Chemical Composition and Antifungal, Anti-Inflammatory, Antiviral, and Larvicidal Activities of the Essential Oils of Zanthoxylum acanthopodium DC. from China and Myanmar
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil Composition
2.2. Antifungal Activity
2.3. Anti-Inflammatory Activity
2.4. Larvicidal Activity
2.5. Antiviral Activity
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Materials and Essential Oil Extraction
3.3. Analysis of Chemical Composition
3.4. Antifungal Activity
3.4.1. Microbial Strains and Culture Media
3.4.2. Antifungal Test
3.5. Anti-Inflammatory Activity
3.5.1. Cell Culture
3.5.2. Cell Viability Assay
3.5.3. Measurement of NO Production
3.6. Larvicidal Activity
3.7. Antiviral Activity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Flora of China editorial committee, Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 2001; Volume 43, pp. 13–53. [Google Scholar]
- Fogang, H.P.D.; Tapondjou, L.A.; Womeni, H.M.; Quassinti, L.; Bramucci, M.; Vitali, L.A.; Petrelli, D.; Lupidi, G.; Maggi, F.; Papa, F.; et al. Characterization and biological activity of essential oils from fruits of Zanthoxylum xanthoxyloides Lam. and Z. leprieurii Guill. & Perr., two culinary plants from Cameroon. Flavour. Frag. J. 2012, 27, 171–179. [Google Scholar]
- Li, R.; Yang, J.-J.; Shi, Y.-X.; Zhao, M.; Ji, K.-L.; Zhang, P.; Xu, Y.-K.; Hu, H.-B. Chemical composition, antimicrobial and anti-inflammatory activities of the essential oil from Maqian (Zanthoxylum myriacanthum var. pubescens) in Xishuangbanna, SW China. J. Ethnopharmacol. 2014, 158, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Misra, L.N.; Wouatsa, N.A.; Kumar, S.; Venkatesh Kumar, R.; Tchoumbougnang, F. Antibacterial, cytotoxic activities and chemical composition of fruits of two Cameroonian Zanthoxylum species. J. Ethnopharmacol. 2013, 148, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.W.; Park, D.H.; Li, Y.C.; Kang, H.J.; De, X.H.; Kim, Y.J.; Lee, J.H.; Lee, M.S.; Lee, I.C.; Lee, Y.L.; et al. The Zanthoxylum schinifolium seed oil modulates immune function under the biological safety level. Mol. Cell. Toxicol. 2012, 8, 179–185. [Google Scholar] [CrossRef]
- Yamazaki, E.; Inagaki, M.; Kurita, O.; Inoue, T. Antioxidant activity of Japanese pepper (Zanthoxylum piperitum DC.) fruit. Food Chem. 2007, 100, 171–177. [Google Scholar] [CrossRef]
- Yang, L.C.; Li, R.; Tan, J.; Jiang, Z.T. Polyphenolics composition of the leaves of Zanthoxylum bungeanum Maxim. grown in Hebei, China, and their radical scavenging activities. J. Agric. Food. Chem. 2013, 61, 1772–1778. [Google Scholar] [CrossRef]
- Yu, P.; Xu, Z.; Huang, Y. The study on traditional cultivated plants in Dai villages of Xishuangbanna. Acta Bot. Yunnanica 1985, 7, 169–186. [Google Scholar]
- Cheng, B. Edible spice plants of xishuangbanna ethnic minorities. Flavour Fragr. Cosmet. 1991, 3, 27–31. [Google Scholar]
- Hai, A. Traditional Medicine Used by Hani People in Xishuangbanna Kunming; The Nationalities Publishing House of Yunnan: Kunming, China, 1999; pp. 521–523. [Google Scholar]
- Xu, Y.K.; Tao, G.D.; Liu, H.M.; Yan, K.L.; Dao, X.S. Wild vegetable resources and market survey in Xishuangbanna, Southwest China. Econ. Bot. 2004, 58, 647–667. [Google Scholar]
