Antitumor Effect of Guatteria olivacea R. E. Fr. (Annonaceae) Leaf Essential Oil in Liver Cancer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of G. olivacea Leaf EO
Compound | RI a | RI b | Peak Area % | |
---|---|---|---|---|
1 | α-Pinene | 930 | 932 | 0.92 ± 0.25 |
2 | β-Pinene | 972 | 974 | 1.83 ± 0.38 |
3 | δ-Elemene | 1335 | 1335 | 4.95 ± 0.33 |
4 | α-Cubebene | 1347 | 1348 | 0.45 ± 0.06 |
5 | Cyclosativene | 1364 | 1369 | 0.25 ± 0.03 |
6 | α-Ylangene | 1368 | 1373 | 0.32 ± 0.04 |
7 | α-Copaene | 1372 | 1374 | 1.69 ± 0.18 |
8 | β-Bourbonene | 1381 | 1387 | 0.92 ± 0.09 |
9 | β-Cubebene | 1387 | 1387 | 0.27 ± 0.07 |
10 | β-Elemene | 1389 | 1389 | 1.48 ± 0.14 |
11 | Cyperene | 1395 | 1398 | 0.53 ± 0.06 |
12 | α-Gurjunene | 1406 | 1409 | 1.06 ± 0.10 |
13 | (E)-Caryophyllene | 1415 | 1417 | 7.26 ± 0.71 |
14 | β-Copaene | 1425 | 1430 | 0.37 ± 0.10 |
15 | γ-Elemene | 1431 | 1434 | 0.47 ± 0.07 |
16 | α-Guaiene | 1435 | 1437 | 0.26 ± 0.05 |
17 | 6,9-Guaiadiene | 1440 | 1442 | 0.23 ± 0.09 |
18 | α-Humulene | 1450 | 1452 | 1.02 ± 0.08 |
19 | allo-Aromadendrene | 1457 | 1458 | 0.83 ± 0.06 |
20 | γ-Muurolene | 1474 | 1478 | 0.88 ± 0.12 |
21 | Germacrene D | 1478 | 1480 | 17.65 ± 0.32 |
22 | trans-Muurol-4(14),5-diene | 1488 | 1493 | 0.46 ± 0.07 |
23 | Bicyclogermacrene | 1493 | 1500 | 5.87 ± 0.39 |
24 | α-Muurolene | 1497 | 1500 | 0.80 ± 0.07 |
25 | δ-Amorphene | 1504 | 1511 | 0.57 ± 0.04 |
26 | γ-Cadinene | 1511 | 1513 | 0.61 ± 0.06 |
27 | δ-Cadinene | 1521 | 1522 | 2.08 ± 0.23 |
28 | trans-Cadina-1(2),4-diene | 1529 | 1533 | 0.30 ± 0.07 |
29 | α-Calacorene | 1540 | 1544 | 0.47 ± 0.09 |
30 | Elemol | 1546 | 1548 | 0.96 ± 0.26 |
31 | Germacrene B | 1553 | 1559 | 1.19 ± 0.14 |
32 | Spathulenol | 1574 | 1577 | 11.26 ± 0.48 |
33 | Caryophyllene oxide | 1579 | 1582 | 12.03 ± 0.95 |
34 | Guaiol | 1594 | 1600 | 0.87 ± 0.01 |
35 | Humulene epoxide II | 1605 | 1608 | 0.69 ± 0.18 |
36 | 1-epi-Cubenol | 1618 | 1627 | 13.21 ± 0.57 |
37 | Cubenol | 1639 | 1645 | 0.64 ± 0.08 |
38 | α-Cadinol | 1651 | 1652 | 0.80 ± 0.12 |
39 | Bulnesol | 1664 | 1670 | 0.40 ± 0.12 |
Total monoterpenes | 2.75 | |||
Total sesquiterpenes | 94.10 | |||
Total not identified | 3.15 | |||
Total identified | 96.85 |
2.2. In Vitro Cytotoxic Activity of G. olivacea Leaf EO
2.3. In Vivo Antitumor Effect of G. olivacea Leaf EO
3. Materials and Methods
3.1. Botanical Material
3.2. Chemical Evaluation
3.2.1. Essential Oil Extraction
3.2.2. GC–FID and GC–MS Analyses
3.3. Pharmacological Evaluation
3.3.1. Alamar Blue Assay
3.3.2. Flow Cytometry Assays
3.3.3. Reactive Oxygen Species Quantification
3.3.4. Human Liver Cancer Xenograft Model
3.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ghaziani, T.T.; Dhanasekaran, R. Recent Progress in Systemic Therapy for Hepatocellular Cancer (HCC). Curr. Treat Options Gastroenterol. 2021, 19, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Cascaes, M.M.; Carneiro, O.D.S.; Nascimento, L.D.D.; de Moraes, A.A.B.; de Oliveira, M.S.; Cruz, J.N.; Guilhon, G.M.S.P.; Andrade, E.H.A. Essential Oils from Annonaceae Species from Brazil: A Systematic Review of Their Phytochemistry, and Biological Activities. Int. J. Mol. Sci. 2021, 22, 12140. [Google Scholar] [CrossRef]
