Cluster-Assembled Nanoporous Super-Hydrophilic Smart Surfaces for On-Target Capturing and Processing of Biological Samples for Multi-Dimensional MALDI-MS
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples, Reagents and Procedures
2.2. Array-Patterned Ns-TiO2 Chips
2.3. In-Vial and On-Chip Comparison
2.4. Multi-Dimensional MALDI
2.5. Identification of Amino Acid Sequences in Poorly Soluble Amyloidogenic Fragments
2.6. Mass Spectrometry
3. Results and Discussion
3.1. Hydrophilic-Hydrophobic Containment Structures
3.2. Nanostructure Driven Matrix Crystallization
3.3. In-Vial vs. On-Chip Protein Digestion
3.4. Multi-Dimensional MALDI
3.5. Gelsolin Amyloid Peptide Detection
3.6. Multi-Dimensional Detection of Disulfide Bridges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Greco, V.; Piras, C.; Pieroni, L.; Ronci, M.; Putignani, L.; Roncada, P.; Urbani, A. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Exp. Rev. Prot. 2018, 15, 683–696. [Google Scholar] [CrossRef]
- Preianò, M.; Correnti, S.; Pelaia, C.; Savino, R.; Terracciano, R. MALDI MS-Based Investigations for SARS-CoV-2 Detection. BioChem 2021, 1, 250–278. [Google Scholar] [CrossRef]
- Israr, M.Z.; Bernieh, D.; Salzano, A.; Cassambai, S.; Yazaki, Y.; Suzuki, T. Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS): Basics and clinical applications. Clin. Chem. Lab. Med. 2020, 58, 883–896. [Google Scholar] [CrossRef]
- Muthu, M.; Chun, S.; Wu, H.-F.; Duncan, M.W.; Gopal, J. The ongoing evolution of laser desorption/ionization mass spectrometry: Some observations on current trends and future directions. J. Mass Spectrom. 2018, 53, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, B.C.; Lopez-Ferrer, D.; Petritis, K.; Smith, R.D. Nanobiocatalysis for protein digestion in proteomic analysis. Proteomics 2010, 10, 687–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Grate, J.W.; Wang, P. Nanobiocatalysis and its potential applications. Trends Biotechnol. 2008, 26, 639–646. [Google Scholar] [CrossRef]
- Mouradian, S. Lab-on-a-chip: Applications in proteomics. Curr. Opin. Chem. Biol. 2002, 6, 51–56. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, B.; Wang, M.; Serrano, M.A.C.; Zhuang, J.; Ray, M.; Rotello, V.M.; Vachet, R.W.; Thayumanavan, S. Supramolecular Assemblies for Transporting Proteins Across an Immiscible Solvent Interface. J. Am. Chem. Soc. 2018, 140, 7, 2421–2425. [Google Scholar] [CrossRef]
- Wang, M.; Gao, J.; Zhao, B.; Thayumanavan, S.; Vachet, R.W. Efficient enrichment of glycopeptides by supramolecular nanoassemblies that use proximity-assisted covalent binding. Analyst 2019, 144, 6321. [Google Scholar] [CrossRef]
- Singh, R.P. Prospects of nanobiomaterials for biosensing. Int. J. Electrochem. 2011, 2011, 125487. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Tian, Y.; Zhu, A.; Liu, H.; Zhou, J. pH-dependent electrochemical behavior of proteins with different isoelectric points on the nanostructured TiO2 surface. J. Electroanal. Chem. 2010, 642, 109–114. [Google Scholar] [CrossRef]
- Ma, W.; Li, J.; Li, X.; Bai, Y.; Liu, H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. Small Methods. 2021, 5, 2100762. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- Carbone, R.; De Marni, M.; Zanardi, A.; Vinati, S.; Barborini, E.; Fornasari, L.; Milani, P. Characterization of cluster-assembled nanostructured titanium oxide coatings as substrates for protein arrays. Anal. Biochem. 2009, 394, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Podestà, A.; Bongiorno, G.; Scopelliti, P.E.; Bovio, S.; Milani, P.; Semprebon, C.; Mistura, G. Cluster-assembled nanostructured titanium oxide films with tailored wettability. J. Phys. Chem. C 2009, 113, 18264–18269. [Google Scholar] [CrossRef]
