Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Tomato Samples
2.2. Extraction Efficiency
2.2.1. Soxhlet Extraction (SE)
2.2.2. Supercritical CO2 Extraction (SFE)
2.2.3. Extract Centrifugation
2.3. Qualitative and Quantitative Analysis of SE and SFE Raw Extracts
2.3.1. Carotenoid Qualitative Analysis
2.3.2. Carotenoid Content
2.4. Qualitative and Quantitative Analysis of SFE Fractions
2.4.1. Carotenoid Qualitative Analysis Using UV–VIS Method
2.4.2. Carotenoid Qualitative Analysis Using FT–IR Method
2.4.3. Carotenoid Content
2.4.4. FAME Content
2.5. Total Phenolic Content of Tomato Raw Extracts
2.6. Antioxidant Activity of Tomato Samples
2.7. Economic Analysis
3. Materials and Methods
3.1. Chemicals and Standards
3.2. Preparation of Tomato Samples
3.3. Soxhlet Extraction Method
3.4. Supercritical CO2 Extraction Method
3.5. Raw Extract Centrifugation Method
3.6. UV–VIS Qualitative and Quantitative Analysis of Carotenoids
3.7. FT–IR Qualitative Analysis of Tomato Samples
3.8. GC–MS Analysis of FAME Compounds
3.9. Spectrophotometric Analysis of Antioxidant Activity
3.10. Spectrophotometric Analysis of Total Phenolic Content
3.11. Economic Analysis
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Romano, R.; Aiello, A.; Pizzolongo, F.; Rispoli, A.; De Luca, L.; Masi, P. Characterisation of oleoresins extracted from tomato waste by liquid and supercritical carbon dioxide. Int. J. Food Sci. 2020, 55, 3334–3342. [Google Scholar] [CrossRef]
- Vidyarthi, S.K.; Simmons, C.W. Characterization and management strategies for process discharge streams in California industrial tomato processing. Sci. Total Environ. 2020, 723, 137976. [Google Scholar] [PubMed]
- Nour, V.; Ionica, M.E.; Trandafir, I. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste. J. Food Sci. Technol. 2015, 52, 8260–8267. [Google Scholar] [PubMed] [Green Version]
- Abassi, N.; Talhajt, S.A.; Fadel, S.; Ahra, M. Tomato pomace valorization by oil and bioactive compounds extraction: Case of Souss-Massa region. Am. J. Innov. Res. Appl. Sci. 2021, 12, 211–216. [Google Scholar]
- Porretta, S. Tomato Chemistry, Industrial Processing and Product Development; Royal Society of Chemistry: Cambridge, UK, 2019. [Google Scholar]
- Squillace, P.; Adani, F.; Scaglia, B. Supercritical CO2 extraction of tomato pomace: Evaluation of the solubility of lycopene in tomato oil as limiting factor of the process performance. Food Chem. 2020, 315, 126224. [Google Scholar]
- Vallecilla-Yepez, L.; Ciftici, O.N. Increasing cis-lycopene content of the oleoresin from tomato processing byproducts using supercritical carbon dioxide. LWT-Food Sci. Technol. 2018, 95, 354–360. [Google Scholar]
- Machmudah, S.; Zakaria; Winardi, S.; Sasaki, M.; Goto, M.; Kusumoto, N.; Hayakawa, K. Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J. Food Eng. 2011, 108, 290–296. [Google Scholar] [CrossRef]
- Ashraf, W.; Latif, A.; Zhang, L.; Zhang, J.; Wang, C.; Rehman, A.; Hussain, A.; Siddiquy, M.; Karim, A. Technological Advancement in the Processing of Lycopene: A Review. Food Rev. Int. 2020, 38, 1–27. [Google Scholar]
- Rizk, E.M.; El-Kady, A.T.; El-Bialy, A.R. Characterization of carotenoids (lyco-red) extracted from tomato peels and its uses as natural colorants and antioxidants of ice cream. Ann. Agric. Sci. 2014, 59, 53–61. [Google Scholar]
