Methodological Developments for Metabolic NMR Spectroscopy from Cultured Cells to Tissue Extracts: Achievements, Progress and Pitfalls
Abstract
:1. Introduction
2. Developments for Ex-Vivo NMR Spectroscopy
2.1. Techniques for Studying the Metabolism of Cells in Single-Cell Suspension, and of Associated Cells
2.1.1. Study of Phosphorylated Compounds in Treated Isolated Cells
2.1.2. Mobile Lipids Studied in Isolated Intact Cells
2.1.3. Investigation of Intact Cells Grown in Spheroids
2.1.4. Multinuclear Live Cell NMR Spectroscopy
2.2. Ex Vivo and In Vitro vs. In Vivo NMR Spectroscopy in the Context of Metabolomics
2.2.1. NMR Spectroscopy vs. Mass Spectrometry of Cell Extracts
2.2.2. In Vitro vs. In Vivo NMR Spectroscopic Analysis
2.3. Methodological Aspects of NMR Experiments with 13C Labels Metabolized by Perfused Isolated Organs and Perfused Cultured Cells
2.4. Focus on Extracts of Body Tissue and Cultured Cells in NMR Spectroscopy
2.4.1. Basic Tissue Extraction
- The lipid-containing phase is recovered and the solvent (chloroform/methanol) evaporated under a nitrogen stream. The dried lipids are then redissolved, either (i) in deuterated chloroform for 1H-NMR analysis of all lipids; or (ii) in a well-defined mixture based on methanol, chloroform and water (ideally 40:50:10% v/v) for 31P-NMR analysis of PLs, based on their polar head groups. Optimization of this solvent mixture is essential for obtaining highly resolved 31P-NMR spectra, as the polar head groups of the PLs need to be mobile and free of complexation with cations that have intermediate exchange rates with the phosphate moieties of these head groups. Using more than 10% water will still result in highly resolved 31P-NMR spectra, but also in the formation of a layer that mostly consists of water and methanol, and that lies on top of the chloroform/methanol volume containing the PLs (Figure 2C, two-phase system). However, for efficient and accurate absolute PL quantification, the solvent mixture should form one single phase (rather than two phases, only one of which contains the PLs to be analyzed).
- The water/methanol phase that contains the water-soluble metabolites should first be subjected to evaporation of methanol under a nitrogen stream; then, the remaining aqueous solution is to be freeze-dried, and the dried metabolites to redissolved in D2O and pH-adjusted. In all cases, external standards for chemical-shift referencing and quantitation are common practice. Detailed protocols for these extraction procedures are given elsewhere [42,43]. One of these references is supplemented with an educational video visualizing the crucial steps of sample processing and spectrum acquisition [42].
2.4.2. Details of Tissue Extraction Techniques and Specialized Methods
Speeding Up Tissue Extract Analysis
Choosing Solvents for Metabolite Extraction
Solvent Removal in Manual and Semiautomatic Extraction Procedures
Temperature Control in Preparation of Tissue Extracts for NMR Analysis
Tissue Extract Studies Complementary to Metabolic Investigations of Effusions and Organ Perfusates
2.5. Overview of Techniques for Particular Applications of Metabolic Ex Vivo NMR Spectroscopy
3. Discussion and Conclusions
3.1. Advantages of Metabolic NMR Analysis Based on Tissue Extracts vs. Intact Tissue
3.2. Advantages of Metabolic NMR Analysis Based on Intact Tissue vs. Tissue Extracts
3.3. Choice of Appropriate Protocols