- Tang, H. Wild vegetable resources in Pu’er City. For. By-Prod. Spec. China 2009, 3, 84–87. [Google Scholar]
- Cao, Y.; Li, R.; Zhou, S.; Song, L.; Quan, R.; Hu, H. Ethnobotanical study on wild edible plants used by three trans-boundary ethnic groups in Jiangcheng County, Pu’er, Southwest China. J. Ethnobiol. Ethnomed. 2020, 16, 66. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.G.; Ling, S.M.; Win, T.T.M.; Kang, D.H.; Lee, J.H.; Kim, Y.D. Ethnomedicinal plants and traditional knowledge among three Chin indigenous groups in Natma Taung National Park (Myanmar). J. Ethnopharmacol. 2018, 225, 136–158. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, C.H.; Hadiprodjo, I.T.; Apriyantono, A. Identification of volatile compounds and key aroma compounds of andaliman fruit (Zanthoxylum acanthopodium DC). Food Sci. Biotechnol. 2002, 11, 680–683. [Google Scholar]
- Agrahar-Murugkar, D.; Subbulakshmi, G. Nutritive values of wild edible fruits, berries, nuts, roots and spices consumed by the Khasi tribes of India. Ecol. Food Nutr. 2005, 44, 207–223. [Google Scholar] [CrossRef]
- Seal, T. Determination of nutritive value, mineral contents and antioxidant activity of some wild edible plants from Meghalaya State, India. Asian J. Appl. Sci. 2011, 4, 238–246. [Google Scholar] [CrossRef]
- Seal, T. HPLC determination of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of Zanthoxylum acanthopodium, a wild edible plant of Meghalaya state of India. Int. J. Pharm. Pharm. Sci. 2016, 8, 103–109. [Google Scholar]
- Wijaya, C.H.; Napitupulu, F.I.; Karnady, V.; Indariani, S. A review of the bioactivity and flavor properties of the exotic spice “andaliman” (Zanthoxylum acanthopodium DC.). Food Rev. Int. 2019, 35, 1–19. [Google Scholar] [CrossRef]
- Zaridah, M.Z.; Azah, M.A.N.; Rohani, A. Mosquitocidal activities of Malaysian plants. J. Trop. For. Sci. 2006, 18, 74–80. [Google Scholar]
- Syari, D.M.; Rosidah, R.; Hasibuan, P.A.Z.; Haro, G.; Satria, D. Evaluation of cytotoxic activity alkaloid fractions of Zanthoxylum acanthopodium DC. fruits. Open Access Maced. J. Med. Sci. 2019, 7, 3745–3747. [Google Scholar] [CrossRef]
- He, Q.; Wang, W.; Zhu, L. Larvicidal activity of Zanthoxylum acanthopodium essential oil against the malaria mosquitoes, Anopheles anthropophagus and Anopheles sinensis. Malar. J. 2018, 17, 1–7. [Google Scholar] [CrossRef]
- Ten Threats to Global Health in 2019. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 10 July 2022).
- Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 10 July 2022).
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Hales, S.; de Wet, N.; Maindonald, J.; Woodward, A. Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. Lancet 2002, 360, 830–834. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Reiner, R.C., Jr.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.C.; Wilson, M.E.; Bloom, D.E. Disease and economic burdens of dengue. Lancet Infect. Dis. 2017, 17, e70–e78. [Google Scholar] [CrossRef]
- Zhou, C.M.; Liu, J.W.; Qi, R.; Fang, L.Z.; Qin, X.R.; Han, H.J.; Mo, R.C.; Yu, H.; Jiao, Y.J.; Lin, J.Y.; et al. Emergence of Zika virus infection in China. PLoS Negl. Trop. Dis. 2020, 14, e0008300. [Google Scholar] [CrossRef]