- Scopelliti, P.E.; Borgonovo, A.; Indrieri, M.; Giorgetti, L.; Bongiorno, G.; Carbone, R.; Podestà, A.; Milani, P. The Effect of Surface Nanometre-Scale Morphology on Protein Adsorption. PLoS ONE 2010, 5, e11862. [Google Scholar] [CrossRef] [Green Version]
- Belicchi, M.; Erratico, S.; Razini, P.; Meregalli, M.; Cattaneo, A.; Jacchetti, E.; Farini, A.; Villa, C.; Bresolin, N.; Porretti, L.; et al. Ex vivo expansion of human circulating myogenic progenitors on cluster-assembled nanostructured TiO2. Biomaterials 2010, 31, 5385–5396. [Google Scholar] [CrossRef]
- De Astis, S.; Corradini, I.; Morini, R.; Rodighiero, S.; Tomasoni, R.; Lenardi, C.; Verderio, C.; Milani, P.; Matteoli, M. Nanostructured TiO2 surfaces promote polarized activation of microglia, but not astrocytes, toward a proinflammatory profile. Nanoscale 2013, 5, 10963–10974. [Google Scholar] [CrossRef]
- Liu, K.; Cao, M.; Fujishima, A.; Jiang, L. Bio-inspired titanium dioxide materials with special wettability and their applications. Chem. Rev. 2014, 114, 10044–10094. [Google Scholar] [CrossRef]
- Gailite, L.; Scopelliti, P.E.; Sharma, V.K.; Indrieri, M.; Podestà, A.; Tedeschi, G.; Milani, P. Nanoscale roughness affects the activity of enzymes adsorbed on cluster-assembled titania films. Langmuir 2014, 30, 5973–5981. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, Z.; Tian, Y.; You, J.; Jiang, L. Titanium Dioxide Derived Materials with Superwettability. Catalysts 2021, 11, 425. [Google Scholar] [CrossRef]
- Rockwell, G.P.; Lohstreter, L.B.; Dahn, J.R. Fibrinogen and albumin adsorption on titanium nanoroughness gradients. Colloids Surf. B 2012, 91, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Hovgaard, M.B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F. Fibronectin Adsorption on Tantalum: The Influence of Nanoroughness. J. Phys. Chem. B 2008, 112, 8241–8249. [Google Scholar] [CrossRef]
- Borghi, F.; Milani, M.; Bettini, L.G.; Podestà, A.; Milani, P. Quantitative characterization of the interfacial morphology and bulk porosity of nanoporous cluster-assembled carbon thin films. Appl. Surf. Sci. 2019, 479, 395–402. [Google Scholar] [CrossRef]
- Cai, S.; Wu, C.; Yang, W.; Liang, W.; Yu, H.; Liu, L. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol. Rev. 2020, 9, 971–989. [Google Scholar] [CrossRef]
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431–432. [Google Scholar] [CrossRef]
- Milani, P.; Iannotta, S. Cluster Beam Synthesis of Nanostructured Materials; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Barborini, E.; Piseri, P.; Milani, P. A pulsed microplasma source of high intensity supersonic carbon cluster beams. J. Phys. D Appl. Phys. 1999, 32, L105–L109. [Google Scholar] [CrossRef]
- Wegner, K.; Piseri, P.; Vahedi Tafreshi, H.; Milani, P. Cluster beam deposition: A tool for nanoscale science and technology. J. Phys. D Appl. Phys. 2006, 39, R439–R459. [Google Scholar] [CrossRef]
- Barborini, E.; Vinati, S.; Leccardi, M.; Repetto, P.; Bertolini, G.; Rorato, O.; Lorenzelli, L.; Decarli, M.; Guarnieri, V.; Ducati, C.; et al. Batch fabrication of metal oxide sensors on micro-hotplates. J. Micromech. Microeng. 2008, 18, 055015. [Google Scholar] [CrossRef]
