1H NMR Metabolomics of Chinese Human Milk at Different Stages of Lactation among Secretors and Non-Secretors
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Human Milk Sample Collection
4.2. NMR Spectroscopy
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kramer, M.S.; Kakuma, R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst. Rev. 2012, 8, CD003517. [Google Scholar] [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Cesare Marincola, F.; Dessì, A.; Corbu, S.; Reali, A.; Fanos, V. Clinical impact of human breast milk metabolomics. Clin. Chim. Acta 2015, 451, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, J.T.; O’Sullivan, A.; Barile, D.; German, J.B.; Lönnerdal, B.; Slupsky, C.M. The human milk metabolome reveals diverse oligosaccharide profiles. J. Nutr. 2013, 143, 1709–1718. [Google Scholar] [CrossRef]
- Demmelmair, H.; Koletzko, B. Variation of metabolite and hormone contents in human milk. Clin. Perinatol. 2017, 44, 151–164. [Google Scholar] [CrossRef]
- Soyyılmaz, B.; Mikš, M.H.; Röhrig, C.H.; Matwiejuk, M.; Meszaros-Matwiejuk, A.; Vigsnæs, L.K. The mean of milk: A review of human milk oligosaccharide concentrations throughout lactation. Nutrients 2021, 13, 2737. [Google Scholar] [CrossRef]
- Sundekilde, U.K.; Downey, E.; O’Mahony, J.A.; O’Shea, C.A.; Ryan, C.A.; Kelly, A.L.; Bertram, H.C. The effect of gestational and lactational age on the human milk metabolome. Nutrients 2016, 8, 304. [Google Scholar] [CrossRef]
- Wu, J.; Domellöf, M.; Zivkovic, A.M.; Larsson, G.; Öhman, A.; Nording, M.L. NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation. Biochem. Biophys. Res. Commun. 2016, 469, 626–632. [Google Scholar] [CrossRef]
- Li, K.; Jiang, J.; Xiao, H.; Wu, K.; Qi, C.; Sun, J.; Li, D. Changes in the metabolite profile of breast milk over lactation stages and their relationship with dietary intake in Chinese women: HPLC-QTOFMS based metabolomic analysis. Food Funct. 2018, 9, 5189–5197. [Google Scholar] [CrossRef]
- Ten-Doménech, I.; Ramos-Garcia, V.; Piñeiro-Ramos, J.D.; Gormaz, M.; Parra-Llorca, A.; Vento, M.; Kuligowski, J.; Quintás, G. Current practice in untargeted human milk metabolomics. Metabolites 2020, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Zhang, Y.; Ning, Y.; You, L.; Ma, D.; Zheng, Y.; Yang, X.; Li, W.; Wang, J.; Wang, P. Breast milk macronutrient composition and the associated factors in urban Chinese mothers. Chin. Med. J. (Engl.) 2014, 127, 1721–1725. [Google Scholar] [PubMed]
- Giuffrida, F.; Cruz-Hernandez, C.; Bertschy, E.; Fontannaz, P.; Elmelegy, I.M.; Tavazzi, I.; Marmet, C.; Sanchez-Bridge, B.; Thakkar, S.K.; De Castro, C.A.; et al. Temporal changes of human breast milk lipids of Chinese mothers. Nutrients 2016, 8, 715. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; McJarrow, P.; Jan Mohamed, H.J.B.; Liu, X.; Welman, A.; Fong, B.Y. Lactational changes in the human milk oligosaccharide concentration in Chinese and Malaysian mothers’ milk. Int. Dairy J. 2018, 87, 1–10. [Google Scholar] [CrossRef]
