High-Quality Conjugated Polymers Achieving Ultra-Trace Detection of Cr2O72− in Agricultural Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electropolymerization of Monomers Fmoc-Ala-OH and Fmoc-Thr-OH
2.2. Selective and Competitive Testing of Polymers P(Fmoc-Ala-OH) and P(Fmoc-Thr-OH)
2.3. Sensitivity Test of P(Fmoc-Ala-OH) and P(Fmoc-Thr-OH)
2.4. Application
3. Materials and Methods
3.1. Materials and Instruments
3.2. Electrosynthesis of P(Fmoc-Ala-OH) and P(Fmoc-Thr-OH)
3.3. Detection of Cr2O72−
3.4. Preparation of Agricultural Products Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yu, J.; Zhang, C. Fluorescent sensing for amines with a low detection limit based on conjugated porous polymers. J. Mater. Chem. C 2020, 8, 16463–16469. [Google Scholar] [CrossRef]
- Wang, T.S.; Zhang, N.; Bar, W.; Bao, Y.Y. Fluorescent chemosensors based on conjugated polymers with N-heterocyclic moieties: Two decades of progress. Polym. Chem. 2020, 11, 3095–3114. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, B.Y.; Wen, Y.P.; Lu, L.M.; Xu, J.K. Facile fabrication of a cost-effective, water-soluble, and electrosynthesized poly(9-aminofluorene) fluorescent sensor for the selective and sensitive detection of Fe(III) and inorganic phosphates. Sens. Actuat. B Chem. 2012, 171, 786–794. [Google Scholar] [CrossRef]
- Zhang, G.; Wen, Y.P.; Guo, C.Q.; Xu, J.K.; Lu, B.Y.; Duan, X.M.; He, H.H.; Yang, J. A cost-effective and practical polybenzanthrone-based fluorescent sensor for efficient determination of palladium (II) ion and its application in agricultural crops and environment. Anal. Chim. Acta. 2013, 805, 87–94. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, H.; Zhang, J.; Ding, W.C.; Xu, J.K.; Wen, Y.P. Highly selective fluorescent sensor based on electrosynthesized oligo(1-pyreneboronic acid) enables ultra-trace analysis of Cu2+ in environment and agro-product samples. Sens. Actuat. B Chem. 2017, 253, 224–230. [Google Scholar] [CrossRef]
- Pak, Y.L.; Wang, Y.T.; Xu, Q.L. Conjugated polymer based fluorescent probes for metal ions. Coordin. Chem. Rev. 2021, 433, 213745. [Google Scholar] [CrossRef]
- Wang, C.H.; Nesterov, E.E. Amplifying fluorescent conjugated polymer sensor for singlet oxygen detection. Chem. Commun. 2019, 55, 8955–8958. [Google Scholar] [CrossRef]
- Meng, B.; Liu, J.; Wang, L.X. Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polym. Chem. 2020, 11, 1261–1270. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.Y.; Zhu, S.X.; Yao, C.; Ban, D.D.; Liu, R.H.; Li, L.D.; Wang, S. Controllable Targeted Accumulation of Fluorescent Conjugated Polymers on Bacteria Mediated by a Saccharide Bridge. Chem. Mater. 2020, 32, 438–447. [Google Scholar] [CrossRef]
- Zhou, H.L.; Li, X.D.; Wang, L.H.; Liang, Y.F.; Jialading, A.; Wang, Z.S.; Zhang, J.G. Application of SERS quantitative analysis method in food safety detection. Rev. Anal. Chem. 2021, 40, 173–186. [Google Scholar] [CrossRef]
- Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019, 48, 463–487. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Wen, Y.P.; Zhang, H.; Chai, J.D.; Duan, X.M.; Shen, L.; Zhang, G.; Xu, J.K. Highly sensitive fluorescent sensor based on electrosynthesized poly(FmocL-serine) enables ultra-trace analysis of Cr2O72− in water and agro-product samples. Sens. Actuat. B Chem. 2018, 277, 394–400. [Google Scholar] [CrossRef]
- Li, F.; Duan, X.M.; Li, H.; Zou, L.; Liu, G.Q.; Liu, F.; Zhang, G.; Xu, J.K. Dual effect of aminobutyric acid group and “molecular wire effect” of conjugated polymer enables ultra-trace detection of Cr2O72− in fruits. Microchem. J. 2022, 178, 107426. [Google Scholar] [CrossRef]