- de Paula, J.P.; Gomes-Carneiro, M.R.; Paumgartten, F.J.R. Chemical composition, toxicity and mosquito repellency of Ocimum selloi oil. J. Ethnopharmacol. 2003, 88, 253–260. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.; Zhang, H.; Sun, H.; Su, H.; Wang, Y.; Du, Z. Bioassay-guided isolation of active compounds from Adenosma buchneroides essential oil as mosquito repellent against Aedes albopictus. J. Ethnopharmacol. 2019, 231, 386–393. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Rakotosaona, R.; Nzekoue, F.K.; Canale, A.; Nicoletti, M.; Maggi, F. Insecticidal and mosquito repellent efficacy of the essential oils from stem bark and wood of Hazomalania voyronii. J. Ethnopharmacol. 2020, 248, 112333. [Google Scholar] [CrossRef]
- Gou, Y.; Li, Z.; Fan, R.; Guo, C.; Wang, L.; Sun, H.; Li, J.; Zhou, C.; Wang, C.; Wang, Y. Ethnobotanical survey and evaluation of traditional mosquito repellent plants of Dai people in Xishuangbanna, Yunnan Province, China. J. Ethnopharmacol. 2020, 262, 113124. [Google Scholar] [CrossRef]
- Li, R.; Yang, J.J.; Song, X.Z.; Wang, Y.F.; Corlett, R.T.; Xu, Y.K.; Hu, H.B. Chemical composition and the cytotoxic, antimicrobial, and anti-Inflammatory activities of the fruit peel essential oil from Spondias pinnata (Anacardiaceae) in Xishuangbanna, Southwest China. Molecules 2020, 25, 343. [Google Scholar] [CrossRef]
- Silverio, M.R.S.; Espindola, L.S.; Lopes, N.P.; Vieira, P.C. Plant natural products for the control of Aedes aegypti: The main vector of important arboviruses. Molecules 2020, 25, 3484. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crop. Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Senthil-Nathan, S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front. Physiol. 2020, 10, 1591. [Google Scholar] [CrossRef]
- Scott, T.W.; Morrison, A.C. Vector dynamics and transmission of dengue virus: Implications for dengue surveillance and prevention strategies. Curr. Top. Microbiol. 2010, 338, 115–128. [Google Scholar]
- Lyons, A.G. The human dengue challenge experience at the Walter Reed Army Institute of Research. J. Infect. Dis. 2014, 209, S49–S55. [Google Scholar] [CrossRef] [PubMed]
- Moektiwardoyo, M.; Muchtaridi, M.; Halimah, E. Chemical composition and locomotor activity of andaliman fruits (Zanthoxylum acanthopodium DC.) essential oil on mice. Int. J. Pharm. Pharm. Sci. 2014, 6, 547–550. [Google Scholar]
- Yanti, Y.; Limas, R.W. Chemical profiling of Zanthoxylum acanthopodium essential oil and its antidiabetic activity. Food Res. 2019, 3, 422–427. [Google Scholar] [CrossRef]
- Majumder, M.; Sharma, H.; Zaman, K.; Lyngdoh, W. Evaluation of physico-chemical properties and antibacterial activity of the essential oil obtained from the fruits of Zanthoxyllum acanthopodium DC. Collected from Meghalaya, India. Int. J. Pharm. Pharm. Sci. 2014, 6, 543–546. [Google Scholar]
- Hao, J.; Sheng, R.; Sun, Z.; Huang, Q.; Yu, F.; Fang, M. Research progress in antimicrobial activity of limonene. Food Ferment. Ind. 2017, 43, 274–278. [Google Scholar]
- Maeda, H.; Akaike, T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry 1998, 63, 854–865. [Google Scholar]
