Synergistic Effect between Amoxicillin and Zinc Oxide Nanoparticles Reduced by Oak Gall Extract against Helicobacter pylori
Abstract
:1. Introduction
2. Results and Discussion
2.1. High-Performance Liquid Chromatography- Mass Spectrometry Analysis (LC-MS/MS)
2.2. Preparation of Nanoparticles
2.3. Ultraviolet Analysis (UV)
2.4. FT-IR of Q.infectoria Galls and Synthesized Qi-ZnONPs
2.5. Transmission Electron Microscope (TEM) Analysis
2.6. Scanning Electron Microscope Analysis (SEM)
2.7. Dynamic Light Scattering Measurements (DLS)
2.8. Evaluation of Anti-Helicobacter Pylori Activity
3. Materials and Methods
3.1. Plant Materials and Extraction Methods
3.2. High-Performance Liquid Chromatography-Mass Spectrometry Analysis (LC-MS/MS)
3.3. Green Synthesis of Zinc Oxide Nanoparticles
3.4. Characterization of Qi-ZnONPs
3.4.1. Ultraviolet-Visible Spectral Analysis (UV)
3.4.2. Fourier Transform Infrared (FT-IR) Analysis
3.4.3. DLS Measurements
3.4.4. TEM
3.4.5. SEM
3.5. Biological Studies
3.5.1. Antibacterial Activity
3.5.2. Inoculum Preparation
3.5.3. Determination of Antibacterial Activities of the Suspended Samples
3.5.4. Susceptibility Testing
3.5.5. Synergistic Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chakraborti, S.; Bhattacharya, S.; Chowdhury, R.; Chakrabarti, P. The molecular basis of inactivation of metronidazole-resistant Helicobacter pylori using polyethyleneimine functionalized zinc oxide nanoparticles. PLoS ONE 2013, 8, e70776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, R.A.M.; Calafatti, S.A.; Corazzi, A.; Souza, J.M.; Deguer, M.; De Souza, C.A.F.; Marchioretto, M.A.M.; Bernasconi, G.; Ferraz, J.G.P.; Pedrazzoli, J., Jr. Amoxicillin and ampicillin are not transferred to gastric juice irrespective of Helicobacter pylori status or acid blockade by omeprazole. Aliment. Pharmacol. Ther. 2002, 16, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Saleem, N.; Howden, C.W. Update on the Management of Helicobacter pylori Infection. Curr. Treat. Options Gastroenterol. 2020, 18, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Safavi, M.; Sabourian, R.; Foroumadi, A. Treatment of Helicobacter pylori infection: Current and future insights. World J. Clin. Cases 2016, 4, 5. [Google Scholar] [CrossRef]
- Kouitcheu Mabeku, L.B.; Eyoum Bille, B.; Tepap Zemnou, C.; Tali Nguefack, L.D.; Leundji, H. Broad spectrum resistance in Helicobacter pylori isolated from gastric biopsies of patients with dyspepsia in Cameroon and efflux-mediated multiresistance detection in MDR isolates. BMC Infect. Dis. 2019, 19, 880. [Google Scholar] [CrossRef]
- Hesami, G.; Darvishi, S.; Zarei, M.; Hadidi, M. Fabrication of chitosan nanoparticles incorporated with Pistacia atlantica subsp. kurdica hulls’ essential oil as a potential antifungal preservative against strawberry grey mould. Int. J. Food Sci. Technol. 2021, 56, 4215–4223. [Google Scholar] [CrossRef]
- Al-Bedairy, M.A.; Alshamsi, H.A.H. Environmentally friendly preparation of zinc oxide, study catalytic performance of photodegradation by sunlight for rhodamine B dye. Eurasian J. Anal. Chem. 2018, 13, em72. [Google Scholar] [CrossRef]
