In Vivo Evaluation of (−)-Zampanolide Demonstrates Potent and Persistent Antitumor Efficacy When Targeted to the Tumor Site
Abstract
:1. Introduction
2. Results
2.1. Tubulin Stabilization by Zampanolide
2.2. In Vitro Activity of Zampanolide in TNBC Cell Lines
2.3. Zampanolide Has Persistent Efficacy In Vitro
2.4. Antitumor Efficacy of Zampanolide
3. Discussion
4. Materials and Methods
4.1. General Experimental
4.2. Isolation of (−)-Zampanolide
4.3. Cell Lines
4.4. Sulforhodamine B Assay
4.5. Tubulin Polymerization Assay
4.6. Cell Cycle Analysis
4.7. Persistence Assay
4.8. Indirect Immunofluorescence
4.9. Animals & Tumor Trial
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.; Tsodikov, A.; Bauer, K.R.; Parise, C.A.; Caggiano, V. The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: The California Cancer Registry, 1999–2004. Cancer 2008, 112, 737–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaul, R.; Risinger, A.L.; Mooberry, S.L. Microtubule-Targeting Drugs: More than Antimitotics. J. Nat. Prod. 2019, 82, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.M.; Hoover, C.A.; Morejon-Lasso, L.V.; Prosperi, J.R. Mechanisms of Taxane Resistance. Cancers 2020, 12, 3323. [Google Scholar] [CrossRef] [PubMed]
- Field, J.J.; Singh, A.J.; Kanakkanthara, A.; Halafihi, T.; Northcote, P.T.; Miller, J.H. Microtubule-stabilizing activity of zampanolide, a potent macrolide isolated from the Tongan marine sponge Cacospongia mycofijiensis. J. Med. Chem. 2009, 52, 7328–7332. [Google Scholar] [CrossRef]
- Tanaka, J.-i.; Higa, T. Zampanolide, a new cytotoxic marcrolide from a marine sponge. Tetrahedron Lett. 1996, 37, 5535–5538. [Google Scholar] [CrossRef]
- Field, J.J.; Pera, B.; Calvo, E.; Canales, A.; Zurwerra, D.; Trigili, C.; Rodriguez-Salarichs, J.; Matesanz, R.; Kanakkanthara, A.; Wakefield, S.J.; et al. Zampanolide, a potent new microtubule-stabilizing agent, covalently reacts with the taxane luminal site in tubulin alpha, beta-heterodimers and microtubules. Chem. Biol. 2012, 19, 686–698. [Google Scholar] [CrossRef]
- Pera, B.; Calvo-Vidal, M.N.; Ambati, S.; Jordi, M.; Kahn, A.; Diaz, J.F.; Fang, W.; Altmann, K.H.; Cerchietti, L.; Moore, M.A.S. High affinity and covalent-binding microtubule stabilizing agents show activity in chemotherapy-resistant acute myeloid leukemia cells. Cancer Lett. 2015, 368, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Balaguer, F.A.; Muhlethaler, T.; Estevez-Gallego, J.; Calvo, E.; Gimenez-Abian, J.F.; Risinger, A.L.; Sorensen, E.J.; Vanderwal, C.D.; Altmann, K.H.; Mooberry, S.L.; et al. Crystal Structure of the Cyclostreptin-Tubulin Adduct: Implications for Tubulin Activation by Taxane-Site Ligands. Int. J. Mol. Sci. 2019, 20, 1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Jiang, Z.; Zhang, Q.; Wang, G.; Chen, Q.H. New Zampanolide Mimics: Design, Synthesis, and Antiproliferative Evaluation. Molecules 2020, 25, 362. [Google Scholar] [CrossRef] [Green Version]
- Buey, R.M.; Calvo, E.; Barasoain, I.; Pineda, O.; Edler, M.C.; Matesanz, R.; Cerezo, G.; Vanderwal, C.D.; Day, B.W.; Sorensen, E.J.; et al. Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites. Nat. Chem. Biol. 2007, 3, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Murcia, P.A.; Mills, A.; Cortes-Cabrera, A.; Gago, F. Unravelling the covalent binding of zampanolide and taccalonolide AJ to a minimalist representation of a human microtubule. J. Comput. Aided. Mol. Des. 2019, 33, 627–644. [Google Scholar] [CrossRef] [PubMed]