- Bogacz-Radomska, L.; Harasym, J.; Piwowar, A. Chapter 10 Commercialization aspects of carotenoids. In Carotenoids: Properties, Processing and Applications, 1st ed.; Galanakis, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 327–357. [Google Scholar]
- Papaioannou, E.H.; Liakopoulou-Kyriakides, M.; Karabelas, A.J. Natural Origin Lycopene and Its “Green” Downstream Processing. Crit. Rev. Food Sci. Nutr. 2016, 56, 686–709. [Google Scholar]
- Kehili, M.; Kammlott, M.; Choura, S.; Zammel, A.; Zetzl, C.; Smirnova, I.; Allouche, N.; Sayadi, S. Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod. Process. 2017, 102, 340–349. [Google Scholar] [CrossRef]
- Dominguez, R.; Gullon, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as Potential Source of Natural Additives for Meat Industry. A Review. Antioxidants 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Meroni, E.; Raikos, V. Lycopene in Beverage Emulsions: Optimizing Formulation Design and Processing Effects for Enhanced Delivery. Beverages 2018, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Kehili, M.; Sayadi, S.; Frikha, F.; Zammel, A.; Allouche, N. Optimization of lycopene extraction from tomato peels industrial by-product using maceration in refined olive oil. Food Bioprod. Process. 2019, 117, 321–328. [Google Scholar] [CrossRef]
- Stoica, R.M.; Tomulescu, C.; Casari, A.; Soare, M.G. Tomato by-products as a source of natural antioxidants for pharmaceutical and food industries—A mini-review. Sci. Bull. Ser. F Biotechnol. 2018, 22, 200–204. [Google Scholar]
- Igielska-Kalwat, J. Analysis of Composition and Stability of Emulsions Containing Carotenoids with High Performance Liquid Chromatography (HPLC). Biomed. J. Sci. Technol. Res. 2019, 13, 9764–9773. [Google Scholar] [CrossRef] [Green Version]
- Szabo, K.; Dulf, F.V.; Teleky, B.-E.; Eleni, P.; Boukouvalas, C.; Krokida, M.; Kapsalis, N.; Rusu, A.V.; Socol, C.T.; Vodnar, D.C. Evaluation of the Bioactive Compounds Found in Tomato Seed Oil and Tomato Peels Influenced by Industrial Heat Treatments. Foods 2021, 10, 110. [Google Scholar] [CrossRef]
- Shao, D.; Venkitasamy, C.; Li, X.; Pan, Z.; Shi, J.; Wang, B.; Teh, H.E.; McHugh, T.H. Thermal and storage characteristics of tomato seed oil. LWT-Food Sci. Technol. 2015, 63, 191–197. [Google Scholar] [CrossRef]
- Szabo, K.; Diaconeasa, Z.; Cator, A.F.; Vodnar, D.C. Screening of Ten Tomato Varieties Processing Waste for Bioactive Components and Their Related Antioxidant and Antimicrobial Activities. Antioxidants 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Scaglia, B.; D’Incecco, P.; Squillace, P.; Dell’Orto, M.; De Nisi, P.; Pellegrino, L.; Botto, A.; Cavicci, C.; Adani, F. Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate. J. Clean. Prod. 2019, 243, 118650. [Google Scholar] [CrossRef]
- Hatami, T.; Meireles, M.A.A.; Ciftici, O.N. Supercritical carbon dioxide extraction of lycopene from tomato processing by-products: Mathematical modelling and optimization. J. Food Eng. 2018, 241, 18–25. [Google Scholar] [CrossRef]
