Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR)
Abstract
:1. Introduction
SO4−• + H2O → HSO4− + •OH
2. Materials and Methods
2.1. Reagents and Solvents
2.2. Preparation of the Extracts
2.3. Preparation of the Antioxidant Compound Solutions
2.4. Determination of the Hydroxyl Radical Scavenging Activity with the Spin Trapping Method
2.5. EPR Spectrometer Settings
2.6. Composition of Juices and Tea Infusion
2.7. Statistical Analysis
3. Results and Discussion
3.1. Efficacy of the Different Hydroxyl Radical-Generating Systems: Intensity of the Blanks
3.2. Hydroxyl Radical Scavenging Activity of Chemical Compounds and Plant Extracts
3.3. Pro-Oxidant Activity of EGCG
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability Statement
References
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Analysis of rutin, β-carotene, and lutein content and evaluation of antioxidant activities of six edible leaves on free radicals and reactive oxygen species. J. Food Biochem. 2018, 42, e12579. [Google Scholar] [CrossRef]
- Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef] [PubMed]
- Ranguelova, K.; Mason, R.P. The fidelity of spin trapping with DMPO in biological systems. Magn. Reson. Chem. 2011, 49, 152–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staško, A.; Brezová, V.; Liptáková, M.; Šavel, J. Thermally initiated radical reactions of K2S2O8: EPR spin trapping investigations. Magn. Reson. Chem. 2000, 38, 957–962. [Google Scholar] [CrossRef]
- Hanna, P.M.; Chamulitrat, W.; Mason, R.P. When are metal ion-dependent hydroxyl and alkoxyl radical adducts of 5,5-dimethyl-1-pyrroline N-oxide artifacts? Arch. Biochem. Biophys. 1992, 296, 640–644. [Google Scholar] [CrossRef]
- Fadda, A.; Barberis, A.; Sanna, D. Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by Electron Paramagnetic Resonance (EPR). Food Chem. 2018, 240, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, H.; Kawamori, H.; Fukushima, K. Quinolinic acid, α-picolinic acid, fusaric acid, and 2,6-pyridinedicarboxylic acid enhance the Fenton reaction in phosphate buffer. Chem.-Biol. Interact. 1999, 118, 201–215. [Google Scholar] [CrossRef]
- Pláteník, J.; Stopka, P.; Vejražka, M.; Štípek, S. Quinolinic acid—Iron(II) complexes: Slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction. Free Radic. Res. 2001, 34, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Eaton, G.R.; Eaton, S.S.; Barr, D.P.; Weber, R.T. Quantitative EPR: A Practitioners Guide; Springer: Vienna, Austria, 2010; pp. 79–87. [Google Scholar]
- Tohma, H.; Gülçin, İ.; Bursal, E.; Gören, A.C.; Alwasel, S.H.; Köksal, E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas. Charact. 2017, 11, 556–566. [Google Scholar] [CrossRef]
- Barberis, A.; Spissu, Y.; Fadda, A.; Azara, E.; Bazzu, G.; Marceddu, S.; Angioni, A.; Sanna, D.; Schirra, M.; Serra, P.A. Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene- or nanotubes-modified ascorbate subtractive biosensor. Biosens. Bioelectron. 2015, 67, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Fadda, A.; Serra, M.; Molinu, M.G.; Azara, E.; Barberis, A.; Sanna, D. Reaction time and DPPH concentration influence antioxidant activity and kinetic parameters of bioactive molecules and plant extracts in the reaction with the DPPH radical. J. Food Compos. Anal. 2014, 35, 112–119. [Google Scholar] [CrossRef]
- Perron, N.R.; Wang, H.C.; DeGuire, S.N.; Jenkins, M.; Lawson, M.; Brumaghim, J.L. Kinetics of iron oxidation upon polyphenol binding. Dalton Trans. 2010, 39, 9982–9987. [Google Scholar] [CrossRef] [PubMed]