- Santos, A.C.D.; Nogueira, M.L.; Oliveira, F.P.D.; Costa, E.V.; Bezerra, D.P. Essential Oils of Duguetia Species A. St. Hill (Annonaceae): Chemical Diversity and Pharmacological Potential. Biomolecules 2022, 12, 615. [Google Scholar] [CrossRef] [PubMed]
- Britto, A.C.; Oliveira, A.C.; Henriques, R.M.; Cardoso, G.M.; Bomfim, D.S.; Carvalho, A.A.; Moraes, M.O.; Pessoa, C.; Pinheiro, M.L.; Costa, E.V.; et al. In vitro and in vivo antitumor effects of the essential oil from the leaves of Guatteria friesiana. Planta Med. 2012, 78, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Fontes, J.E.N.; Ferraz, R.P.; Britto, A.C.; Carvalho, A.A.; Moraes, M.O.; Pessoa, C.; Costa, E.V.; Bezerra, D.P. Antitumor effect of the essential oil from leaves of Guatteria pogonopus (Annonaceae). Chem. Biodivers. 2013, 10, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, C.A.; Serain, A.F.; Pascoal, A.C.; Andreazza, N.L.; Lourenço, C.C.; Ruiz, A.L.; Carvalho, J.E.; Souza, A.C.; Mesquita, J.T.; Tempone, A.G.; et al. Bioactivity and chemical composition of the essential oil from the leaves of Guatteria australis A. St.-Hil. Nat. Prod. Res. 2015, 29, 1966–1969. [Google Scholar] [CrossRef]
- Santos, A.R.; Benghi, T.G.S.; Nepel, A.; Marques, F.A.; Lobão, A.Q.; Duarte, M.C.T.; Ruiz, A.L.T.G.; Carvalho, J.E.; Maia, B.H.L.N.S. In vitro antiproliferative and antibacterial activities of essential oils from four species of Guatteria. Chem. Biodivers. 2017, 14, e1700097. [Google Scholar] [CrossRef]
- Ribeiro, S.S.; Jesus, A.M.; Anjos, C.S.; Silva, T.B.; Santos, A.D.; Jesus, J.R.; Andrade, M.S.; Sampaio, T.S.; Gomes, W.F.; Alves, P.B.; et al. Evaluation of the cytotoxic activity of some Brazilian medicinal plants. Planta Med. 2012, 78, 1601–1606. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, R.P.C.; Bomfim, D.S.; Carvalho, N.C.; Soares, M.B.P.; Pinheiro, M.L.B.; Costa, E.V.; Bezerra, D.P. Cytotoxic properties of the leaf essential oils of Guatteria blepharophylla and Guatteria hispida (Annonaceae). Flavour Frag. J. 2014, 29, 228–232. [Google Scholar] [CrossRef]
- Ferreira, A.K.R.; Lourenço, F.R.; Cláudia, M.; Young, M.; Lima, M.E.L.; Cordeiro, I.; Suffredini, I.B.; Lopes, P.S.; Moreno, P.R.H. Chemical composition and biological activities of Guatteria elliptica R. E. Fries (Annonaceae) essential oils. J. Essent. Oil Res. 2017, 30, 69–76. [Google Scholar] [CrossRef]
- Costa, R.G.A.; Anunciação, T.A.D.; Araujo, M.S.; Souza, C.A.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Soares, M.B.P.; Silva, F.M.A.D.; Koolen, H.H.F.; et al. In vitro and in vivo growth inhibition of human acute promyelocytic leukemia HL-60 cells by Guatteria megalophylla Diels (Annonaceae) leaf essential oil. Biomed. Pharmacother. 2020, 122, 109713. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.E.L.S.; Maas, P.J.M.; Maas, H.; Miralha, J.M.; Webber, A. Annonaceae. In Flora da Reserva Ducke: Guia de Identificação das Plantas Vasculares de Uma Floresta de Terra-Firme na Amazônia Central; Ribeiro, J.E.L.S., Hopkins, M.J.G., Vicentini, A., Sothers, C.A., Costa, M.A.S., Brito, J.M., Souza, M.A.D., Martins, L.H.P., Lohmann, L.G., Assunção, P.A.C.L., et al., Eds.; DFID (Departamento for International Development), INPA: Manaus, AM, Brazil, 1999; pp. 121–135. [Google Scholar]