- Lefebvre, G.; Shevlyakova, M.; Charpagne, A.; Marquis, J.; Vogel, M.; Kirsten, T.; Kiess, W.; Austin, S.; Sprenger, N.; Binia, A. Time of lactation and maternal fucosyltransferase genetic polymorphisms determine the variability in human milk oligosaccharides. Front. Nutr. 2020, 7, 574459. [Google Scholar] [CrossRef]
- De Weerth, C.; Aatsinki, A.-K.; Azad, M.B.; Bartol, F.F.; Bode, L.; Collado, M.C.; Dettmer, A.M.; Field, C.J.; Guilfoyle, M.; Hinde, K.; et al. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit. Rev. Food Sci. Nutr. 2022, 1–38. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Z.; Zhao, A.; Zhang, J.; Wu, W.; Ren, Z.; Wang, P.; Zhang, Y. Neutral human milk oligosaccharides are associated with multiple fixed and modifiable maternal and infant characteristics. Nutrients 2020, 12, 826. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Y.; Ni, D.; Zhang, W.; Mu, W. Occurrence, functional properties, and preparation of 3-fucosyllactose, one of the smallest human milk oligosaccharides. Crit. Rev. Food Sci. Nutr. 2022, 1–15. [Google Scholar] [CrossRef]
- Castanys-Muñoz, E.; Martin, M.J.; Prieto, P.A. 2′-Fucosyllactose: An abundant, genetically determined soluble glycan present in human milk. Nutr. Rev. 2013, 71, 773–789. [Google Scholar] [CrossRef]
- Guo, M.; Luo, G.; Lu, R.; Shi, W.; Cheng, H.; Lu, Y.; Jin, K.; Yang, C.; Wang, Z.; Long, J.; et al. Distribution of Lewis and secretor polymorphisms and corresponding CA19-9 antigen expression in a Chinese population. FEBS Open Bio. 2017, 7, 1660–1671. [Google Scholar] [CrossRef]
- Barile, D.; Rastall, R.A. Human milk and related oligosaccharides as prebiotics. Curr. Opin. Biotechnol. 2013, 24, 214–219. [Google Scholar] [CrossRef]
- Kulinich, A.; Liu, L. Human milk oligosaccharides: The role in the fine-tuning of innate immune responses. Carbohydr. Res. 2016, 432, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.; Lane, J.A.; van Sinderen, D.; Hickey, R.M. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J. Funct. Foods 2020, 72, 104074. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Koleva, P.; du Toit, E.; Geddes, D.T.; Munblit, D.; Prescott, S.L.; Eggesbø, M.; Johnson, C.C.; Wegienka, G.; Shimojo, N.; et al. The milk metabolome of non-secretor and Lewis negative mothers. Front. Nutr. 2021, 7, 576966. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi- and Megavariate Data Analysis Basic Principles and Applications, 3rd ed.; MKS Umetrics AB: Malmö, Sweden, 2013; pp. 421–423. [Google Scholar]
- Pike, N. Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol. Evol. 2011, 2, 278–282. [Google Scholar] [CrossRef]