- Ozbek, Z.A.; Celik, K.; Ergonul, P.G.; Hepcimen, A.Z. A Promising Food Waste for Food Fortification: Characterization of Dried Tomato Pomace and Its Cold Pressed Oil. J. Food Chem. Nanotechnol. 2020, 6, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Moon, S.H.; Keum, Y.S. An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids. Int. Food Res. J. 2018, 108, 516–529. [Google Scholar] [CrossRef]
- Strati, I.F.; Oreopoulou, V. Recovery of carotenoids from tomato processing by-products. A review. Int. Food Res. J. 2014, 65, 311–321. [Google Scholar] [CrossRef]
- Reichardt, C.; Welton, T. Appendix. In Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2011; pp. 551–558. [Google Scholar]
- Agrawal, M.; Dubey, S.K.; Khan, J.; Siddique, S.; Ajazuddin; Saraf, S.; Saraf, S.; Alexander, A. Chapter 3 Extraction of catechins from green tea using supercritical carbon dioxide. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Supercritical Carbon Dioxide as Green Solvent; Inamuddin, Asiri, A.M., Isloor, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 41–66. [Google Scholar]
- Pandya, D.P.; Akbari, S.H.; Bhatt, H.G.; Joshi, D.C.; Darji, V.B. Identification of Suitable Solvent System for Efficient Extraction of Lycopene from Tomato Pomace. J. Food Res. Technol. 2015, 3, 83–86. [Google Scholar]
- Tudor-Radu, M.; Vijan, L.E.; Tudor-Radu, C.M.; Tita, I.; Sima, R.; Mitrea, R. Assessment of Ascorbic Acid, Polyphenols, Flavonoids, Anthocyanins and Carotenoids Content in Tomato Fruits. Not. Bot. Horti Agrobot. 2016, 44, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Longo, C.; Leo, L.; Leone, A. Carotenoids, Fatty Acid Composition and Heat Stability of Supercritical Carbon Dioxide-Extracted-Oleoresins. Int. J. Mol. Sci. 2012, 13, 4233–4254. [Google Scholar] [CrossRef] [Green Version]
- Giuffre, A.M.; Capocasale, M.; Zappia, C. Tomato seed oil for edible use: Cold break, hot break, and harvest year effects. J. Food Process. Preserv. 2017, 41, e13309. [Google Scholar] [CrossRef]
- Popescu, M.; Iancu, P.; Plesu, V.; Bildea, C.S.; Todasca, M.C. Different spectrophotometric methods for simultaneous quantification of lycopene and β-carotene from a binary mixture. LWT-Food Sci. Technol. 2022, 160, 113238. [Google Scholar] [CrossRef]
- Sohail, M.; Naveed, A.; Abdul, R.; Gulfishan; Khan, H.M.S.; Khan, H. An approach to enhanced stability: Formulation and characterization of Solanum lycopersicum derived lycopene based topical emulgel. Saudi Pharm. J. 2018, 26, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Baranska, M.; Schutze, W.; Schulz, H. Determination of Lycopene and β-Carotene Content in Tomato Fruits and Related Products: Comparison of FT-Raman, ATR-IR, and NIR Spectroscopy. Anal. Chem. 2006, 78, 8456–8461. [Google Scholar] [CrossRef]
- Kamil, M.M.; Mohamed, G.F.; Shaheen, M.S. Fourier Transformer Infrared Spectroscopy for Quality Assurance of Tomato Products. J. Am. Sci. 2011, 7, 559–572. [Google Scholar]
- Bunghez, I.R.; Raduly, M.; Doncea, S.; Aksahin, I.; Ion, R.M. Lycopene determination in tomatoes by different spectral techniques (UV-VIS, FTIR and HPLC). Dig. J. Nanomater. Biostruct. 2011, 6, 1349–1356. [Google Scholar]