- Maas, P.J.M.; Maas, H.; Miralha, J.M.S.; Junikka, L. Flora da Reserva Ducke, Amazonas, Brasil: Annonaceae. Rodriguesia 2007, 58, 617–662. [Google Scholar] [CrossRef] [Green Version]
- Maas, P.J.M.; Westra, L.Y.T.; Guerrero, S.A.; Lobão, A.Q.; Scharf, U.; Zamora, N.A.; Erkens, R.H.J. Confronting a morphological nightmare: Revision of the Neotropical genus Guatteria (Annonaceae). Blumea 2015, 60, 1–219. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.S.; Silva, F.M.A.; Koolen, H.H.F.; Costa, E.V. Isoquinoline-derived alkaloids from the bark of Guatteria olivacea (Annonaceae). Biochem. Syst. Ecol. 2020, 92, 104105. [Google Scholar] [CrossRef]
- Bay, M.; dos Santos, A.R.; Hurtado, F.B.; Bastos, I.S.; Orlandi, P.P.; de Sousa, P.T., Jr. In vitro antioxidant and antibacterial activities of vegetable extracts of the family Annonaceae. S. Am. J. Basic Educ. Tech. Technol. 2020, 7, 128–144. [Google Scholar]
- Bay, M.; Oliveira, J.V.S.; Sales Junior, P.A.; Murta, S.M.F.; Santos, A.R.; Bastos, I.S.; Orlandi, P.P.; Sousa Junior, P.T. In vitro trypanocidal and antibacterial activities of essential oils from four species of the Family Annonaceae. Chem. Biodivers. 2019, 16, e1900359. [Google Scholar] [CrossRef]
- Maia, J.G.S.; Andrade, E.H.A.; Carreira, L.M.M.; Oliveira, J.; Araújo, J.S. Essential oils of the Amazon Guatteria and Guatteriopsis species. Flavour Frag. J. 2005, 20, 478–480. [Google Scholar] [CrossRef]
- Meira, C.S.; Menezes, L.R.A.; dos Santos, T.B.; Macedo, T.S.; Fontes, J.E.N.; Costa, E.V.; Pinheiro, M.L.B.; da Silva, T.B.; Guimarães, E.T.; Soares, M.B.P. Chemical composition and antiparasitic activity of essential oils from leaves of Guatteria friesiana and Guatteria pogonopus (Annonaceae). J. Essent. Oil Res. 2017, 29, 156–162. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing, Corp: Carol Stream, IL, USA, 2007; 803p. [Google Scholar]
- Lima, E.J.S.P.; Fontes, S.S.; Nogueira, M.L.; Silva, V.R.; Santos, L.S.; D’Elia, G.M.A.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Vannier-Santos, M.A.; et al. Essential oil from leaves of Conobea scoparioides (Cham. & Schltdl.) Benth. (Plantaginaceae) causes cell death in HepG2 cells and inhibits tumor development in a xenograft model. Biomed. Pharmacother. 2020, 129, 110402. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.L.; Lima, E.J.S.P.; Adrião, A.A.X.; Fontes, S.S.; Silva, V.R.; Santos, L.S.; Soares, M.B.P.; Dias, R.B.; Rocha, C.A.G.; Costa, E.V.; et al. Cyperus articulatus L. (Cyperaceae) Rhizome Essential Oil Causes Cell Cycle Arrest in the G2/M Phase and Cell Death in HepG2 Cells and Inhibits the Development of Tumors in a Xenograft Model. Molecules 2020, 25, 2687. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.P.; Rodrigues, A.C.B.C.; de Lima, E.J.S.P.; Silva, V.R.; Santos, L.S.; da Anunciação, T.A.; Nogueira, M.L.; Soares, M.B.P.; Dias, R.B.; Rocha, C.A.G.; et al. Essential Oil from Bark of Aniba parviflora (Meisn.) Mez (Lauraceae) Reduces HepG2 Cell Proliferation and Inhibits Tumor Development in a Xenograft Model. Chem. Biodivers. 2021, 18, e2000938. [Google Scholar] [CrossRef] [PubMed]
- Bertheloot, D.; Latz, E.; Franklin, B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol. Immunol. 2021, 18, 1106–1121. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Abrams, J.M.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; Dawson, T.M.; Dawson, V.L.; El-Deiry, W.S.; Fulda, S.; et al. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19, 107–120. [Google Scholar] [CrossRef]