- Schenker, N.; Gentleman, J.F. On Judging the Significance of Differences by Examining the Overlap between Confidence Intervals. Am. Stat. 2001, 55, 182–186. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Earnshaw, A. 25-Iron, Ruthenium and Osmium. In Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1997; pp. 1070–1112. [Google Scholar]
- Šnyrychová, I.; Pospíšil, P.; Nauš, J. The effect of metal chelators on the production of hydroxyl radicals in thylakoids. Photosynth. Res. 2006, 88, 323–329. [Google Scholar] [CrossRef] [PubMed]
- de Avellar, I.G.J.; Magalhães, M.M.M.; Silva, A.B.; Souza, L.L.; Leitão, A.C.; Hermes-Lima, M. Reevaluating the role of 1,10-phenanthroline in oxidative reactions involving ferrous ions and DNA damage. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2004, 1675, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, S.; Simic, M. Iron complexes of gallocatechins. Antioxidant action or iron regulation? J. Chem. Soc. Perkin Trans. 1998, 2, 2365–2370. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J.L. A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Avdeef, A.; Sofen, S.R.; Bregante, T.L.; Raymond, K.N. Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J. Am. Chem. Soc. 1978, 100, 5362–5370. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhu, K.; Liu, Z.; Huang, J. Prooxidant Effects of Epigallocatechin-3-Gallate in Health Benefits and Potential Adverse Effect. Oxid. Med. Cell. Longev. 2020, 2020, 9723686. [Google Scholar] [CrossRef] [PubMed]
Extract | System | EC50 | CI 95% | R2 |
---|---|---|---|---|
Green tea infusion | Fe(II)/phosphate | 0.4801 mg/mL | 0.4476–0.5163 | 0.9624 |
Fe(II)/Quin | 0.145 mg/mL | 0.1302–0.1591 | 0.9763 | |
Fe(II)/Quin/phosphate | 0.6954 mg/mL | 0.6625–0.7292 | 0.9809 | |
Peroxydisulfate | 0.4846 mg/mL | 0.4228–0.5625 | 0.9475 | |
Blueberry juice | Fe(II)/phosphate | 1.454 µL/mL | 1.274–1.66 | 0.9312 |
Fe(II)/Quin | 0.3517 µL/mL | 0.3008–0.4072 | 0.8926 | |
Fe(II)/Quin/phosphate | 1.435 µL/mL | 1.202–1.692 | 0.8565 | |
Peroxydisulfate | 3.598 µL/mL | 3.024–4.409 | 0.9270 | |
Ginger juice | Fe(II)/phosphate | 2.678 µL/mL | 2.349–2.98 | 0.9427 |
Fe(II)/Quin | 0.6601 µL/mL | 0.5341–0.7749 | 0.8919 | |
Fe(II)/Quin/phosphate | 10.58 µL/mL | 9.918–11.31 | 0.9778 | |
Peroxydisulfate | 4.93 µL/mL | 4.12–5.70 | 0.9186 | |
GA | Fe(II)/phosphate | 181.4 µM | 167.4–197.8 | 0.9098 |
Fe(II)/Quin | 131.2 µM | 126.2–136.3 | 0.9833 | |
Fe(II)/Quin/phosphate | 351.8 µM | 330.3–375 | 0.9670 | |
Peroxydisulfate | 418.4 µM | 374.7–463.4 | 0.9068 | |
EGCG | Fe(II)/phosphate | 50.78 µM | 47.31–54.34 | 0.9835 |
Fe(II)/Quin | 147.3 µM | 142.2–152.6 | 0.9795 | |
Fe(II)/Quin/phosphate | 72.37 µM | 67.67–77.47 | 0.9830 | |
Peroxydisulfate | 231.9 µM | 209.9–253.2 | 0.9808 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanna, D.; Fadda, A. Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR). Molecules 2022, 27, 4560. https://doi.org/10.3390/molecules27144560
Sanna D, Fadda A. Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR). Molecules. 2022; 27(14):4560. https://doi.org/10.3390/molecules27144560
Chicago/Turabian StyleSanna, Daniele, and Angela Fadda. 2022. "Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR)" Molecules 27, no. 14: 4560. https://doi.org/10.3390/molecules27144560
APA StyleSanna, D., & Fadda, A. (2022). Role of the Hydroxyl Radical-Generating System in the Estimation of the Antioxidant Activity of Plant Extracts by Electron Paramagnetic Resonance (EPR). Molecules, 27(14), 4560. https://doi.org/10.3390/molecules27144560