |
PA | >120 b | 88 ± 17 a | 83 ± 4.0 a | ||
MSPD | Fresh | H | >120 b | >120 b | >120 b |
F | >120 b | >120 b | >120 b | ||
PA | >120 b | >120 b | >120 b | ||
Post-distillation | H | >120 b | 90 ± 17 a | 88 ± 8.7 a | |
PA | >120 b | >120 b | >120 b |
Plant Material | Solvent | Solid–Liquid Extraction | Liquid–Liquid Extraction | ||
---|---|---|---|---|---|
Extract, g | Yield, % | Extract, g | Yield, % | ||
Fresh leaves | Ethanol:water | 9.13 | 1823 | 6.11 | - |
Hexane | 0.47 | 0.94 | 0.54 | 8.84 | |
Dichloromethane | 0.32 | 0.64 | 0.59 | 9.65 | |
Ethyl acetate | 0.08 | 0.17 | 0.95 | 15.46 | |
Water | - | - | 3.89 | 63.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamboa-Carvajal, L.; Jara-Gutiérrez, C.; Villena, J.; Taborga, L.; Martínez, J.R.; Espinoza, L.; Stashenko, E.E. Evaluation of Antioxidant and Cytotoxic Activity of Hydro-Ethanolic Extracts Obtained from Steiractinia aspera Cuatrec. Molecules 2022, 27, 4186. https://doi.org/10.3390/molecules27134186
Gamboa-Carvajal L, Jara-Gutiérrez C, Villena J, Taborga L, Martínez JR, Espinoza L, Stashenko EE. Evaluation of Antioxidant and Cytotoxic Activity of Hydro-Ethanolic Extracts Obtained from Steiractinia aspera Cuatrec. Molecules. 2022; 27(13):4186. https://doi.org/10.3390/molecules27134186
Chicago/Turabian StyleGamboa-Carvajal, Laura, Carlos Jara-Gutiérrez, Joan Villena, Lautaro Taborga, Jairo René Martínez, Luis Espinoza, and Elena E. Stashenko. 2022. "Evaluation of Antioxidant and Cytotoxic Activity of Hydro-Ethanolic Extracts Obtained from Steiractinia aspera Cuatrec" Molecules 27, no. 13: 4186. https://doi.org/10.3390/molecules27134186
APA StyleGamboa-Carvajal, L., Jara-Gutiérrez, C., Villena, J., Taborga, L., Martínez, J. R., Espinoza, L., & Stashenko, E. E. (2022). Evaluation of Antioxidant and Cytotoxic Activity of Hydro-Ethanolic Extracts Obtained from Steiractinia aspera Cuatrec. Molecules, 27(13), 4186. https://doi.org/10.3390/molecules27134186