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lutz, N.W.; Sweedler, J.V.; Wevers, R.A. Methodologies for Metabolomics: Experimental Strategies and Techniques, 1st ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kuesel, A.C.; Graschew, G.; Hull, W.E.; Lorenz, W.; Thielmann, H.W. 31P-NMR studies of cultured human tumor cells. Influence of pH on phospholipid metabolite levels and the detection of cytidine 5′-diphosphate choline. NMR Biomed. 1990, 3, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Makaryus, R.; Lee, H.; Yu, M.; Zhang, S.; Smith, S.D.; Rebecchi, M.; Glass, P.S.; Benveniste, H. The metabolomic profile during isoflurane anesthesia differs from propofol anesthesia in the live rodent brain. J. Cereb. Blood Flow Metab. 2011, 31, 1432–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinis-Oliveira, R.J. Metabolic Profiles of Propofol and Fospropofol: Clinical and Forensic Interpretative Aspects. Biomed Res. Int. 2018, 2018, 6852857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, N.W.; Cozzone, P.J. Metabolic profiling in multiple sclerosis and other disorders by quantitative analysis of cerebrospinal fluid using nuclear magnetic resonance spectroscopy. Curr. Pharm. Biotechnol. 2011, 12, 1016–1025. [Google Scholar] [CrossRef] [PubMed]
- Maillet, S.; Vion-Dury, J.; Confort-Gouny, S.; Nicoli, F.; Lutz, N.W.; Viout, P.; Cozzone, P.J. Experimental protocol for clinical analysis of cerebrospinal fluid by high resolution proton magnetic resonance spectroscopy. Brain Res. Brain Res. Protoc. 1998, 3, 123–134. [Google Scholar] [CrossRef]
- Abramov, Y.; Carmi, S.; Anteby, S.O.; Ringel, I. Ex vivo 1H and 31P magnetic resonance spectroscopy as a means for tumor characterization in ovarian cancer patients. Oncol. Rep. 2013, 29, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Lutz, N.W.; Franks, S.E.; Frank, M.H.; Pomer, S.; Hull, W.E. Investigation of multidrug resistance in cultured human renal cell carcinoma cells by 31P-NMR spectroscopy and treatment survival assays. Magn. Reson. Mater. Phys. Biol. Med. 2005, 18, 144–161. [Google Scholar] [CrossRef]
- Franks, S.E.; Kuesel, A.C.; Lutz, N.W.; Hull, W.E. 31P MRS of human tumor cells: Effects of culture media and conditions on phospholipid metabolite concentrations. Anticancer Res. 1996, 16, 1365–1374. [Google Scholar]
- Huang, Z.; Tong, Y.; Wang, J.; Huang, Y. NMR studies of the relationship between the changes of membrane lipids and the cisplatin-resistance of A549/DDP cells. Cancer Cell Int. 2003, 3, 5. [Google Scholar] [CrossRef]
- Barba, I.; Cabañas, M.E.; Arús, C. The relationship between nuclear magnetic resonance-visible lipids, lipid droplets, and cell proliferation in cultured C6 cells. Cancer Res. 1999, 59, 1861–1868. [Google Scholar]
- Kunz-Schughart, L.A.; Freyer, J.P. Phosphorous metabolites and steady-state energetics of transformed fibroblasts during three-dimensional growth. Am. J. Physiol. Cell Physiol. 2002, 283, C1287–C1297. [Google Scholar] [CrossRef] [Green Version]
- Palma, A.; Grande, S.; Luciani, A.M.; Mlynárik, V.; Guidoni, L.; Viti, V.; Rosi, A. Metabolic Study of Breast MCF-7 Tumor Spheroids after Gamma Irradiation by 1H-NMR Spectroscopy and Microimaging. Front. Oncol. 2016, 6, 105. [Google Scholar] [CrossRef] [Green Version]
- Freedberg, D.I.; Selenko, P. Live cell NMR. Annu. Rev. Biophys. 2014, 43, 171–192. [Google Scholar] [CrossRef] [Green Version]
- Banci, L.; Barbieri, L.; Bertini, I.; Luchinat, E.; Secci, E.; Zhao, Y.; Aricescu, A.R. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat. Chem. Biol. 2013, 9, 297–299. [Google Scholar] [CrossRef] [Green Version]
- Sugiki, T.; Lin, Y.; Lee, Y.H. In-cell nuclear magnetic resonance spectroscopy for studying intermolecular interactions. J. Korean Magn. Res. Soc. 2019, 23, 33–39. [Google Scholar] [CrossRef]
- Saoi, M.; Britz-McKibbin, P. New Advances in Tissue Metabolomics: A Review. Metabolites 2021, 11, 672. [Google Scholar] [CrossRef]
- Chung, Y.-L.; Madhu, B.; Griffiths, J.R. Metabolism and Metabolomics by MRS. In eMagRes. American Cancer Society; Blackwell: Oxford, UK, 2015; pp. 689–698. [Google Scholar]