- De Nardo, T.; Shiroma-Kian, C.; Halim, Y.; Francis, D.; Rodriguez-Saona, L.E. Rapid and Simultaneous Determination of Lycopene and β-Carotene Contents in Tomato Juice by Infrared Spectroscopy. J. Agric. Food Chem. 2009, 57, 1105–1112. [Google Scholar] [CrossRef]
- Durante, M.; Milano, F.; De Caroli, M.; Giotta, L.; Piro, G.; Mita, G.; Frigione, M.; Lenucci, M.S. Tomato Oil Encapsulation by α-, β-, and γ-Cyclodextrins: A Comparative Study on the Formation of Supramolecular Structures, Antioxidant Activity, and Carotenoid Stability. Foods 2020, 9, 1553. [Google Scholar] [CrossRef]
- Jovic, O.; Jovic, A. FTIR-ATR adulteration study of hempseed oil of different geographic origins. J. Chemometr. 2017, 31, e2938. [Google Scholar] [CrossRef]
- Tyskiewicz, K.; Konkol, M.; Roj, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Pardo, F.A.; Nakajima, V.M.; Macedo, G.A.; Macedo, J.A.; Martinez, J. Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food Bioprod. Process. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Shahzad, T.; Ahmad, I.; Choudhry, S.; Saeed, M.K.; Khan, M.N. DPPH free radical scavenging activity of tomato, cherry tomato and watermelon: Lycopene extraction, purification and quantification. Int. J. Pharm. Pharm. Sci. 2014, 6, 223–228. [Google Scholar]
- Popescu, M.; Iancu, P.; Plesu, V.; Todasca, M.C.; Bildea, C.S. Effect of different drying processes on lycopene recovery from tomato peels of Crystal variety. UPB Sci. Bull. Ser. B 2019, 81, 46–58. [Google Scholar]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Hanganu, A.; Todasca, M.C.; Chira, N.A.; Maganu, M.; Rosca, S. The compositional characterisation of Romanian grape seed oils using spectroscopic methods. Food Chem. 2012, 134, 2453–2458. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Watkins, B.A. Analysis of Fatty Acids in Food Lipids. In Current Protocols in Food Analytical Chemistry; Whitaker, J., Ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Iancu, P.; Stefan, N.G.; Plesu, V.; Toma, A.; Stepan, E. Advanced high vacuum techniques for ω-3 polyunsaturated fatty acids esters concentration. Rev. Chim. 2015, 66, 911–917. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Hassim, N.; Markom, M.; Rosli, M.I.; Harun, S. Scale-up criteria and economic analysis for supercritical fluid extraction of Phyllanthus niruri. Chem. Eng. Process. Process Intensif. 2019, 139, 14–22. [Google Scholar] [CrossRef]
- Jinan Jingbang New Material Co., Ltd. Available online: https://www.alibaba.com/product-detail/JINGBANG-CAS-141-78-6-industrial_1600508069618.html (accessed on 15 April 2022).
- Linde Gaz Romania. Available online: https://www.linde-gas.ro/shop/ro/ro-ig/gaze-imbuteliate/co2-gheata/co2-30-but-375kg-p3700150 (accessed on 15 April 2022).
- Shaanxi Ming Chemical Technology Co., Ltd. Available online: https://www.alibaba.com/product-detail/Natural-Antioxidant-Tomato-Extract-Pure-Lycopene_60778318160.html (accessed on 15 April 2022).
- Wellnature Biotech Co., Ltd. Available online: https://www.alibaba.com/product-detail/ISO-Certificate-Factory-Supply-Tomato-Extract_1600270393191.html (accessed on 15 April 2022).
- Hainan Zhongxin Wanguo Chemical Co., Ltd. Available online: https://www.alibaba.com/product-detail/Health-Supplement-Lycopene-Beadlets-tomato-extract_60679438322.html (accessed on 15 April 2022).