- Basri, D.F.; Tan, L.S.; Shafiei, Z.; Zin, N.M. In vitro antibacterial activity of galls of Quercus infectoria Olivier against oral pathogens. Evid. Based Complementary Altern. Med. 2012, 2012, 632796. [Google Scholar] [CrossRef] [Green Version]
- Mahboubi, M. Quercus infectoria fruit hulls and galls and female genital disorders. Clin. Phytosci. 2020, 6, 44. [Google Scholar] [CrossRef]
- Embaby, M.A.; El-Raey, M.A.; Zaineldain, M.; Almaghrabi, O.; Marrez, D.A. Synergistic effect and efflux pump inhibitory activity of Ficus nitida phenolic extract with tetracycline against some pathogenic bacteria. Toxin Rev. 2021, 40, 1187–1197. [Google Scholar] [CrossRef]
- El Raey, M.A.; El-Hagrassi, A.M.; Osman, A.F.; Darwish, K.M.; Emam, M. Acalypha wilkesiana flowers: Phenolic profiling, cytotoxic activity of their biosynthesized silver nanoparticles and molecular docking study for its constituents as Topoisomerase-I inhibitors. Biocatal. Agric. Biotechnol. 2019, 20, 101243. [Google Scholar] [CrossRef]
- Hegazi, N.M.; Sobeh, M.; Rezq, S.; El-Raey, M.A.; Dmirieh, M.; El-Shazly, A.M.; Mahmoud, M.F.; Wink, M. Characterization of phenolic compounds from Eugenia supra-axillaris leaf extract using HPLC-PDA-MS/MS and its antioxidant, anti-inflammatory, antipyretic and pain killing activities in vivo. Sci. Rep. 2019, 9, 11122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammar, N.M.; Hassan, H.A.; Mohammed, M.A.; Serag, A.; Abd El-Alim, S.H.; Elmotasem, H.; El Raey, M.; El Gendy, A.N.; Sobeh, M.; Abdel-Hamid, A.-H.Z. Metabolomic profiling to reveal the therapeutic potency of Posidonia oceanica nanoparticles in diabetic rats. RSC Adv. 2021, 11, 8398–8410. [Google Scholar] [CrossRef] [PubMed]
- Sobeh, M.; Hamza, M.S.; Ashour, M.L.; Elkhatieb, M.; El Raey, M.A.; Abdel-Naim, A.B.; Wink, M. A polyphenol-rich fraction from eugenia uniflora exhibits antioxidant and hepatoprotective activities in vivo. Pharmaceuticals 2020, 13, 84. [Google Scholar] [CrossRef]
- Marrez, D.A.; El Raey, M.A.; El-Hagrassi, A.M.; Seif, M.M.; Ragab, T.I.M.; El Negoumy, S.I.; Emam, M. Phenolic profile and antimicrobial activity of green synthesized Acalypha wilkesiana seed’s silver nanoparticles against some food borne pathogens. Biosci. Res. 2017, 14, 817–830. [Google Scholar]
- Anwar, H.M.; Georgy, G.S.; Hamad, S.R.; Badr, W.K.; El Raey, M.A.; Abdelfattah, M.A.O.; Wink, M.; Sobeh, M. A leaf extract of Harrisonia abyssinica ameliorates neurobehavioral, histological and biochemical changes in the hippocampus of rats with aluminum chloride-induced alzheimer’s disease. Antioxidants 2021, 10, 947. [Google Scholar] [CrossRef]
- Ikram, M.; Nowshad, F. Constituents of Quercus infectoria. Planta Med. 1977, 31, 286–287. [Google Scholar] [CrossRef]
- Delahaye, P.; Verzele, M. Analysis of gallic, digallic and trigallic acids in tannic acids by high-performance liquid chromatography. J. Chromatogr. A 1983, 265, 363–367. [Google Scholar] [CrossRef]