- Payne, G.S.; Chung, Y.L.; Leach, M.O. Metabolomic magnetic resonance spectroscopy of human tissues: Comparison of in vivo and high-resolution magic angle spinning ex vivo techniques. In Methodologies for Metabolomics; Lutz, N.W., Sweedler, J.V., Wevers, R.A., Eds.; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Cox, I.J.; Sharif, A.; Cobbold, J.F.L.; Thomas, H.C.; Taylor-Robinson, S.D. Current and future applications of in vitro magnetic resonance spectroscopy in hepatobiliary disease. World J. Gastroenterol. 2006, 12, 4773–4783. [Google Scholar] [CrossRef]
- Bisdas, S.; Schäfer, R.; Kolb, R.; Bender, B.; Klose, U. Lactate as clinical tumour biomarker: Optimization of lactate detection and quantification in MR spectroscopic imaging of glioblastomas. Eur. J. Radiol. 2020, 130, 109171. [Google Scholar] [CrossRef]
- Payne, G.S.; deSouza, N.M.; Messiou, C.; Leach, M.O. Single-shot single-voxel lactate measurements using FOCI-LASER and a multiple-quantum filter. NMR Biomed. 2015, 28, 496–504. [Google Scholar] [CrossRef] [Green Version]
- Kostidis, S.; Addie, R.D.; Morreau, H.; Mayboroda, O.A.; Giera, M. Quantitative NMR analysis of intra- and extracellular metabolism of mammalian cells: A tutorial. Anal. Chim. Acta 2017, 980, 1–24. [Google Scholar] [CrossRef]
- Selnaes, K.M.; Gribbestad, I.S.; Bertilsson, H.; Wright, A.; Angelsen, A.; Heerschap, A.; Tessem, M.-B. Spatially matched in vivo and ex vivo MR metabolic profiles of prostate cancer—Investigation of a correlation with Gleason score. NMR Biomed. 2013, 26, 600–606. [Google Scholar] [CrossRef]
- Whitehead, T.L.; Kieber-Emmons, T. Applying in vitro NMR spectroscopy and 1H-NMR metabonomics to breast cancer characterization and detection. Prog. Nucl. Magn. Reson. Spectrosc. 2005, 47, 165–174. [Google Scholar] [CrossRef]
- Sitter, B.; Sonnewald, U.; Spraul, M.; Fjösne, H.E.; Gribbestad, I.S. High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed. 2002, 15, 327–337. [Google Scholar] [CrossRef]
- Chandra, K.; Al-Harthi, S.; Sukumaran, S.; Almulhim, F.; Emwas, A.-H.; Atreya, H.S.; Jaremko, Ł.; Jaremko, M. NMR-based metabolomics with enhanced sensitivity. RSC Adv. 2021, 11, 8694–8700. [Google Scholar] [CrossRef]
- Chandra, K.; Al-Harthi, S.; Almulhim, F.; Emwas, A.-H.; Jaremko, Ł.; Jaremko, M. The robust NMR toolbox for metabolomics. Mol. Omics 2021, 17, 719–724. [Google Scholar] [CrossRef]
- Nath, J.; Smith, T.; Hollis, A.; Ebbs, S.; Canbilen, S.W.; Tennant, D.A.; Ready, A.R.; Ludwig, C. 13C glucose labelling studies using 2D NMR are a useful tool for determining ex vivo whole organ metabolism during hypothermic machine perfusion of kidneys. Transplant. Res. 2016, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Coggan, A.R.; Mittendorfer, B.; Klein, S. Evaluating substrate metabolism. In Translational and Experimental Clinical Research; Schuster, D.P., Powers, W.J., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Wu, C.-Y.; Satapati, S.; Gui, W.; Wynn, R.; Sharma, G.; Lou, M.; Qi, X.; Burgess, S.C.; Malloy, C.; Khemtong, C.; et al. A novel inhibitor of pyruvate dehydrogenase kinase stimulates myocardial carbohydrate oxidation in diet-induced obesity. J. Biol. Chem. 2018, 293, 9604–9613. [Google Scholar] [CrossRef] [Green Version]
- Turer, A.; Altamirano, F.; Schiattarella, G.G.; May, H.; Gillette, T.G.; Malloy, C.R.; Merritt, M.E. Remodeling of substrate consumption in the murine sTAC model of heart failure. J. Mol. Cell Cardiol. 2019, 134, 144–153. [Google Scholar] [CrossRef]
- Moreno, K.X.; Moore, C.L.; Burgess, S.C.; Sherry, A.D.; Malloy, C.R.; Merritt, M.E. Production of hyperpolarized 13CO2 from [1-13C]pyruvate in perfused liver does reflect total anaplerosis but is not a reliable biomarker of glucose production. Metabolomics 2015, 11, 1144–1156. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Suh, E.H.; Sharma, G.; Chen, J.; Hackett, E.P.; Wen, X.; Sherry, A.D.; Khemtong, C.; Malloy, C.R.; Park, J.M.; et al. 13C-Labeled Diethyl Ketoglutarate Derivatives as Hyperpolarized Probes of 2-Ketoglutarate Dehydrogenase Activity. Anal. Sens. 2021, 1, 156–160. [Google Scholar] [CrossRef]