- Gómez-Gallego, C.; Morales, J.; Monleón, D.; du Toit, E.; Kumar, H.; Linderborg, K.; Zhang, Y.; Yang, B.; Isolauri, E.; Salminen, S.; et al. Human breast milk NMR metabolomic profile across specific geographical locations and its association with the milk microbiota. Nutrients 2018, 10, 1355. [Google Scholar] [CrossRef]
- Gay, M.; Koleva, P.; Slupsky, C.; Toit, E.; Eggesbo, M.; Johnson, C.; Wegienka, G.; Shimojo, N.; Campbell, D.; Prescott, S.; et al. In VIVO LactoActive Study Investigators. Worldwide variation in human milk metabolome: Indicators of breast physiology and maternal lifestyle? Nutrients 2018, 10, 1151. [Google Scholar] [CrossRef]
- Garnsworthy, P.C.; Masson, L.L.; Lock, A.L.; Mottram, T.T. Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows. J. Dairy Sci. 2006, 89, 1604–1612. [Google Scholar] [CrossRef]
- Thorburn, A.N.; Macia, L.; Mackay, C.R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 2014, 40, 833–842. [Google Scholar] [CrossRef]
- Prentice, P.M.; Schoemaker, M.H.; Vervoort, J.; Hettinga, K.; Lambers, T.T.; Van Tol, E.A.F.; Acerini, C.L.; Olga, L.; Petry, C.J.; Hughes, I.A.; et al. Human milk short-chain fatty acid composition is associated with adiposity outcomes in infants. J. Nutr. 2019, 149, 716–722. [Google Scholar] [CrossRef]
- Kortesniemi, M.; Slupsky, C.M.; Aatsinki, A.-K.; Sinkkonen, J.; Karlsson, L.; Linderborg, K.M.; Yang, B.; Karlsson, H.; Kailanto, H.-M. Human milk metabolome is associated with symptoms of maternal psychological distress and milk cortisol. Food Chem. 2021, 356, 129628. [Google Scholar] [CrossRef]
- Zhang, Z.; Adelman, A.S.; Rai, D.; Boettcher, J.; Lönnerdal, B. Amino acid profiles in term and preterm human milk through lactation: A systematic review. Nutrients 2013, 5, 4800–4821. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodenas, C.L.; Affolter, M.; Vinyes-Pares, G.; De Castro, C.A.; Karagounis, L.G.; Zhang, Y.; Wang, P.; Thakkar, S.K. Amino acid composition of breast milk from urban Chinese mothers. Nutrients 2016, 8, 606. [Google Scholar] [CrossRef] [PubMed]
- Spevacek, A.R.; Smilowitz, J.T.; Chin, E.L.; Underwood, M.A.; German, B.J.; Slupsky, C.M. Infant maturity at birth reveals minor differences in the maternal milk metabolome in the first month of lactation. J. Nutr. 2015, 145, 1698–1708. [Google Scholar] [CrossRef]
- Austin, S.; De Castro, C.; Bénet, T.; Hou, Y.; Sun, H.; Thakkar, S.; Vinyes-Pares, G.; Zhang, Y.; Wang, P. Temporal change of the content of 10 oligosaccharides in the milk of Chinese urban mothers. Nutrients 2016, 8, 346. [Google Scholar] [CrossRef]
- Xu, G.; Davis, J.C.; Goonatilleke, E.; Smilowitz, J.T.; German, J.B.; Lebrilla, C.B. Absolute quantitation of human milk oligosaccharides reveals phenotypic variations during lactation. J. Nutr. 2017, 147, 117–124. [Google Scholar] [CrossRef]