- Nishizawa, M.; Yamagishi, T.; Nonaka, G.-i.; Nishioka, I. Tannins and related compounds. Part 9. Isolation and characterization of polygalloylglucoses from Turkish galls (Quercus infectoria). J. Chem. Soc. Perkin Trans. 1983, 1, 961–965. [Google Scholar] [CrossRef]
- Melk, M.M.; El-Hawary, S.S.; Melek, F.R.; Saleh, D.O.; Ali, O.M.; El Raey, M.A.; Selim, N.M. Nano Zinc Oxide Green-Synthesized from Plumbago auriculata Lam. Alcoholic Extract. Plants 2021, 10, 2447. [Google Scholar] [CrossRef]
- Attia, G.H.; Alyami, H.S.; Orabi, M.A.A.; Gaara, A.H.; El Raey, M.A. Antimicrobial Activity of Silver and Zinc Nanoparticles Mediated by Eggplant Green Calyx. Int. J. Pharmacol. 2020, 16, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Subashini, J.; Gopiesh Khanna, V.; Kannabiran, K. Anti-ESBL activity of silver nanoparticles biosynthesized using soil Streptomyces species. Bioprocess Biosyst. Eng. 2014, 37, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Chikkanna, M.M.; Neelagund, S.E.; Rajashekarappa, K.K. Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Appl. Sci. 2019, 1, 117. [Google Scholar] [CrossRef] [Green Version]
- Khadar, Y.A.S.; Balamurugan, A.; Devarajan, V.P.; Subramanian, R.; Kumar, S.D. Synthesis, characterization and antibacterial activity of cobalt doped cerium oxide (CeO2: Co) nanoparticles by using hydrothermal method. J. Mater. Res. Technol. 2019, 8, 267–274. [Google Scholar] [CrossRef]
- Thill, A.; Zeyons, O.; Spalla, O.; Chauvat, F.; Rose, J.; Auffan, M.; Flank, A.M. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-Chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 2006, 40, 6151–6156. [Google Scholar] [CrossRef]
- Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today 2017, 22, 1825–1834. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 2012, 6, 5164–5173. [Google Scholar] [CrossRef]
- Attia, G.H.; Moemen, Y.S.; Youns, M.; Ibrahim, A.M.; Abdou, R.; El Raey, M.A. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2. Colloids Surf. B: Biointerfaces 2021, 203, 111724. [Google Scholar] [CrossRef]
- Perez, C. Antibiotic assay by agar-well diffusion method. Acta Biol. Med. Exp. 1990, 15, 113–115. [Google Scholar]
- McFarland, J. The nephelometer: An instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J. Am. Med. Assoc. 1907, 49, 1176–1178. [Google Scholar] [CrossRef] [Green Version]
- Lahuerta Zamora, L.; Perez-Gracia, M.T. Using digital photography to implement the McFarland method. J. R. Soc. Interface 2012, 9, 1892–1897. [Google Scholar] [CrossRef] [PubMed]
- Elgayyar, M.; Draughon, F.A.; Golden, D.A.; Mount, J.R. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot. 2001, 64, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Petersen, P.J.; Labthavikul, P.; Jones, C.H.; Bradford, P.A. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J. Antimicrob. Chemother. 2006, 57, 573–576. [Google Scholar] [CrossRef] [PubMed]
No | Rt | [M-H]- | MS/MS | Proposed Structures | Reference |
---|---|---|---|---|---|
1 | 0.75 | 191 | 173, 147 | Quinic acid | [10] |
2 | 0.79 | 271 | 169, 125 | 2-O-galloyl hydroxymalonic acid | - |