- Sharma, G.; Wu, C.-Y.; Wynn, R.M.; Gui, W.; Malloy, C.R.; Sherry, A.D.; Chuang, D.T.; Khemtong, C. Real-time hyperpolarized 13C magnetic resonance detects increased pyruvate oxidation in pyruvate dehydrogenase kinase 2/4-double knockout mouse livers. Sci. Rep. 2019, 9, 16480. [Google Scholar] [CrossRef] [PubMed]
- Luukkonen, P.K.; Dufour, S.; Lyu, K.; Zhang, X.-M.; Hakkarainen, A.; Lehtimäki, T.E.; Cline, G.W.; Petersen, K.F.; Shulman, G.I.; Yki-Järvinen, H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc. Natl. Acad. Sci. USA 2020, 117, 7347–7354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzien, P.; Kettunen, M.I.; Marco-Rius, I.; Serrao, E.M.; Rodrigues, T.B.; Larkin, T.J.; Timm, K.N.; Brindle, K.M. 13C magnetic resonance spectroscopic imaging of hyperpolarized [1-13C, U-2H5] ethanol oxidation can be used to assess aldehyde dehydrogenase activity in vivo. Magn. Reason. Med. 2015, 73, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Eskandari, R.; Park, S.M.; Alvarez, J.; Tee, S.S.; Weissleder, R.; Kharas, M.G.; Lee, H.; Keshari, K.R. Real-time quantitative analysis of metabolic flux in live cells using a hyperpolarized micromagnetic resonance spectrometer. Sci. Adv. 2017, 3, e1700341. [Google Scholar] [CrossRef] [Green Version]
- Shestov, A.A.; Mancuso, A.; Lee, S.-C.; Guo, L.; Nelson, D.S.; Roman, J.C.; Henry, P.-G.; Leeper, D.B.; Blair, I.A.; Glickson, J.D. Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C-NMR Spectroscopy of Perfused Tumor Cells. J. Biol. Chem. 2016, 291, 5157–5171. [Google Scholar] [CrossRef] [Green Version]
- Lutz, N.W.; Yahi, N.; Fantini, J.; Cozzone, P.J. A new method for the determination of specific 13C enrichment in phosphorylated [1-13C]glucose metabolites. 13C-coupled, 1H-decoupled 31P-NMR spectroscopy of tissue perchloric acid extracts. Eur. J. Biochem. 1996, 238, 470–475. [Google Scholar] [CrossRef]
- Lutz, N.W.; Yahi, N.; Fantini, J.; Cozzone, P.J. Perturbations of glucose metabolism associated with HIV infection in human intestinal epithelial cells: A multinuclear magnetic resonance spectroscopy study. Aids 1997, 11, 147–155. [Google Scholar] [CrossRef]
- Lutz, N.W.; Béraud, E.; Cozzone, P.J. Metabolomic analysis of rat brain by high resolution nuclear magnetic resonance spectroscopy of tissue extracts. J. Vis. Exp. 2014, 91, e51829. [Google Scholar] [CrossRef] [Green Version]
- Lutz, N.W.; Cozzone, P.J. Principles of multiparametric optimization for phospholipidomics by 31P-NMR spectroscopy. Biophys. Rev. 2013, 5, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Fiehn, O. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.32. [Google Scholar] [CrossRef]
- Mili, M.; Panthu, B.; Madec, A.-M.; Berger, M.-A.; Rautureau, G.J.P.; Elena-Herrmann, B. Fast and ergonomic extraction of adherent mammalian cells for NMR-based metabolomics studies. Anal. Bioanal. Chem. 2020, 412, 5453–5463. [Google Scholar] [CrossRef]
- Le Belle, J.E.; Harris, N.G.; Williams, S.R.; Bhakoo, K.K. A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed. 2002, 15, 37–44. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wu, H.; Tjeerdema, R.S.; Viant, M.R. Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 2007, 3, 55–67. [Google Scholar] [CrossRef]
- Zelentsova, E.A.; Yanshole, V.V.; Tsentalovich, Y.P. A novel method of sample homogenization with the use of a microtome-cryostat apparatus. RSC Adv. 2019, 9, 37809–37817. [Google Scholar] [CrossRef]
- Petrova, I.; Xu, S.; Joesten, W.C.; Ni, S.; Kennedy, M.A. Influence of Drying Method on NMR-Based Metabolic Profiling of Human Cell Lines. Metabolites 2019, 9, 256. [Google Scholar] [CrossRef] [Green Version]