- Konieczka, P.; Namiesnik, J. Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
Solvent | Green Solvent | Solvent Polarity |
---|---|---|
Water | ✓ | 1.000 |
Ethanol | ✓ | 0.654 |
Acetone | ✓ | 0.355 |
Dichloromethane | ✗ | 0.309 |
Ethyl Acetate | ✓ | 0.228 |
Chloroform | ✗ | 0.052 |
Hexane | ✗ | 0.009 |
Vegetable Oils | ✓ | 0.000 |
Carbon Dioxide | ✓ | 0.000 |
Sample Type | Tomato Mass (kg) | Tomato Number (Pieces) | Juice Mass (kg) | Fresh Sample Mass (kg) | Dried Sample Mass (kg) |
---|---|---|---|---|---|
Tomato slices (TS) | 18.7 | 220 | - | 18.7 (1363 slices) | 1.2 |
Tomato pomace (TP) | 187.0 | 1460 | 165 | 19.0 | 1.2 |
Tomato seeds (S) | 39.0 | 305 | 35 | 4.0 | 0.06 |
Extract ID | Extraction Method | Sample Type/ Extraction Solvent | Extraction Parameters * | Extract Type | Extract Consistency | Extraction Yield ** |
---|---|---|---|---|---|---|
TSO-SE | SE | Tomato Seeds/ Hexane | msample = 20 g Vsolvent = 250 mL | Raw extract | Oil | 20.21 ± 1.22 a |
TS-1-SE | SE | TomatoSlices/ Bioethanol | msample = 20 g Vsolvent = 250 mL | Raw extract | Solid oleoresin | 5.92 ± 0.69 b |
TS-2-SE | Tomato Slices/ Ethyl Acetate | msample = 20 g Vsolvent = 250 mL | Raw extract | Solid oleoresin | 8.72 ± 0.93 b | |
TP-1-SE | Tomato Pomace/ Bioethanol | msample = 20 g Vsolvent = 250 mL | Raw extract | Solid oleoresin | 13.23 ± 1.14 c | |
TP-2-SE | Tomato Pomace/ Ethyl Acetate | msample = 20 g Vsolvent = 250 mL | Raw extract | Solid oleoresin | 14.33 ± 1.19 c | |
TS-1-SFE | SFE | Tomato Slices/ Supercritical CO2 | msample = 180 g T = 70 °C P = 400 bar GCO2 = 9 kg/h | Raw extract | Liquid oleoresin | 5.25 ± 0.79 b |
TS-1-SFE-A | Fraction A | Oil | 3.83 ± 1.28 b | |||
TS-1-SFE-B | Fraction B | Solid oleoresin | 0.35 ± 0.02 b | |||
TS-1-SFE-C | Fraction C | Liquid | 1.07 ± 0.26 b | |||
TS-2-SFE | msample = 180 g T = 70 °C P = 450 bar GCO2 = 11 kg/h | Raw extract | Liquid oleoresin | 6.64 ± 1.12 b | ||
TS-2-SFE-A | Fraction A | Oil | 4.38 ± 0.86 b | |||
TS-2-SFE-B | Fraction B | Solid oleoresin | 0.30 ± 0.03 b | |||
TS-2-SFE-C | Fraction C | Liquid | 1.97 ± 0.09 b | |||
TP-1-SFE | SFE | Tomato Pomace/ Supercritical CO2 | msample = 180 g T = 70 °C P = 400 bar GCO2 = 9 kg/h | Raw extract | Liquid oleoresin | 10.02 ± 1.14 c |
TP-1-SFE-A | Fraction A | Oil | 7.69 ± 1.01 c | |||
TP-1-SFE-B | Fraction B | Solid oleoresin | 1.27 ± 0.19 c | |||
TP-1-SFE-C | Fraction C | Liquid | 1.06 ± 0.04 c | |||
TP-2-SFE | msample = 180 g T = 70 °C P = 450 bar GCO2 = 11 kg/h | Raw extract | Liquid oleoresin | 12.35 ± 1.55 c | ||
TP-2-SFE-A | Fraction A | Oil | 8.95 ± 1.07 c | |||
TP-2-SFE-B | Fraction B | Solid oleoresin | 1.85 ± 0.11 c | |||
TP-2-SFE-C | Fraction C | Liquid | 1.57 ± 0.12 c |
Peak ID | Pure Lycopene | Pure β-Carotene | TP-2-SFE-A | TP-2-SFE-B | TP-2-SFE-C | TSO-SE |
---|---|---|---|---|---|---|
1 | - | - | - | - | 3240–3360 | - |
2 | 3032–3037 | - | 3006–3010 | 3000–3016 | - | 3006–3010 |
3 | - | - | - | - | 2977–2986 | - |
4 | 2910–2915 | 2895–2923 | 2919–2925 | 2919–2925 | - | 2920–2925 |
5 | 2846–2859 | 2845–2862 | 2852–2855 | 2850–2854 | - | 2852–2855 |
6 | - | - | 1742–1745 | 1741–1745 | - | 1741–1745 |
7 | 1627–1631 | - | - | - | 1628–1652 | - |