- Barabasi, A.L.; Stanley, H.E. Fractal Concepts in Surface Growth; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Podestà, A.; Borghi, F.; Indrieri, M.; Bovio, S.; Piazzoni, C.; Milani, P. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition. J. Appl. Phys. 2015, 118, 234309. [Google Scholar] [CrossRef] [Green Version]
- Paunio, T.; Kangas, H.; Kopra, O.; Buc-Caron, M.H.; Robert, J.J.; Kaasinen, S.; Julkunen, I.; Mallet, J.; Peltonen, L. Cells of the Neuronal Lineage Play a Major Role in the Generation of Amyloid Precursor Fragments in Gelsolin-related Amyloidosis. J. Biol. Chem. 1998, 273, 16319–16324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiuru-Enari, S.; Haltia, M. Hereditary Gelsolin Amyloidosis. Handb. Clin. Neurol. 2013, 115, 659–681. [Google Scholar] [CrossRef] [PubMed]
- Anan, I.; Kiuru-Enari, S.; Obayashi, K.; Ranlov, P.J.; Ando, Y. Investigation of AGE, their receptor and NF-kappaB activation and apoptosis in patients with ATTR and gelsolin amyloidosis. Histol. Histopathol. 2010, 25, 691–699. [Google Scholar] [CrossRef]
- Solomon, J.P.; Page, L.J.; Balch, W.E.; Kelly, J.W. Gelsolin amyloidosis: Genetics, biochemistry, pathology and possible strategies for therapeutic intervention. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 282–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brackhan, M.; Calza, G.; Lundgren, K.; Bascuñana, P.; Brüning, T.; Soliymani, R.; Kumar, R.; Abelein, A.; Baumann, M.; Lalowski, M.; et al. Isotope-labeled amyloid-beta does not transmit to the brain in prion-like manner after peripheral administration. EMBO Rep. 2022, e54405. [Google Scholar] [CrossRef]
- Barborini, E.; Vinati, S.; Bertolini, G.; Baumann, M. Cluster-Assembled Smart Surfaces for On-Target Processing of Biological Samples in MALDI-MS Analysis. In Proceedings of the IMSC 2018, Florence, Italy, 26–31 August 2018; Available online: https://www.imsc2018.it/images//IMSC2018_Abstract_Book.pdf (accessed on 7 April 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barborini, E.; Bertolini, G.; Epifanio, M.; Yavorskyy, A.; Vinati, S.; Baumann, M. Cluster-Assembled Nanoporous Super-Hydrophilic Smart Surfaces for On-Target Capturing and Processing of Biological Samples for Multi-Dimensional MALDI-MS. Molecules 2022, 27, 4237. https://doi.org/10.3390/molecules27134237
Barborini E, Bertolini G, Epifanio M, Yavorskyy A, Vinati S, Baumann M. Cluster-Assembled Nanoporous Super-Hydrophilic Smart Surfaces for On-Target Capturing and Processing of Biological Samples for Multi-Dimensional MALDI-MS. Molecules. 2022; 27(13):4237. https://doi.org/10.3390/molecules27134237
Chicago/Turabian StyleBarborini, Emanuele, Giacomo Bertolini, Monica Epifanio, Alexander Yavorskyy, Simone Vinati, and Marc Baumann. 2022. "Cluster-Assembled Nanoporous Super-Hydrophilic Smart Surfaces for On-Target Capturing and Processing of Biological Samples for Multi-Dimensional MALDI-MS" Molecules 27, no. 13: 4237. https://doi.org/10.3390/molecules27134237
APA StyleBarborini, E., Bertolini, G., Epifanio, M., Yavorskyy, A., Vinati, S., & Baumann, M. (2022). Cluster-Assembled Nanoporous Super-Hydrophilic Smart Surfaces for On-Target Capturing and Processing of Biological Samples for Multi-Dimensional MALDI-MS. Molecules, 27(13), 4237. https://doi.org/10.3390/molecules27134237