- Ellinger, J.J.; Miller, D.C.; Lewis, I.A.; Markley, J.L. Semiautomated device for batch extraction of metabolites from tissue samples. Anal. Chem. 2012, 84, 1809–1812. [Google Scholar] [CrossRef]
- Haukaas, T.H.; Moestue, S.A.; Vettukattil, R.; Sitter, B.; Lamichhane, S.; Segura, R.; Giskeødegård, G.F.; Bathen, T.F. Impact of Freezing Delay Time on Tissue Samples for Metabolomic Studies. Front. Oncol. 2016, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Mies, G.; Cruz, N.; Sokoloff, L. Comparison of Freeze-Blowing and Funnel-Freezing of Rat Brain for the Measurement of Cerebral Glucose Concentration In Vivo. J. Neurochem. 1991, 56, 1673–1676. [Google Scholar] [CrossRef]
- Lutz, N.W.; Banerjee, P.; Wilson, B.J.; Ma, J.; Cozzone, P.J.; Frank, M.H. Expression of Cell-Surface Marker ABCB5 Causes Characteristic Modifications of Glucose, Amino Acid and Phospholipid Metabolism in the G3361 Melanoma-Initiating Cell Line. PLoS ONE 2016, 11, e0161803. [Google Scholar] [CrossRef] [Green Version]
- Mori, N.; Wildes, F.; Takagi, T.; Glunde, K.; Bhujwalla, Z.M. The Tumor Microenvironment Modulates Choline and Lipid Metabolism. Front. Oncol. 2016, 6, 262. [Google Scholar] [CrossRef] [Green Version]
- Lutz, N.W.; Cozzone, P.J. Multiparametric optimization of 31P-NMR spectroscopic analysis of phospholipids in crude tissue extracts. 2. Line width and spectral resolution. Anal. Chem. 2010, 82, 5441–5446. [Google Scholar] [CrossRef]
- Lutz, N.W.; Cozzone, P.J. Multiparametric optimization of 31P-NMR spectroscopic analysis of phospholipids in crude tissue extracts. 1. Chemical shift and signal separation. Anal. Chem. 2010, 82, 5433–5440. [Google Scholar] [CrossRef]
- Lutz, N.W.; Cozzone, P.J. Phospholipidomics by phosphorus nuclear magnetic resonance spectroscopy of tissue extracts. In Methodologies for Metabolomics; Lutz, N.W., Sweedler, J.V., Wevers, R.A., Eds.; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Gadiya, M.; Mori, N.; Cao, M.D.; Mironchik, Y.; Kakkad, S.; Gribbestad, I.S.; Glunde, K.; Krishnamachary, B.; Bhujwalla, Z.M. Phospholipase D1 and choline kinase-α are interactive targets in breast cancer. Cancer Biol. Ther. 2014, 15, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Lane, A.N.; Tan, J.; Wang, Y.; Yan, J.; Higashi, R.M.; Fan, T.W.-M. Probing the metabolic phenotype of breast cancer cells by multiple tracer stable isotope resolved metabolomics. Metab. Eng. 2017, 43, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Dai, L.; Crooks, D.; Neckers, L.; Higashi, R.; Fan, T.; Lane, A. NMR Methods for Determining Lipid Turnover via Stable Isotope Resolved Metabolomics. Metabolites 2021, 11, 202. [Google Scholar] [CrossRef]
- Lane, A.N.; Fan, T.W.-M.; Xie, Z.; Moseley, H.N.B.; Higashi, R.M. Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. Anal. Chim. Acta 2009, 651, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, R.K.; Azrad, A.; Degani, H.; Salomon, Y. Simultaneous extraction of cellular lipids and water-soluble metabolites: Evaluation by NMR spectroscopy. Magn. Reason. Med. 1996, 35, 194–200. [Google Scholar] [CrossRef]
- Lutz, N.W.; Yahi, N.; Fantini, J.; Cozzone, P.J. Analysis of individual purine and pyrimidine nucleoside di- and triphosphates and other cellular metabolites in PCA extracts by using multinuclear high resolution NMR spectroscopy. Magn. Reason. Med. 1996, 36, 788–795. [Google Scholar] [CrossRef]
- Tome, M.E.; Briehl, M.M.; Lutz, N.W. Resistance to glucocorticoid-induced apoptosis is linked to altered glucose metabolism in mouse thymoma cells. Magn. Reson. Med. 2002, 15 (Suppl. 1), 87. [Google Scholar]
- Tome, M.E.; Briehl, M.M.; Lutz, N.W. Increasing the antioxidant defense in WEHI7.2 cells results in a more tumor-like metabolic profile. Int. J. Mol. Med. 2005, 15, 497–501. [Google Scholar] [CrossRef]