3 | 0.92 | 331 | 169 | Monogalloyl glucose | [11] |
4 | 1.02 | 169 | 125 | Gallic acid | [12] |
5 | 1.04 | 153 | 109 | Dihydroxy benzoic acid | [13] |
6 | 1.21 | 243 | 169, 125 | Galloyl glyceride | - |
7 | 1.29 | 483 | 331, 169 | Digalloyl glucose I | [14] |
8 | 1.79 | 483 | 331, 169 | Digalloyl glucose II | [14] |
9 | 2.13 | 321 | 277, 233 | m-digallic acid | [15] |
10 | 2.44 | 321 | 277, 233 | P-digallic acid | [15] |
11 | 2.46 | 183 | 168, 125 | Methyl gallate | [11] |
12 | 4.95 | 635 | 483, 331, 313, 169, 125 | Trigalloyl glucose I | [16] |
13 | 5.41 | 635 | 483, 331, 313, 169, 125 | Trigalloyl glucose II | [16] |
14 | 5.94 | 197 | 182, 167, 153 | Syringic acid | [17] |
15 | 6.56 | 335 | 320, 291 | Digallic methyl ester | [18] |
16 | 6.88 | 787 | 635, 483, 331, 169 | Tetra galloyl glucose | [19] |
17 | 6.92 | 301 | 284, 257, 255, 185 | Ellagic acid | [17] |
18 | 7.47 | 939 | 787, 635, 169 | Penta galloyl glucose | [19] |
19 | 8.22 | 349 | 334, 319, 233 | Digallic dimethyl ester | [18] |
20 | 8.84 | 501 | 486, 471, 457, 349 | Trigallic dimethyl ester | [18] |
Antimicrobial Tested | Inhibition Zone Diameter (mm) | Potency |
---|---|---|
OGE | 16 | Intermediate |
Qi-ZnONPs | 21 | Moderately Suscetible |
Amoxicillin | 28 | Suscetible |
Clarithromycin | 31 | Susceptible |
Antimicrobial Tested | MIC90 Value (µg/mL) | Inhibition % |
---|---|---|
OGE | 37.5 | 97.8 |
Qi-ZnONPs | 18.75 | 98.4 |
Amoxicillin | 0.586 | 93.2 |
Clarithromycin | 0.293 | 90.7 |
Antimicrobials Combinations | MIC90 Value (µg/mL) | FIC Values | Outcome |
---|---|---|---|
Amoxicillin: OGE | |||
1:1 | 37.50 | 2.25 | Indifference |
1:2 | 37.50 | 2.25 | Indifference |
1:4 | 18.75 | 1.13 | Indifference |
1:8 | 18.75 | 1.13 | Indifference |
Amoxicillin: Qi-ZnONPs | |||
1:1 | 18.75 | 1.13 | Indifference |
1:2 | 9.38 | 0.563 | Indicated additives |
1:4 | 4.69 | 0.282 | Synergy |
1:8 | 4.69 | 0.282 | Synergy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attia, H.G.; Albarqi, H.A.; Said, I.G.; Alqahtani, O.; Raey, M.A.E. Synergistic Effect between Amoxicillin and Zinc Oxide Nanoparticles Reduced by Oak Gall Extract against Helicobacter pylori. Molecules 2022, 27, 4559. https://doi.org/10.3390/molecules27144559
Attia HG, Albarqi HA, Said IG, Alqahtani O, Raey MAE. Synergistic Effect between Amoxicillin and Zinc Oxide Nanoparticles Reduced by Oak Gall Extract against Helicobacter pylori. Molecules. 2022; 27(14):4559. https://doi.org/10.3390/molecules27144559
Chicago/Turabian StyleAttia, Hany G., Hassan A. Albarqi, Ismail G. Said, Omaish Alqahtani, and Mohamed A. EI Raey. 2022. "Synergistic Effect between Amoxicillin and Zinc Oxide Nanoparticles Reduced by Oak Gall Extract against Helicobacter pylori" Molecules 27, no. 14: 4559. https://doi.org/10.3390/molecules27144559
APA StyleAttia, H. G., Albarqi, H. A., Said, I. G., Alqahtani, O., & Raey, M. A. E. (2022). Synergistic Effect between Amoxicillin and Zinc Oxide Nanoparticles Reduced by Oak Gall Extract against Helicobacter pylori. Molecules, 27(14), 4559. https://doi.org/10.3390/molecules27144559