- Thum, C.; Wall, C.R.; Weiss, G.A.; Wang, W.; Szeto, I.M.Y.; Day, L. Changes in HMO concentrations throughout lactation: Influencing factors, health effects and opportunities. Nutrients 2021, 13, 2272. [Google Scholar] [CrossRef] [PubMed]
- Newburg, D.S.; Ko, J.S.; Leone, S.; Nanthakumar, N.N. Human milk oligosaccharides and synthetic galactosyloligosaccharides contain 3′-, 4-, and 6′-galactosyllactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo. J. Nutr. 2016, 146, 358–367. [Google Scholar] [CrossRef]
- Wu, J.; Wu, S.; Huo, J.; Ruan, H.; Xu, X.; Hao, Z.; Wei, Y. Systematic characterization and longitudinal study reveal distinguishing features of human milk oligosaccharides in China. Curr. Dev. Nutr. 2020, 4, nzaa113. [Google Scholar] [CrossRef]
- Schenkel-Brunner, H. Human Blood Groups: Chemical and Biochemical Basis of Antigen Specificity, 2nd ed.; Springer: Vienna, Austria, 2000; p. 116. [Google Scholar]
- Lewis, Z.T.; Totten, S.M.; Smilowitz, J.T.; Popovic, M.; Parker, E.; Lemay, D.G.; Van Tassell, M.L.; Miller, M.J.; Jin, Y.-S.; German, J.B.; et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 2015, 3, 1–21. [Google Scholar] [CrossRef]
- Sakanaka, M.; Hansen, M.E.; Gotoh, A.; Katoh, T.; Yoshida, K.; Odamaki, T.; Yachi, H.; Sugiyama, Y.; Kurihara, S.; Hirose, J.; et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacterial-infant symbiosis. Sci. Adv. 2019, 5, 7696–7724. [Google Scholar] [CrossRef] [Green Version]
- Korpela, K.; Salonen, A.; Hickman, B.; Kunz, C.; Sprenger, N.; Kukkonen, K.; Savilahti, E.; Kuitunen, M.; de Vos, W.M. Fucosylated oligosaccharides in mother’s milk alleviate the effects of caesarean birth on infant gut microbiota. Sci. Rep. 2018, 8, 13757. [Google Scholar] [CrossRef] [PubMed]
- De Leoz, M.L.A.; Gaerlan, S.C.; Strum, J.S.; Dimapasoc, L.M.; Mirmiran, M.; Tancredi, D.J.; Smilowitz, J.T.; Kalanetra, K.M.; Mills, D.A.; German, J.B.; et al. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J. Proteome Res. 2012, 11, 4662–4672. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moyano, S.; Totten, S.M.; Garrido, D.A.; Smilowitz, J.T.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl. Environ. Microbiol. 2013, 79, 6040–6049. [Google Scholar] [CrossRef]
- Cheng, L.; Kong, C.; Wang, W.; Groeneveld, A.; Nauta, A.; Groves, M.R.; Kiewiet, M.B.G.; de Vos, P. The human milk oligosaccharides 3-FL, lacto-N-neotetraose, and LDFT attenuate tumor necrosis factor-α induced inflammation in fetal intestinal epithelial cells in vitro through shedding or interacting with tumor necrosis factor receptor 1. Mol. Nutr. Food Res. 2021, 65, 2000425. [Google Scholar] [CrossRef] [PubMed]
Time Point | Secretors | Non-Secretors | p (q) 1 | |
---|---|---|---|---|
2′-fucosyllactose | 0–7 d | 4.28 ± 0.68 (n = 6) | 0.04 ± 0.01 (n = 4) | |
8–15 d | 4.39 ± 0.47 (n = 6) | 0.05 ± 0.01 (n = 4) | ||
1 mo | 4.15 ± 0.82 (n = 6) | 0.04 ± 0.02 (n = 4) | ||