- Tome, M.E.; Lutz, N.W.; Briehl, M.M. Overexpression of catalase or Bcl-2 delays or prevents alterations in phospholipid metabolism during glucocorticoid-induced apoptosis in WEHI7.2 cells. Biochim. Biophys. Acta 2003, 1642, 149–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tome, M.E.; Lutz, N.W.; Briehl, M.M. Overexpression of catalase or Bcl-2 alters glucose and energy metabolism concomitant with dexamethasone resistance. Biochim. Biophys. Acta 2004, 1693, 57–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, N.W.; Tome, M.E.; Aiken, N.R.; Briehl, M.M. Changes in phosphate metabolism in thymoma cells suggest mechanisms for resistance to dexamethasone-induced apoptosis. A 31P-NMR spectroscopic study of cell extracts. NMR Biomed. 2002, 15, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Lutz, N.W.; Tome, M.E.; Cozzone, P.J. Early changes in glucose and phospholipid metabolism following apoptosis induction by IFN-gamma/TNF-alpha in HT-29 cells. FEBS Lett. 2003, 544, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Viola, A.; Lutz, N.W.; Maroc, C.; Chabannon, C.; Julliard, M.; Cozzone, P.J. Metabolic effects of photodynamically induced apoptosis in an erythroleukemic cell line. A 31P-NMR spectroscopic study of Victo-ria-Blue-BO-sensitized TF-1 cells. Int. J. Cancer 2000, 85, 733–739. [Google Scholar] [CrossRef]
- Lutz, N.W. From metabolic to metabolomic NMR spectroscopy of apoptotic cells. Metabolomics 2005, 1, 251–268. [Google Scholar] [CrossRef]
- Lutz, N.W. Contributions of metabol(om)ic NMR spectroscopy to the investigation of apoptosis. C. R. Chim. 2006, 9, 445–451. [Google Scholar] [CrossRef]
- Guo, J.; Higashi, K.; Yokota, H.; Nagao, Y.; Ueda, Y.; Kodama, Y.; Oguchi, M.; Taki, S.; Tonami, H.; Yamamoto, I. In vitro proton magnetic resonance spectroscopic lactate and choline measurements. J. Nucl. Med. 2004, 45, 1334–1339. [Google Scholar]
- Shedd, S.F.; Lutz, N.W.; Hull, W.E. The influence of medium formulation on phosphomonoester and UDP-hexose levels in cultured human colon tumor cells as observed by 31P-NMR spectroscopy. NMR Biomed. 1993, 6, 254–263. [Google Scholar] [CrossRef]
- Lutz, N.W.; Hull, W.E. Assignment and pH dependence of the 19F-NMR resonances from the fluorouracil anabolites involved in fluoropyrimidine chemotherapy. NMR Biomed. 1999, 12, 237–248. [Google Scholar] [CrossRef]
- Lutz, N.W.; Naser-Hijazi, B.; Koroma, S.; Berger, M.R.; Hull, W.E. Fluoropyrimidine chemotherapy in a rat model: Comparison of fluorouracil metabolite profiles determined by high-field 19F-NMR spectroscopy of tissues ex vivo with therapy response and toxicity for locoregional vs systemic infusion protocols. NMR Biomed. 2004, 17, 101–131. [Google Scholar] [CrossRef]
- Euceda, L.R.; Andersen, M.K.; Tessem, M.-B.; Moestue, S.A.; Grinde, M.T.; Bathen, T.F. NMR-Based Prostate Cancer Metabolomics. Methods Mol. Biol. 2018, 1786, 237–257. [Google Scholar] [CrossRef]
- Viola, A.; Saywell, V.; Villard, L.; Cozzone, P.J.; Lutz, N.W. Metabolic fingerprints of altered brain growth, osmoregulation and neurotransmission in a Rett syndrome model. PLoS ONE 2007, 2, e157. [Google Scholar] [CrossRef] [Green Version]
- Lutz, N.W.; Fernandez, C.; Pellissier, J.F.; Cozzone, P.J.; Beraud, E. Cerebral biochemical pathways in experimental autoimmune encephalomyelitis and adjuvant arthritis: A comparative metabolomic study. PLoS ONE 2013, 8, e56101. [Google Scholar]
- Saywell, V.; Viola, A.; Confort-Gouny, S.; Le Fur, Y.; Villard, L.; Cozzone, P.J. Brain magnetic resonance study of Mecp2 deletion effects on anatomy and metabolism. Biochem. Biophys. Res. Commun. 2006, 340, 776–783. [Google Scholar] [CrossRef]