- Virginio, C.; Mackenzie, A.; North, R.A.; Surprenant, A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J. Physiol. 1999, 519, 335–346. [Google Scholar] [CrossRef]
- Xie, C.Y.; Yang, W.; Ying, J.; Ni, Q.C.; Pan, X.D.; Dong, J.H.; Li, K.; Wang, X.S. B-cell lymphoma-2 over-expression protects δ-elemene-induced apoptosis in human lung carcinoma mucoepidermoid cells via a nuclear factor kappa B-related pathway. Biol. Pharm. Bull. 2011, 34, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.S.; Hong, J.Y.; Lee, J.H.; Lee, H.J.; Park, J.Y.; Choi, J.H.; Park, H.J.; Hong, J.; Lee, K.T. β-Caryophyllene in the Essential Oil from Chrysanthemum boreale Induces G1 Phase Cell Cycle Arrest in Human Lung Cancer Cells. Molecules 2019, 24, 3754. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.B.; Matsuo, A.L.; Figueiredo, C.R.; Chaves, M.H.; Sartorelli, P.; Lago, J.H. Chemical constituents and cytotoxic evaluation of essential oils from leaves of Porcelia macrocarpa (Annonaceae). Nat. Prod. Commun. 2013, 8, 277–279. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, M.C.; Wright, H.L.; Agius, B.R.; Wright, B.S.; Moriarity, D.M.; Haber, W.A.; Setzer, W.N. Chemical compositions and biological activities of leaf essential oils of six species of Annonaceae from Monteverde. Costa Rica. Rec. Nat. Prod. 2009, 3, 153–160. [Google Scholar]
- Delgado, C.; Mendez-Callejas, G.; Celis, C. Caryophyllene Oxide, the Active Compound Isolated from Leaves of Hymenaea courbaril L. (Fabaceae) with Antiproliferative and Apoptotic Effects on PC-3 Androgen-Independent Prostate Cancer Cell Line. Molecules 2021, 26, 6142. [Google Scholar] [CrossRef] [PubMed]
- Bomfim, L.M.; Menezes, L.R.; Rodrigues, A.C.; Dias, R.B.; Rocha, C.A.; Soares, M.B.; Neto, A.F.; Nascimento, M.P.; Campos, A.F.; Silva, L.C.; et al. Antitumour activity of the microencapsulation of Annona vepretorum essential oil. Basic Clin. Pharmacol. Toxicol. 2016, 118, 208–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, T.B.; Menezes, L.R.A.; Sampaio, M.F.C.; Meira, C.S.; Guimarães, E.T.; Soares, M.B.P.; Prata, A.P.N.; Nogueira, P.C.L.; Costa, E.V. Chemical composition and anti-Trypanosoma cruzi activity of essential oils obtained from leaves of Xylopia frutescens and X. laevigata (Annonaceae). Nat. Prod. Commun. 2013, 8, 403–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.A.; Gogal, R.M., Jr.; Walsh, J.E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: An alternative to [3H]-thymidine incorporation assay. J. Immunol. Methods 1994, 170, 211–224. [Google Scholar] [CrossRef]
- Santos, L.S.; Silva, V.R.; Menezes, L.R.A.; Soares, M.B.P.; Costa, E.V.; Bezerra, D.P. Xylopine induces oxidative stress and causes G2/M phase arrest, triggering caspase-mediated apoptosis by p53-independent pathway in HCT116 cells. Oxid. Med. Cell Longev. 2017, 2017, 7126872. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.R.; Corrêa, R.S.; Santos, L.S.; Soares, M.B.P.; Batista, A.A.; Bezerra, D.P. A ruthenium-based 5-fluorouracil complex with enhanced cytotoxicity and apoptosis induction action in HCT116 cells. Sci. Rep. 2018, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Idziorek, T.; Estaquier, J.; de Bels, F.; Ameisen, J.C. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J. Immunol. Methods 1995, 185, 249–258. [Google Scholar] [CrossRef]