- Risinger, A.L.; Li, J.; Bennett, M.J.; Rohena, C.C.; Peng, J.; Schriemer, D.C.; Mooberry, S.L. Taccalonolide binding to tubulin imparts microtubule stability and potent in vivo activity. Cancer Res. 2013, 73, 6780–6792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Yu, Y.; Li, G.B.; Li, S.A.; Wu, C.; Gigant, B.; Qin, W.; Chen, H.; Wu, Y.; Chen, Q.; et al. Mechanism of microtubule stabilization by taccalonolide AJ. Nat. Commun. 2017, 8, 15787. [Google Scholar] [CrossRef]
- Yee, S.S.; Risinger, A.L. Efficacy of a Covalent Microtubule Stabilizer in Taxane-Resistant Ovarian Cancer Models. Molecules 2021, 26, 4077. [Google Scholar] [CrossRef]
- Field, J.J.; Northcote, P.T.; Paterson, I.; Altmann, K.H.; Diaz, J.F.; Miller, J.H. Zampanolide, a Microtubule-Stabilizing Agent, Is Active in Resistant Cancer Cells and Inhibits Cell Migration. Int. J. Mol. Sci. 2017, 18, 971. [Google Scholar] [CrossRef]
- Morris, J.D.; Takahashi-Ruiz, L.; Persi, L.N.; Summers, J.C.; McCauley, E.P.; Chan, P.Y.W.; Amberchan, G.; Lizama-Chamu, I.; Coppage, D.A.; Crews, P.; et al. Re-evaluation of the Fijianolide/Laulimalide Chemotype Suggests an Alternate Mechanism of Action for C-15/C-20 Analogs. ACS Omega 2022, 7, 8824–8832. [Google Scholar] [CrossRef]
- Chen, Q.H.; Kingston, D.G. Zampanolide and dactylolide: Cytotoxic tubulin-assembly agents and promising anticancer leads. Nat. Prod. Rep. 2014, 31, 1202–1226. [Google Scholar] [CrossRef] [Green Version]
- Risinger, A.L.; Dybdal-Hargreaves, N.F.; Mooberry, S.L. Breast Cancer Cell Lines Exhibit Differential Sensitivities to Microtubule-targeting Drugs Independent of Doubling Time. Anticancer Res. 2015, 35, 5845–5850. [Google Scholar]
- Towle, M.J.; Salvato, K.A.; Wels, B.F.; Aalfs, K.K.; Zheng, W.; Seletsky, B.M.; Zhu, X.; Lewis, B.M.; Kishi, Y.; Yu, M.J.; et al. Eribulin induces irreversible mitotic blockade: Implications of cell-based pharmacodynamics for in vivo efficacy under intermittent dosing conditions. Cancer Res. 2011, 71, 496–505. [Google Scholar] [CrossRef] [Green Version]
- Aston, W.J.; Hope, D.E.; Nowak, A.K.; Robinson, B.W.; Lake, R.A.; Lesterhuis, W.J. A systematic investigation of the maximum tolerated dose of cytotoxic chemotherapy with and without supportive care in mice. BMC Cancer 2017, 17, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Lin, Z.; Arnst, K.E.; Miller, D.D.; Li, W. Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy. Molecules 2017, 22, 1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callmann, C.E.; LeGuyader, C.L.M.; Burton, S.T.; Thompson, M.P.; Hennis, R.; Barback, C.; Henriksen, N.M.; Chan, W.C.; Jaremko, M.J.; Yang, J.; et al. Antitumor Activity of 1,18-Octadecanedioic Acid-Paclitaxel Complexed with Human Serum Albumin. J. Am. Chem. Soc. 2019, 141, 11765–11769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Gonzalez, M.; Jiang, Z.; Zhang, Q.; Wang, G.; Chen, Q.H. An amide mimic of desTHPdactylolide: Total synthesis and antiproliferative evaluation. Bioorg. Med. Chem. Lett. 2021, 40, 127970. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Patanapongpibul, M.; Jiang, Z.; Zhang, Q.; Zheng, S.; Wang, G.; White, J.D.; Chen, Q.H. Synthesis and antiproliferative evaluation of new zampanolide mimics. Org. Biomol. Chem. 2019, 17, 3830–3844. [Google Scholar] [CrossRef]
- Bold, C.P.; Gut, M.; Schurmann, J.; Lucena-Agell, D.; Gertsch, J.; Diaz, J.F.; Altmann, K.H. Synthesis of Morpholine-Based Analogues of (−)-Zampanolide and Their Biological Activity. Chemistry 2021, 27, 5936–5943. [Google Scholar] [CrossRef]
- Taufa, T.; Singh, A.J.; Harland, C.R.; Patel, V.; Jones, B.; Halafihi, T.I.; Miller, J.H.; Keyzers, R.A.; Northcote, P.T. Zampanolides B-E from the Marine Sponge Cacospongia mycofijiensis: Potent Cytotoxic Macrolides with Microtubule-Stabilizing Activity. J. Nat. Prod. 2018, 81, 2539–2544. [Google Scholar] [CrossRef]