- Loewenbrück, K.F.; Fuchs, B.; Hermann, A.; Brandt, M.; Werner, A.; Kirsch, M.; Schwarz, S.; Schwarz, J.; Schiller, J.; Storch, A. Proton MR spectroscopy of neural stem cells: Does the proton-NMR peak at 1.28 ppm function as a biomarker for cell type or state? Rejuvenation Res. 2011, 14, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Manganas, L.N.; Zhang, X.; Li, Y.; Hazel, R.D.; Smith, S.D.; Wagshul, M.E.; Henn, F.; Benveniste, H.; Djurić, P.M.; Enikolopov, G.; et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 2007, 318, 980–985. [Google Scholar] [CrossRef] [Green Version]
- Sander, P.R.; Hau, P.; Koch, S.; Schütze, K.; Bogdahn, U.; Kalbitzer, H.R.; Aigner, L. Stem cell metabolic and spectroscopic profiling. Trends Biotechnol. 2013, 31, 204–213. [Google Scholar] [CrossRef]
- Álvarez-Guerra, E.D.; Parkes, H.G.; Bell, J.D. Estudio comparado de dos métodos de desproteinización para la evaluación de sangre total y plasma mediante espectroscopia de resonancia magnética. Bioquimia 2006, 31, 59–68. [Google Scholar]
- Gómez-Archila, L.G.; Palomino-Schätzlein, M.; Zapata-Builes, W.; Galeano, E. Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling. PLoS ONE 2021, 16, e0247668. [Google Scholar] [CrossRef]
- Anwar, M.A.; Vorkas, P.A.; Li, J.V.; Shalhoub, J.; Want, E.J.; Davies, A.H.; Holmes, E. Optimization of metabolite extraction of human vein tissue for ultra performance liquid chromatography-mass spectrometry and nuclear magnetic resonance-based un-targeted metabolic profiling. Analyst 2015, 140, 7586–7597. [Google Scholar] [CrossRef]
- Chen, K.; Lutz, N.W.; Wehrle, J.P.; Glickson, J.D.; Swartz, H.M. Selective suppression of lipid resonances by lipid-soluble nitroxides in NMR spectroscopy. Magn. Reason. Med. 1992, 25, 120–127. [Google Scholar] [CrossRef]
- Lutz, N.W.; Confort-Gouny, S.; Casanova, D.; Andrac-Meyer, L.; Magalon, G.; Cozzone, P.J. Conditions of wound healing and cutaneous growth affect metabolic performance of skin following plastic surgery. Wound Repair Regen. 2007, 15, 491–496. [Google Scholar] [CrossRef]
- Skog, S.; Ericsson, A.; Nordell, B.; Nishida, T.; Tribukait, B. 31P-NMR-spectroscopy measurements of energy metabolism of in vivo growing ascites tumours following addition of glucose. Acta Oncol. 1989, 28, 277–281. [Google Scholar] [CrossRef]
- Patel, A.B.; Srivastava, S.; Phadke, R.S.; Govil, G. Arginine activates glycolysis of goat epididymal spermatozoa: An NMR study. Biophys. J. 1998, 75, 1522–1528. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Lutz, N.W.; Confort-Gouny, S.; Cozzone, P.J.; Armand, M.; Bernard, M. Phospholipid fingerprints of milk from different mammalians determined by 31P-NMR: Towards specific interest in human health. Food Chem. 2012, 135, 1777–1783. [Google Scholar] [CrossRef] [Green Version]
- Hurley-Sanders, J.L.; Levine, J.F.; Nelson, S.A.C.; Law, J.M.; Showers, W.J.; Stoskopf, M.K. Key metabolites in tissue extracts of Elliptio complanata identified using 1H nuclear magnetic resonance spectroscopy. Conserv. Physiol. 2015, 3, cov023. [Google Scholar] [CrossRef] [Green Version]
- García-Álvarez, L.; Busto, J.H.; Peregrina, J.M.; Avenoza, A.; Oteo, J.A. Applications of 1H Nuclear Magnetic Resonance Spectroscopy in Clinical Microbiology. In Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences; Stauffer, M.T., Ed.; IntechOpen: Rijeka, Croatia, 2016; pp. 281–294. [Google Scholar]
- García-Álvarez, L.; Busto, J.H.; Peregrina, J.M.; Fernández Recio, M.A.; Avenoza, A.; Oteo, J.A. Nuclear magnetic resonance applied to antimicrobial drug susceptibility. Future Microbiol. 2013, 8, 537–547. [Google Scholar] [CrossRef]
- Altintas, M.M.; Eddy, C.; Davis, M.; Zhang, M.; McMillan, J.D.; Ailion, D.S. 31P-Nuclear Magnetic Resonance Studies of Sugar Metabolism in Zymomonas mobilis. Available online: www.nrel.gov (accessed on 27 April 2022).