- Nicoletti, I.; Migliorati, G.; Pagliacci, M.C.; Grignani, F.; Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 1991, 139, 271–279. [Google Scholar] [CrossRef]
- LeBel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef] [Green Version]
Cells | Histological Type | IC50 and 95% CI (in μg/mL) | |
---|---|---|---|
DOX | EO | ||
Cancer cells | |||
HepG2 | Human hepatocellular carcinoma | 0.09 0.06–0.12 | 30.82 20.57–46.18 |
MCF-7 | Human breast adenocarcinoma | 1.45 1.00–2.11 | 22.03 14.17–34.26 |
HCT116 | Human colon carcinoma | 0.06 0.03–0.12 | 24.11 19.75–29.44 |
CAL27 | Human oral squamous cell carcinoma | 0.65 0.26–1.65 | 32.23 19.75–52.59 |
HSC-3 | Human oral squamous cell carcinoma | 0.66 0.49–0.87 | 30.06 22.00–41.07 |
SCC-4 | Human oral squamous cell carcinoma | 0.01 0.002–0.04 | 4.46 4.03–4.95 |
KG-1a | Human myeloid leukemia | 0.01 0.01–0.11 | 26.75 23.34–30.67 |
HL-60 | Human acute promyelocytic leukemia | 0.05 0.03–0.10 | 23.46 12.88–42.73 |
NB4 | Human acute promyelocytic leukemia | 0.05 0.03–0.07 | 33.65 31.51–35.92 |
THP-1 | Human monocytic leukemia | 0.08 0.05–0.12 | 36.93 29.93–45.57 |
JURKAT | Human acute T cell leukemia | 0.03 0.02–0.05 | 26.44 24.12–28.98 |
K562 | Human chronic myelogenous leukemia | 0.70 0.36–1.36 | 45.98 38.74–54.57 |
B16-F10 | Mouse melanoma | 0.28 0.23–0.35 | 28.30 20.93–38.26 |
Non-cancerous cells | |||
BJ | Human foreskin fibroblast | 0.55 0.22–1.37 | >50 |
MRC-5 | Human lung fibroblast | 0.91 0.30–2.73 | 47.77 35.76–63.81 |
PBMC | Human peripheral blood mononuclear cells | 0.67 0.48–0.94 | >50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvão, A.F.C.; Araújo, M.d.S.; Silva, V.R.; Santos, L.d.S.; Dias, R.B.; Rocha, C.A.G.; Soares, M.B.P.; Silva, F.M.A.d.; Koolen, H.H.F.; Zengin, G.; et al. Antitumor Effect of Guatteria olivacea R. E. Fr. (Annonaceae) Leaf Essential Oil in Liver Cancer. Molecules 2022, 27, 4407. https://doi.org/10.3390/molecules27144407
Galvão AFC, Araújo MdS, Silva VR, Santos LdS, Dias RB, Rocha CAG, Soares MBP, Silva FMAd, Koolen HHF, Zengin G, et al. Antitumor Effect of Guatteria olivacea R. E. Fr. (Annonaceae) Leaf Essential Oil in Liver Cancer. Molecules. 2022; 27(14):4407. https://doi.org/10.3390/molecules27144407
Chicago/Turabian StyleGalvão, Alexandre F. C., Morgana de S. Araújo, Valdenizia R. Silva, Luciano de S. Santos, Rosane B. Dias, Clarissa A. Gurgel Rocha, Milena B. P. Soares, Felipe M. A. da Silva, Hector H. F. Koolen, Gokhan Zengin, and et al. 2022. "Antitumor Effect of Guatteria olivacea R. E. Fr. (Annonaceae) Leaf Essential Oil in Liver Cancer" Molecules 27, no. 14: 4407. https://doi.org/10.3390/molecules27144407
APA StyleGalvão, A. F. C., Araújo, M. d. S., Silva, V. R., Santos, L. d. S., Dias, R. B., Rocha, C. A. G., Soares, M. B. P., Silva, F. M. A. d., Koolen, H. H. F., Zengin, G., Costa, E. V., & Bezerra, D. P. (2022). Antitumor Effect of Guatteria olivacea R. E. Fr. (Annonaceae) Leaf Essential Oil in Liver Cancer. Molecules, 27(14), 4407. https://doi.org/10.3390/molecules27144407