2 mo | 3.41 ± 0.91 (n = 5) | 0.05 ± 0.01 (n = 4) | ||
3 mo | 2.98 ± 0.53 (n = 5) | 0.03 ± 0.01 (n = 4) | ||
4 mo | 2.79 ± 0.76 (n = 6) | 0.01 ± 0.01 (n = 4) | ||
6 mo | 2.50 ± 0.48 (n = 5) | 0.02 ± 0.01 (n = 4) | ||
8 mo | 2.02 ± 0.62 (n = 3) | 0.02 ± 0.02 (n = 2) | ||
0.2884 2 | 0.0838 | |||
all | 3.44 ± 1.02 (n = 42) | 0.03 ± 0.02 (n = 30) | <0.0001 (<0.0001) | |
3-fucosyllactose | 0–7 d | 0.22 ± 0.08 | 1.29 ± 0.34 | |
8–15 d | 0.36 ± 0.14 | 1.77 ± 0.35 | ||
1 mo | 0.54 ± 0.23 | 2.19 ± 0.32 | ||
2 mo | 0.81 ± 0.34 | 3.35 ± 0.78 | ||
3 mo | 0.99 ± 0.22 | 3.24 ± 0.94 | ||
4 mo | 1.29 ± 0.41 | 4.00 ± 1.27 | ||
6 mo | 1.20 ± 0.23 | 3.22 ± 0.99 | ||
8 mo | 1.61 ± 0.19 | 4.50 ± 0.24 | ||
<0.0001 3 | 0.0023 4 | |||
all | 0.81 ± 0.50 | 2.84 ± 1.21 | <0.0001 (<0.0001) | |
3′-sialyllactose | 0–7 d | 0.16 ± 0.04 | 0.20 ± 0.05 | |
8–15 d | 0.18 ± 0.03 | 0.17 ± 0.04 | ||
1 mo | 0.11 ± 0.02 | 0.13 ± 0.02 | ||
2 mo | 0.09 ± 0.02 | 0.13 ± 0.04 | ||
3 mo | 0.09 ± 0.01 | 0.13 ± 0.05 | ||
4 mo | 0.10 ± 0.02 | 0.13 ± 0.03 | ||
6 mo | 0.10 ± 0.02 | 0.10 ± 0.05 | ||
8 mo | 0.11 ± 0.01 | 0.12 ± 0.04 | ||
0.0010 5 | 0.1133 | |||
all | 0.12 ± 0.04 | 0.14 ± 0.05 | 0.0337 (0.0071) | |
6′-sialyllactose | 0–7 d | 0.49 ± 0.23 | 0.70 ± 0.24 | |
8–15 d | 0.49 ± 0.24 | 0.60 ± 0.35 | ||
1 mo | 0.36 ± 0.18 | 0.44 ± 0.07 | ||
2 mo | 0.23 ± 0.17 | 0.26 ± 0.11 | ||
3 mo | 0.13 ± 0.06 | 0.24 ± 0.16 | ||
4 mo | 0.13 ± 0.02 | 0.10 ± 0.05 | ||
6 mo | 0.07 ± 0.03 | 0.05 ± 0.01 | ||
8 mo | 0.08 ± 0.03 | 0.07 ± 0.03 | ||
0.0027 6 | 0.0068 7 | |||
all | 0.27 ± 0.22 | 0.32 ± 0.28 | 0.6621 (0.1159) | |
LDFT | 0–7 d | 0.15 ± 0.06 | n.d. | |
8–15 d | 0.14 ± 0.03 | n.d. | ||
1 mo | 0.18 ± 0.09 | n.d. | ||
2 mo | 0.21 ± 0.06 | n.d. | ||
3 mo | 0.24 ± 0.05 | n.d. | ||
4 mo | 0.27 ± 0.06 | n.d. | ||
6 mo | 0.27 ± 0.06 | n.d. | ||
8 mo | 0.27 ± 0.07 | n.d. | ||
0.0302 8 | n.a. | |||
all | 0.21 ± 0.08 | 0.00 ± 0.00 | <0.0001 (<0.0001) | |
LNFP I | 0–7 d | 1.07 ± 0.43 | 0.03 ± 0.01 | |
8–15 d | 0.94 ± 0.41 | 0.02 ± 0.01 | ||
1 mo | 0.49 ± 0.28 | 0.02 ± 0.01 | ||
2 mo | 0.19 ± 0.12 | 0.02 ± 0.00 | ||
3 mo | 0.16 ± 0.11 | 0.03 ± 0.01 | ||
4 mo | 0.13 ± 0.10 | 0.02 ± 0.01 | ||
6 mo | 0.11 ± 0.09 | 0.01 ± 0.00 | ||
8 mo | 0.11 ± 0.08 | 0.02 ± 0.01 | ||
0.1295 | 0.1503 | |||
all | 0.44 ± 0.45 | 0.02 ± 0.01 | <0.0001 (<0.0001) | |
LNFP II | 0–7 d | 0.15 ± 0.05 | 0.66 ± 0.42 | |
8–15 d | 0.18 ± 0.07 | 0.82 ± 0.29 | ||
1 mo | 0.14 ± 0.08 | 0.48 ± 0.20 | ||
2 mo | 0.07 ± 0.01 | 0.41 ± 0.20 | ||
3 mo | 0.06 ± 0.04 | 0.40 ± 0.09 | ||
4 mo | 0.08 ± 0.02 | 0.25 ± 0.14 | ||
6 mo | 0.05 ± 0.04 | 0.21 ± 0.07 | ||
8 mo | 0.07 ± 0.01 | 0.23 ± 0.06 | ||
0.0043 9 | 0.0726 | |||
all | 0.10 ± 0.06 | 0.44 ± 0.29 | <0.0001 (<0.0001) | |
LNFP III | 0–7 d | 0.17 ± 0.07 | 0.32 ± 0.13 | |
8–15 d | 0.15 ± 0.07 | 0.34 ± 0.18 | ||
1 mo | 0.15 ± 0.08 | 0.24 ± 0.09 | ||