- Henry, J.L.; Wilson, M.R.; Mulligan, M.P.; Quinn, T.R.; Sackett, D.L.; Taylor, R.E. Synthesis, conformational preferences, and biological activity of conformational analogues of the microtubule-stabilizing agents, (−)-zampanolide and (-)-dactylolide. MedChemComm 2019, 10, 800–805. [Google Scholar] [CrossRef]
- Smith, A.B., 3rd; Safonov, I.G.; Corbett, R.M. Total syntheses of (+)-zampanolide and (+)-dactylolide exploiting a unified strategy. J. Am. Chem. Soc. 2002, 124, 11102–11113. [Google Scholar] [CrossRef]
- Hoye, T.R.; Hu, M. Macrolactonization via Ti(IV)-mediated epoxy-acid coupling: A total synthesis of (-)-dactylolide [and zampanolide]. J. Am. Chem. Soc. 2003, 125, 9576–9577. [Google Scholar] [CrossRef]
- Uenishi, J.; Iwamoto, T.; Tanaka, J. Total synthesis of (−)-zampanolide and questionable existence of (-)-dactylolide as the elusive biosynthetic precursor of (−)-zampanolide in an Okinawan sponge. Org. Lett. 2009, 11, 3262–3265. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Cheng, X. Enantioselective total synthesis of (−)-zampanolide, a potent microtubule-stabilizing agent. Org. Lett. 2011, 13, 4108–4111. [Google Scholar] [CrossRef] [PubMed]
- Zurwerra, D.; Glaus, F.; Betschart, L.; Schuster, J.; Gertsch, J.; Ganci, W.; Altmann, K.H. Total synthesis of (−)-zampanolide and structure-activity relationship studies on (-)-dactylolide derivatives. Chemistry 2012, 18, 16868–16883. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Cheng, X.; Bai, R.; Hamel, E. Total Synthesis of Potent Antitumor Macrolide, (−)-Zampanolide: An Oxidative Intramolecular Cyclization-Based Strategy. Eur. J. Org. Chem. 2012, 2012, 4130–4139. [Google Scholar] [CrossRef]
- Bauer, A. Story of Eribulin Mesylate: Development of the Longest Drug Synthesis. In Synthesis of Heterocycles in Contemporary Medicinal Chemistry; Časar, Z., Ed.; Springer: Cham, Switzerland, 2016; pp. 209–270. [Google Scholar] [CrossRef]
- Johnson, T.A.; Morris, J.D.; Coppage, D.A.; Cook, C.V.; Persi, L.N.; Ogarrio, M.A.; Garcia, T.C.; McIntosh, N.L.; McCauley, E.P.; Media, J.; et al. Reinvestigation of Mycothiazole Reveals the Penta-2,4-dien-1-ol Residue Imparts Picomolar Potency and 8S Configuration. ACS Med. Chem. Lett. 2020, 11, 108–113. [Google Scholar] [CrossRef]
MDA-MB-231 | MDA-MB-453 | BT-549 | HCC70 | HCC1806 | HCC1937 | |
---|---|---|---|---|---|---|
zampanolide | 5.4 ± 1.5 | 3.8 ± 0.3 | 4.4 ± 0.7 | 4.1 ± 0.4 | 2.8 ± 0.5 | 5.3 ± 0.9 |
paclitaxel | 3.3 ± 0.6 2 | - | 2.8 ± 0.7 2 | - | 0.9 ± 0.3 2 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi-Ruiz, L.; Morris, J.D.; Crews, P.; Johnson, T.A.; Risinger, A.L. In Vivo Evaluation of (−)-Zampanolide Demonstrates Potent and Persistent Antitumor Efficacy When Targeted to the Tumor Site. Molecules 2022, 27, 4244. https://doi.org/10.3390/molecules27134244
Takahashi-Ruiz L, Morris JD, Crews P, Johnson TA, Risinger AL. In Vivo Evaluation of (−)-Zampanolide Demonstrates Potent and Persistent Antitumor Efficacy When Targeted to the Tumor Site. Molecules. 2022; 27(13):4244. https://doi.org/10.3390/molecules27134244
Chicago/Turabian StyleTakahashi-Ruiz, Leila, Joseph D. Morris, Phillip Crews, Tyler A. Johnson, and April L. Risinger. 2022. "In Vivo Evaluation of (−)-Zampanolide Demonstrates Potent and Persistent Antitumor Efficacy When Targeted to the Tumor Site" Molecules 27, no. 13: 4244. https://doi.org/10.3390/molecules27134244
APA StyleTakahashi-Ruiz, L., Morris, J. D., Crews, P., Johnson, T. A., & Risinger, A. L. (2022). In Vivo Evaluation of (−)-Zampanolide Demonstrates Potent and Persistent Antitumor Efficacy When Targeted to the Tumor Site. Molecules, 27(13), 4244. https://doi.org/10.3390/molecules27134244