8 | 1438–1445 | 1441–1444 | 1458–1465 | 1459–1465 | - | 1459–1464 |
9 | 1361–1375 | 1364–1370 | 1370–1381 | 1370–1381 | - | 1371–1380 |
10 | - | - | 1227–1244 | 1235–1238 | - | 1225–1245 |
11 | - | - | 1157–1164 | 1157–1164 | - | 1154–1165 |
12 | 1097–1107 | - | 1093–1102 | 1091–1104 | - | 1094–1102 |
13 | - | - | - | - | 1043–1047 | - |
14 | 957 | 964–965 | 963–973 | 958–974 | - | 963–971 |
Extract ID | FAME Profile/[%] * | |||
---|---|---|---|---|
Palmitic Acid (C16:0) | Stearic Acid (C18:0) | Oleic Acid (C18:1) | Linoleic Acid (C18:2) | |
TSO-SE | 15.08 ± 0.01 a | 6.03 ± 0.43 b | 23.41 ± 0.56 b | 55.59 ± 0.12 a |
Extract ID | Total Phenolic Content * | Antioxidant Activity * |
---|---|---|
TS-1-SE | 26.93 ± 0.12 a | 43.35 ± 3.36 b |
TS-2-SE | 17.32 ± 0.08 a | 27.61 ± 1.26 |
TP-1-SE | 30.91 ± 0.14 a | 40.78 ± 3.41 c |
TP-2-SE | 25.25 ± 0.11 a | 34.46 ± 2.04 c |
TS-1-SFE | 22.59 ± 0.06 a | 47.59 ± 4.01 b |
TS-1-SFE-A | - | 41.03 ± 3.15 b |
TS-1-SFE-B | - | 29.89 ± 2.05 b |
TS-2-SFE | 33.17 ± 0.12 a | 40.05 ± 3.04 b |
TS-2-SFE-A | - | 49.65 ± 4.21 b |
TS-2-SFE-B | - | 58.85 ± 4.09 b |
TP-1-SFE | 27.73 ± 0.11 a | 39.26 ± 3.02 c |
TP-1-SFE-A | - | 42.39 ± 4.04 c |
TP-1-SFE-B | - | 54.46 ± 4.17 c |
TP-2-SFE | 35.25 ± 0.14 a | 37.30 ± 3.25 c |
TP-2-SFE-A | - | 38.41 ± 3.04 c |
TP-2-SFE-B | - | 67.02 ± 5.11 c |
Capacity (kg Dried Pomace/Batch) | Extraction Products | Production (kg Extract/y) | Revenue (k€/y) | MCO = OPEX (k€/y) | RMCO (% from OPEX) | UCO (% from OPEX) | Solvent Recovery (% from OPEX) | Profit (k€/y) |
---|---|---|---|---|---|---|---|---|
1 | TP-2-SE | 42.99 | 2.15 | 1.71 | 59.32 | 30.00 | 10.68 | 0.44 |
TP-2-SFE | 37.05 | 1.11 | 1.59 | 60.00 | 40.00 | - | 0.00 | |
TP-2-SFE-A | 26.85 | 0.94 | 1.73 | 55.00 | 45.00 | - | 0.03 | |
TP-2-SFE-B | 5.49 | 0.82 | ||||||
10 | TP-2-SE | 429.90 | 21.50 | 12.13 | 55.78 | 30.00 | 14.22 | 9.37 |
TP-2-SFE | 370.50 | 11.12 | 5.28 | 60.00 | 40.00 | - | 5.83 | |
TP-2-SFE-A | 268.50 | 9.40 | 8.07 | 55.00 | 45.00 | - | 9.56 | |
TP-2-SFE-B | 54.90 | 8.24 | ||||||
100 | TP-2-SE | 4299.00 | 214.95 | 79.25 | 49.51 | 30.00 | 20.49 | 135.70 |
TP-2-SFE | 3705.00 | 111.15 | 26.42 | 60.00 | 40.00 | - | 84.73 | |
TP-2-SFE-A | 2685.00 | 93.98 | 28.82 | 55.00 | 45.00 | - | 147.51 | |
TP-2-SFE-B | 549.00 | 82.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, M.; Iancu, P.; Plesu, V.; Todasca, M.C.; Isopencu, G.O.; Bildea, C.S. Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction. Molecules 2022, 27, 4191. https://doi.org/10.3390/molecules27134191
Popescu M, Iancu P, Plesu V, Todasca MC, Isopencu GO, Bildea CS. Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction. Molecules. 2022; 27(13):4191. https://doi.org/10.3390/molecules27134191
Chicago/Turabian StylePopescu, Mihaela, Petrica Iancu, Valentin Plesu, Maria Cristina Todasca, Gabriela Olimpia Isopencu, and Costin Sorin Bildea. 2022. "Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction" Molecules 27, no. 13: 4191. https://doi.org/10.3390/molecules27134191
APA StylePopescu, M., Iancu, P., Plesu, V., Todasca, M. C., Isopencu, G. O., & Bildea, C. S. (2022). Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction. Molecules, 27(13), 4191. https://doi.org/10.3390/molecules27134191