- Ning, J.; Xu, L.; Zhao, Q.; Zhang, Y.Y.; Shen, C.Q. The protective effects of terpinen-4-ol on LPS-induced acute lung injury via activating PPAR-gamma. Inflammation 2018, 41, 2012–2017. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.U.S.; Hellman, B.; Nyberg, F.; Amir, N.; Jayaraj, R.L.; Petroianu, G.; Adem, A. Myrcene attenuates renal inflammation and oxidative stress in the adrenalectomized rat model. Molecules 2020, 25, 4492. [Google Scholar] [CrossRef] [PubMed]
- Santana, H.S.R.; de Carvalho, F.O.; Silva, E.R.; Santos, N.G.L.; Shanmugam, S.; Santos, D.N.; Wisniewski, J.O.; Cardoso, J.S.; Nunes, P.S.; Araujo, A.A.S.; et al. Anti-inflammatory activity of limonene in the prevention and control of injuries in the respiratory system: A systematic review. Curr. Pharm. Des. 2020, 26, 2182–2191. [Google Scholar] [CrossRef] [PubMed]
- Luz, T.; de Mesquita, L.S.S.; Amaral, F.; Coutinho, D.F. Essential oils and their chemical constituents against Aedes aegypti L. (Diptera: Culicidae) larvae. Acta Trop. 2020, 212, 105705. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Wilke, A.B.B.; Beier, J.C. Aedes albopictus (Asian Tiger Mosquito). Trends Parasitol. 2020, 36, 942–943. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.Y.; Rhim, J.Y.; Park, W.B. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch. Pharm. Res. 2005, 28, 1293–1301. [Google Scholar] [CrossRef]
- Abd Kadir, S.L.; Yaakob, H.; Mohamed Zulkifli, R. Potential anti-dengue medicinal plants: A review. J. Nat. Med. 2013, 67, 677–689. [Google Scholar] [CrossRef]
- Lim, S.Y.M.; Chieng, J.Y.; Pan, Y. Recent insights on anti-dengue virus (DENV) medicinal plants: Review on in vitro, in vivo and in silico discoveries. All Life 2021, 14, 1–33. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Chae, S.Y.; Lee, M.; Kim, S.W.; Bae, Y.H. Protection of insulin secreting cells from nitric oxide induced cellular damage by crosslinked hemoglobin. Biomaterials 2004, 25, 843–850. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Laboratory and Field Testing of Mosquito Larvicides; World Health Organization: Geneva, Switzerland, 2015; Available online: https://www.who.int/publications/i/item/WHO-CDS-WHOPES-GCDPP-2005.13 (accessed on 10 July 2022).
No | RT 1 | RIcal 2 | RIlit 3 | Component | EOZM (%) | EOZC (%) |
---|---|---|---|---|---|---|
1. | 9.22 | 925 | 926 | α-Thujene | 0.65 | 0.14 |
2. | 9.47 | 931 | 930 | α-Pinene | 0.62 | 4.18 |
3. | 10.06 | 945 | 945 | Camphene | - 4 | 0.29 |
4. | 11.16 | 971 | 972 | Sabinene | 3.34 | 6.78 |
5. | 11.25 | 973 | 974 | β-Pinene | 0.39 | 5.80 |
6. | 12.01 | 992 | 992 | β-Myrcene | 1.48 | 26.65 |
7. | 12.52 | 1003 | 1004 | α-Phellandrene | 0.68 | 1.25 |
8. | 13.09 | 1016 | 1018 | (+)-4-Carene | 5.65 | 0.49 |
9. | 13.46 | 1024 | 1025 | o-Cymene | 1.70 | 0.11 |
10. | 13.67 | 1028 | 1028 | Limonene | 8.71 | 29.78 |
11. | 13.72 | 1029 | 1031 | Eucalyptol | 9.03 | - |
12. | 14.64 | 1049 | 1050 | β-Ocimene | 6.11 | 7.18 |
13. | 15.07 | 1058 | 1058 | γ-Terpinene | 8.44 | 0.78 |
14. | 15.45 | 1066 | 1161 | (E)-β-terpineol | 0.24 | 0.37 |
15. | 16.43 | 1088 | 1088 | Terpinolene | 2.00 | 0.45 |
16. | 17.07 | 1101 | 1101 | Linalool | 0.17 | 0.46 |
17. | 17.25 | 1105 | 1105 | Nonanal | - | 0.29 |