- Strohhäcker, J.; de Graaf, A.A.; Schoberth, S.M.; Wittig, R.M.; Sahm, H. 31P-Nuclear magnetic resonance studies of ethanol inhibition in Zymomonas mobilis. Arch. Microbiol. 1993, 159, 484–490. [Google Scholar] [CrossRef]
- Kim, I.S.; Barrow, K.D.; Rogers, P.L. Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5). Appl. Environ. Microbiol. 2000, 66, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Moreau, P.L.; Gerard, F.; Lutz, N.W.; Cozzone, P. Non-growing Escherichia coli cells starved for glucose or phosphate use different mechanisms to survive oxidative stress. Mol. Microbiol. 2001, 39, 1048–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmelreich, U.; Malik, R.; Kühn, T.; Daniel, H.M.; Somorjai, R.L.; Dolenko, B.; Sorrell, T.C. Rapid etiological classification of meningitis by NMR spectroscopy based on metabolite profiles and host response. PLoS ONE 2009, 4, e5328. [Google Scholar] [CrossRef] [PubMed]
- Zakhartsev, M.; Bock, C. Miniaturized device for agitating a high-density yeast suspension that is suitable for in vivo nuclear magnetic resonance applications. Anal. Biochem. 2010, 397, 244–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanks, J.V. In situ NMR systems. Curr. Issues Mol. Biol. 2001, 3, 15–26. [Google Scholar]
- Judge, M.T.; Wu, Y.; Tayyari, F.; Hattori, A.; Glushka, J.; Ito, T.; Arnold, J.; Edison, A.S. Continuous in vivo Metabolism by NMR. Front. Mol. Biosci. 2019, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Andersson, E.R.; Day, R.D.; Loewenstein, J.M.; Woodley, C.M.; Schock, T.B. Evaluation of Sample Preparation Methods for the Analysis of Reef-Building Corals Using 1H-NMR-Based Metabolomics. Metabolites 2019, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Tabrizi, F.; Seyyed Tabaei, S.J.; Ali Ahmadi, N.; Arefi Oskouie, A. A Nuclear Magnetic Resonance-Based Metabolomic Study to Identify Metabolite Differences between Iranian Isolates of Leishmania major and Leishmania tropica. Iran. J. Med. Sci. 2021, 46, 43–51. [Google Scholar] [CrossRef]
- Pec, J.; Flores-Sanchez, I.J.; Choi, Y.H.; Verpoorte, R. Metabolic analysis of elicited cell suspension cultures of Cannabis sativa L. by 1H-NMR spectroscopy. Biotechnol. Lett. 2010, 32, 935–941. [Google Scholar] [CrossRef]
- Fliniaux, O.; Mesnard, F.; Grandic, S.R.; Baltora-Rosset, S.; Bienaimé, C.; Robins, R.J.; Fliniaux, M. Altered nitrogen metabolism associated with de-differentiated suspension cultures derived from root cultures of Datura stramonium studied by heteronu-clear multiple bond coherence (HMBC) NMR spectroscopy. J. Exp. Bot. 2004, 55, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Gao, J.; Wang, T.-S.; Guo, C.; Yan, Y.-J.; Mao, C.-Y.; Gu, L.-W.; Yang, Y.; Li, Z.-F.; Liu, A. NMR-based Metabolomic Techniques Identify the Toxicity of Emodin in HepG2 Cells. Sci. Rep. 2018, 8, 9379. [Google Scholar] [CrossRef]
- Shen, C.Y.; Kuo, C.H.; Wang, S.Y.; Yang, W.Q.; Kuo, C.T.; Tseng, Y.J.; Tsai, M.H. Distinct metabolic changes in human lung cancer cells with differential radiation sensitivities. Transl. Cancer Res. 2016, 5, 738–747. [Google Scholar] [CrossRef]
- Lutz, N.W.; Maillet, S.; Nicoli, F.; Viout, P.; Cozzone, P.J. Further assignment of resonances in 1H-NMR spectra of cerebrospinal fluid (CSF). FEBS Lett. 1998, 425, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Lutz, N.W.; Viola, A.; Malikova, I.; Confort-Gouny, S.; Ranjeva, J.-P.; Pelletier, J.; Cozzone, P.J. A branched-chain organic acid linked to multiple sclerosis: First identification by NMR spectroscopy of CSF. Biochem. Biophys. Res. Commun. 2007, 354, 160–164. [Google Scholar] [CrossRef]
- Himmelreich, U.; Somorjai, R.L.; Dolenko, B.; Lee, O.C.; Daniel, H.-M.; Murray, R.; Mountford, C.E.; Sorrell, T.C. Rapid identification of Candida species by using nuclear magnetic resonance spectroscopy and a statistical classification strategy. Appl. Environ. Microbiol. 2003, 69, 4566–4574. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutz, N.W.; Bernard, M. Methodological Developments for Metabolic NMR Spectroscopy from Cultured Cells to Tissue Extracts: Achievements, Progress and Pitfalls. Molecules 2022, 27, 4214. https://doi.org/10.3390/molecules27134214
Lutz NW, Bernard M. Methodological Developments for Metabolic NMR Spectroscopy from Cultured Cells to Tissue Extracts: Achievements, Progress and Pitfalls. Molecules. 2022; 27(13):4214. https://doi.org/10.3390/molecules27134214
Chicago/Turabian StyleLutz, Norbert W., and Monique Bernard. 2022. "Methodological Developments for Metabolic NMR Spectroscopy from Cultured Cells to Tissue Extracts: Achievements, Progress and Pitfalls" Molecules 27, no. 13: 4214. https://doi.org/10.3390/molecules27134214
APA StyleLutz, N. W., & Bernard, M. (2022). Methodological Developments for Metabolic NMR Spectroscopy from Cultured Cells to Tissue Extracts: Achievements, Progress and Pitfalls. Molecules, 27(13), 4214. https://doi.org/10.3390/molecules27134214