- Li, F.; Duan, X.M.; Hu, S.X.; Zhang, L.; Shen, L.; Liu, F.; Li, H.; Zhang, G.; Xu, J.K. Ultra-sensitive detection of Cr2O72− in farmland achieved by an electrosynthesized fluorescent poly(Fmoc-succinimide). Dyes Pigment. 2021, 193, 109568. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Zou, L.; Zhang, X.X.; Liu, F.; Li, H.; Xu, J.K.; Duan, X.M. Amino Acid Groups Enable Electrosynthesized Polyfluorenes to Specifically Recognize Cr2O72−. ACS Appl. Polym. Mater. 2022, 4, 815–821. [Google Scholar] [CrossRef]
- Iyengar, V.; Elmadfa, I. Food Safety Security: A new Concept for Enhancing Food Safety Measures. Int. J. Vitam. Nutr. Res. 2012, 82, 216–222. [Google Scholar] [CrossRef]
- Garcia, S.N.; Osburn, B.I.; Cullor, J.S. A one health perspective on dairy production and dairy food safety. One Health 2019, 7, 100086. [Google Scholar] [CrossRef]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R.E.; Serre, C. Metal-Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef]
- Li, C.J.; Zhu, H.M.; Li, C.Y.; Qian, H.; Yao, W.R.; Guo, Y.H. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem. 2021, 354, 129552. [Google Scholar] [CrossRef]
- Tiwari, S.; Deb, M.K.; Sen, B.K. Cloud point extraction and diffuse reflectance-Fourier transform infrared spectroscopic determination of chromium(VI): A probe to adulteration in food stuffs. Food Chem. 2017, 221, 47–53. [Google Scholar] [CrossRef]
- Wu, N.T.; Li, Y.; Zeng, M.; Gao, J.W.; Tang, Y.P.; Zeng, Z.; Zheng, Y.H. Design of chalcopyrite-type CuFeSe2 nanocrystals: Microstructure, magnetism, photoluminescence and sensing performances. J. Solid State Chem. 2019, 271, 292–297. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Yang, Z.L.; Chen, X.Y.; Hu, D.; Hong, Y.P. Facile gradient oxidation synthesizing of highly-fluorescent MoO3 quantum dots for Cr2O72− trace sensing. Inorg. Chem. Commun. 2020, 118, 108001. [Google Scholar] [CrossRef]
- Filik, H.; Avan, A.A. Dextran modified magnetic nanoparticles based solid phase extraction coupled with linear sweep voltammetry for the speciation of Cr(VI) and Cr (III) in tea, coffee, and mineral water samples. Food Chem. 2019, 292, 151–159. [Google Scholar] [CrossRef]
- Qiao, G.X.; Lu, D.; Tang, Y.P.; Gao, J.W.; Wang, Q.M. Smart choice of carbon dots as a dual-mode onsite nanoplatform for the trace level detection of Cr2O72. Dyes Pigment. 2019, 163, 102–110. [Google Scholar] [CrossRef]
- Su, Y.; Xie, Z.G.; Zheng, M. Carbon dots with concentration-modulated fluorescence: Aggregation-induced multicolor emission. J. Colloid Interf. Sci. 2020, 573, 241–249. [Google Scholar] [CrossRef]
- Li, X.X.; Xu, H.Y.; Kong, F.Z.; Wang, R.H. A Cationic Metal-Organic Framework Consisting of Nanoscale Cages: Capture, Separation, and Luminescent Probing of Cr2O72− through a Single-Crystal to Single-Crystal Process. Angew. Chem. Int. Edit. 2013, 52, 13769–13773. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Das, K.R.; Antony, M.J.; Varghese, S. Highly bluish-white light emissive and redox active conjugated poly-N-phenyl anthranilic acid polymer fluoroprobe for analytical sensing. Polymer 2019, 181, 121747. [Google Scholar] [CrossRef]
- Wu, X.X.; Fu, H.R.; Han, M.L.; Zhou, Z.; Ma, L.F. Tetraphenylethylene Immobilized Metal-Organic Frameworks: Highly Sensitive Fluorescent Sensor for the Detection of Cr2O72− and Nitroaromatic Explosives. Cryst. Growth Des. 2017, 17, 6041–6048. [Google Scholar] [CrossRef]