18. | 17.99 | 1121 | 1120 | (E)-p-2-Menthen-1-ol | 1.21 | 0.24 |
19. | 19.09 | 1144 | 1145 | Verbenol | - | 0.22 |
20. | 20.06 | 1165 | 1164 | Borneol | - | 0.22 |
21. | 20.61 | 1177 | 1177 | Terpinen-4-ol | 43.35 | 1.56 |
22. | 21.26 | 1191 | 1192 | α-Terpineol | 3.11 | 0.42 |
23. | 21.46 | 1195 | 1195 | (Z)-Piperitol | 0.24 | - |
24. | 21.51 | 1196 | 1196 | (-)-Myrtenol | - | 1.62 |
25. | 22.06 | 1208 | 1206 | (E)-Piperitol | 0.39 | - |
26. | 25.58 | 1286 | 1285 | Bornyl acetate | - | 0.90 |
27. | 26.23 | 1300 | 1297 | (E)-Pinocarvyl acetate | - | 0.34 |
28. | 27.34 | 1326 | 1327 | Myrtenyl acetate | - | 0.65 |
29. | 28.39 | 1350 | 1350 | α-Terpinyl acetate | 0.66 | - |
30. | 31.31 | 1419 | 1419 | Caryophyllene | - | 1.46 |
31. | 32.72 | 1453 | 1455 | Humulene | - | 0.25 |
32. | 33.86 | 1481 | 1481 | Germacrene D | - | 0.34 |
33. | 35.58 | 1525 | 1525 | (+)-δ-Cadinene | - | 0.70 |
34. | 39.66 | 1650 | 1647 | τ-Muurolol | - | 1.08 |
35. | 39.78 | 1654 | 1648 | τ-Muurolol | - | 0.28 |
36. | 39.98 | 1662 | 1658 | α-Cadinol | - | 1.69 |
Total identified | 98.17 | 96.96 |
Treatment | MIC90 (μg/mL) 1 | |||
---|---|---|---|---|
Candida albicans | Epidermophyton floccosum | Trichophyton rubrum | Microsporum gypseum | |
Amphotericin B | 0.06 ± 0.001 | - 2 | - | - |
Terbinafine Hydrochloride | - | 0.02 ± 0.001 | 2.2 ± 0.16 | 0.01 ± 0.001 |
EOZM | - | 95 ± 3.3 | 506 ± 3.3 | 372 ± 3.7 |
EOZC | 499 ± 2.2 | 26.3 ± 0.32 | 91 ± 2.1 | 82.6 ± 0.61 |
Compound | IC50 1 (μg/mL) |
---|---|
L-NMMA | 12.2 ± 0.65 |
EOZM | 37 ± 2.0 |
EOZC | 16 ± 1.6 |
Compound | ZIKV 1 (μg/mL) | DENV 2 (μg/mL) | ||||
---|---|---|---|---|---|---|
IC50 3 | CC50 4 | SI 5 | IC50 | CC50 | SI | |
EOZM | 94 ± 19.8 | 372 ± 103.8 | 3.9 ± 0.28 | 13 ± 1.4 | 183 ± 92.1 | 14 ± 5.7 |
EOZC | - 6 | >800 | - | 184.86 ± 64.49 | >800 | >4.35 |
NITD008 | 0.4 ± 0.01 | >3 | >8.13 | 2.5 ± 0.01 | >3 | >1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Song, X.; Hu, H.; Zhong, W.; Cao, R.; Xu, Y.; Li, R. Chemical Composition and Antifungal, Anti-Inflammatory, Antiviral, and Larvicidal Activities of the Essential Oils of Zanthoxylum acanthopodium DC. from China and Myanmar. Molecules 2022, 27, 5243. https://doi.org/10.3390/molecules27165243
Yang J, Song X, Hu H, Zhong W, Cao R, Xu Y, Li R. Chemical Composition and Antifungal, Anti-Inflammatory, Antiviral, and Larvicidal Activities of the Essential Oils of Zanthoxylum acanthopodium DC. from China and Myanmar. Molecules. 2022; 27(16):5243. https://doi.org/10.3390/molecules27165243
Chicago/Turabian StyleYang, Jingjing, Xingzhen Song, Huabin Hu, Wu Zhong, Ruiyuan Cao, Youkai Xu, and Ren Li. 2022. "Chemical Composition and Antifungal, Anti-Inflammatory, Antiviral, and Larvicidal Activities of the Essential Oils of Zanthoxylum acanthopodium DC. from China and Myanmar" Molecules 27, no. 16: 5243. https://doi.org/10.3390/molecules27165243
APA StyleYang, J., Song, X., Hu, H., Zhong, W., Cao, R., Xu, Y., & Li, R. (2022). Chemical Composition and Antifungal, Anti-Inflammatory, Antiviral, and Larvicidal Activities of the Essential Oils of Zanthoxylum acanthopodium DC. from China and Myanmar. Molecules, 27(16), 5243. https://doi.org/10.3390/molecules27165243