2 mo | 0.12 ± 0.02 | 0.27 ± 0.06 | ||
3 mo | 0.12 ± 0.04 | 0.23 ± 0.04 | ||
4 mo | 0.14 ± 0.04 | 0.16 ± 0.05 | ||
6 mo | 0.13 ± 0.06 | 0.13 ± 0.05 | ||
8 mo | 0.13 ± 0.04 | 0.17 ± 0.02 | ||
0.4247 | 0.0203 10 | |||
all | 0.14 ± 0.06 | 0.24 ± 0.11 | <0.0001 (<0.0001) | |
LNT | 0–7 d | 0.82 ± 0.25 | 1.73 ± 0.84 | |
8–15 d | 0.73 ± 0.41 | 1.26 ± 0.44 | ||
1 mo | 0.40 ± 0.27 | 0.65 ± 0.21 | ||
2 mo | 0.15 ± 0.07 | 0.37 ± 0.14 | ||
3 mo | 0.17 ± 0.10 | 0.39 ± 0.16 | ||
4 mo | 0.12 ± 0.08 | 0.21 ± 0.12 | ||
6 mo | 0.10 ± 0.05 | 0.14 ± 0.11 | ||
8 mo | 0.14 ± 0.09 | 0.12 ± 0.06 | ||
0.0021 11 | 0.0103 12 | |||
all | 0.36 ± 0.35 | 0.64 ± 0.65 | <0.0001 (<0.0001) | |
LNnT | 0–7 d | 0.23 ± 0.04 | n.d. | |
8–15 d | 0.18 ± 0.04 | n.d. | ||
1 mo | 0.11 ± 0.05 | n.d. | ||
2 mo | 0.05 ± 0.02 | n.d. | ||
3 mo | 0.04 ± 0.02 | n.d. | ||
4 mo | 0.04 ± 0.03 | n.d. | ||
6 mo | 0.05 ± 0.03 | n.d. | ||
8 mo | 0.05 ± 0.03 | n.d. | ||
0.0030 13 | n.a. | |||
all | 0.10 ± 0.08 | 0.00 ± 0.00 | <0.0001 (<0.0001) | |
Fucose | 0–7 d | 0.26 ± 0.17 | 0.06 ± 0.03 | |
8–15 d | 0.22 ± 0.12 | 0.03 ± 0.01 | ||
1 mo | 0.30 ± 0.14 | 0.03 ± 0.01 | ||
2 mo | 0.30 ± 0.16 | 0.03 ± 0.02 | ||
3 mo | 0.37 ± 0.18 | 0.04 ± 0.03 | ||
4 mo | 0.39 ± 0.13 | 0.04 ± 0.02 | ||
6 mo | 0.41 ± 0.19 | 0.03 ± 0.02 | ||
8 mo | 0.45 ± 0.02 | 0.04 ± 0.02 | ||
0.0599 | 0.5847 | |||
all | 0.33 ± 0.16 | 0.04 ± 0.02 | <0.0001 (<0.0001) | |
Lactose | 0–7 d | 129.67 ± 7.63 | 131.88 ± 23.42 | |
8–15 d | 147.74 ± 7.82 | 149.28 ± 2.35 | ||
1 mo | 156.56 ± 6.22 | 146.22 ± 9.12 | ||
2 mo | 146.66 ± 20.55 | 153.33 ± 11.25 | ||
3 mo | 144.73 ± 19.29 | 148.36 ± 7.01 | ||
4 mo | 152.79 ± 8.04 | 152.86 ± 6.72 | ||
6 mo | 143.96 ± 14.73 | 126.42 ± 31.89 | ||
8 mo | 154.76 ± 11.05 | 143.31 ± 6.55 | ||
0.1206 | 0.2986 | |||
all | 146.70 ± 14.15 | 144.00 ± 16.98 | 0.5137 (0.0981) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kortesniemi, M.; Jafari, T.; Zhang, Y.; Yang, B. 1H NMR Metabolomics of Chinese Human Milk at Different Stages of Lactation among Secretors and Non-Secretors. Molecules 2022, 27, 5526. https://doi.org/10.3390/molecules27175526
Kortesniemi M, Jafari T, Zhang Y, Yang B. 1H NMR Metabolomics of Chinese Human Milk at Different Stages of Lactation among Secretors and Non-Secretors. Molecules. 2022; 27(17):5526. https://doi.org/10.3390/molecules27175526
Chicago/Turabian StyleKortesniemi, Maaria, Tahereh Jafari, Yumei Zhang, and Baoru Yang. 2022. "1H NMR Metabolomics of Chinese Human Milk at Different Stages of Lactation among Secretors and Non-Secretors" Molecules 27, no. 17: 5526. https://doi.org/10.3390/molecules27175526
APA StyleKortesniemi, M., Jafari, T., Zhang, Y., & Yang, B. (2022). 1H NMR Metabolomics of Chinese Human Milk at Different Stages of Lactation among Secretors and Non-Secretors. Molecules, 27(17), 5526. https://doi.org/10.3390/molecules27175526