- Miao, C.L. A bi-functional 3D Pb-II-organic framework for Knoevenagel condensation reaction and highly selective luminescent sensing of Cr2O72−. Inorg. Chem. Commun. 2019, 105, 86–92. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Y.M.; He, X.Q.; Zhang, W.J.; Tian, M.G.; Feng, R.Q.; Zhang, R.Y.; Li, X.C.; Guo, L.F.; Yu, X.Q.; et al. Red-Emitting Mitochondrial Probe with Ultrahigh Signal-to-Noise Ratio Enables High-Fidelity Fluorescent Images in Two-Photon Microscopy. Anal. Chem. 2015, 87, 12088–12095. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Niu, H.Y.; He, S.J.; Cai, Y.Q. One-step fabrication of high quantum yield sulfur- and nitrogen-doped carbon dots for sensitive and selective detection of Cr(VI). RSC Adv. 2016, 6, 107717–107722. [Google Scholar] [CrossRef]
- Zhang, M.X.; Chen, J.C.; Wang, M.L.; Yuan, M.J.; Li, R.; Feng, X.X.; He, Y.L.; Mao, X.Z.; Li, Y.L.; Xiong, Z.; et al. Pyrene-Based Nonwoven Fabric with Tunable Fluorescence Properties by Employing the Aggregation-Caused Quenching Effect. ACS Appl. Mater. Inter. 2021, 13, 9036–9042. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Z.; Wu, X.L.; Kuang, H.; Zhu, J.P.; Liu, L.Q. Development of a fluorescent quantification strip assay for the detection of lead. Food Agr. Immunol. 2020, 31, 642–652. [Google Scholar] [CrossRef]
Samples | Cr2O72− Spiked (M) | Cr2O72− Found ( ± SD) (M) | Recovery (%) | RSD (%) |
---|---|---|---|---|
red bean | - | - | - | - |
2.00 × 10−9 | (1.91 ± 0.03) × 10−9 | 95.5 | 1.57 | |
4.00 × 10−7 | (4.03 ± 0.01) × 10−7 | 100.7 | 0.24 | |
1.00 × 10−5 | (0.94 ± 0.02) × 10−5 | 94.0 | 2.1 | |
black bean | - | - | - | - |
2.00 × 10−9 | (2.02 ± 0.02) × 10−9 | 101.0 | 0.9 | |
4.00 × 10−7 | (4.05 ± 0.06) × 10−7 | 101.2 | 1.4 | |
1.00 × 10−5 | (1.03 ± 0.02) × 10−5 | 103.0 | 1.9 | |
millet | - | - | - | - |
2.00 × 10−9 | (2.01 ± 0.01) × 10−9 | 100.5 | 0.5 | |
4.00 × 10−7 | (4.06 ± 0.03) × 10−7 | 101.5 | 0.73 | |
1.00 × 10−5 | (0.98 ± 0.01) × 10−5 | 98.0 | 1.01 |
Samples | Cr2O72− Spiked (M) | Cr2O72− Found ( ± SD) (M) | Recovery (%) | RSD (%) |
---|---|---|---|---|
red bean | - | - | - | - |
2.00 × 10−9 | (1.91 ± 0.03) × 10−9 | 95.5 | 1.5 | |
4.00 × 10−7 | (4.03 ± 0.01) × 10−7 | 100.7 | 0.2 | |
1.00 × 10−5 | (0.91 ± 0.02) × 10−5 | 91.0 | 2.1 | |
black bean | - | - | - | - |
2.00 × 10−9 | (2.02 ± 0.04) × 10−9 | 101.0 | 1.9 | |
4.00 × 10−7 | (4.05 ± 0.06) × 10−7 | 101.2 | 1.4 | |
1.00 × 10−5 | (1.01 ± 0.02) × 10−5 | 101.0 | 1.98 | |
millet | - | - | - | - |
2.00 × 10−9 | (2.01 ± 0.02) × 10−9 | 100.5 | 0.99 | |
4.00 × 10−7 | (4.06 ± 0.02) × 10−7 | 101.5 | 0.49 | |
1.00 × 10−5 | (0.98 ± 0.03) × 10−5 | 98.0 | 3.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, F.; Liu, F.; Chen, X.; Xu, W.; Shen, L.; Xu, J.; Yang, R.; Zhang, G. High-Quality Conjugated Polymers Achieving Ultra-Trace Detection of Cr2O72− in Agricultural Products. Molecules 2022, 27, 4294. https://doi.org/10.3390/molecules27134294
Li H, Li F, Liu F, Chen X, Xu W, Shen L, Xu J, Yang R, Zhang G. High-Quality Conjugated Polymers Achieving Ultra-Trace Detection of Cr2O72− in Agricultural Products. Molecules. 2022; 27(13):4294. https://doi.org/10.3390/molecules27134294
Chicago/Turabian StyleLi, Hui, Fei Li, Fang Liu, Xiao Chen, Wenyuan Xu, Liang Shen, Jingkun Xu, Rui Yang, and Ge Zhang. 2022. "High-Quality Conjugated Polymers Achieving Ultra-Trace Detection of Cr2O72− in Agricultural Products" Molecules 27, no. 13: 4294. https://doi.org/10.3390/molecules27134294
APA StyleLi, H., Li, F., Liu, F., Chen, X., Xu, W., Shen, L., Xu, J., Yang, R., & Zhang, G. (2022). High-Quality Conjugated Polymers Achieving Ultra-Trace Detection of Cr2O72− in Agricultural Products. Molecules, 27(13), 4294. https://doi.org/10.3390/molecules27134294