Synthesis, Structure and Cytotoxic Properties of Copper(II) Complexes of 2-Iminocoumarins Bearing a 1,3,5-Triazine or Benzoxazole/Benzothiazole Moiety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.1.1. Synthesis of Copper(II) Complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazine Derivatives 2a-h
2.1.2. Synthesis of Copper(II) Complexes of 3-(benzoxazol-2-yl)-2H-chromen-2-imines 4a-b and 3-(benzothiazol-2-yl)-2H-chromen-2-imines 6a-c
2.2. Structure of Copper(II) Complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazines 2a-h, 3-(benzoxazol-2-yl)-2H-chromen-2-imines 4a-b, and 3-(benzothiazol-2-yl)-2H-chromen-2-imines 6a-c
2.3. UV-Vis Studies of Copper(II) Complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazines 2a-h, 3-(benzoxazol-2-yl)-2H-chromen-2-imines 4a-b, and 3-(benzothiazol-2-yl)-2H-chromen-2-imines 6a-c in Aqueous Buffer Solution
2.4. In Vitro Cytotoxic Activity of Copper(II) Complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazines 2a-h, 3-(benzoxazol-2-yl)-2H-chromen-2-imines 4a-b, and 3-(benzothiazol-2-yl)-2H-chromen-2-imines 6a-c
3. Experimental Section
3.1. General Information
3.2. Chemistry
3.2.1. Synthesis of Copper(II) Complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazine derivatives 2a and 2d (Method A)
3.2.2. Synthesis of Copper(II) Complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazine Derivatives 2b-c, and 2f (Method B)
3.2.3. Synthesis of Copper(II) Complexes of 2-imino-2H-chromen-3-yl-1,3,5-triazine Derivatives 2e, 2g and 2h (Method C)
3.2.4. Synthesis of Copper(II) Complexes of 3-(benzoxazol-2-yl)-2H-chromen-2-imine Derivatives 4a-b (General Procedure)
3.2.5. Synthesis of Copper(II) Complexes of 3-(benzothiazol-2-yl)-2H-chromen-2-imine Derivatives 6a-c (General Procedure)
3.3. Stability Studies
3.4. In Vitro Cytotoxicity Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019, 2, 141–160. [Google Scholar] [CrossRef] [Green Version]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Kang, Y.; Chen, L.; Wang, H.; Liu, J.; Zeng, S.; Yu, L. The drug-resistance mechanisms of five platinum-based antitumor agents. Front. Pharmacol. 2020, 11, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, D.W.; Pouliot, L.M.; Hall, M.D.; Gottesman, M.M. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharm. Rev. 2012, 64, 706–721. [Google Scholar] [CrossRef] [Green Version]
- Festa, R.A.; Thiele, D.J. Copper: An essential metal in biology. Curr Biol. 2011, 21, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Pavelková, M.; Vysloužil, J.; Kubová, K.; Vetchý, D. Biological role of copper as an essential trace element in the human organism. Ceska Slov. Farm. 2018, 67, 143–153. [Google Scholar]
- Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci. 2021, 8, 711227. [Google Scholar] [CrossRef]
- Storr, T.; Thompson, K.H.; Orvig, C. Design of targeting ligands in medicinal inorganic chemistry. Chem. Soc. Rev. 2006, 35, 534–544. [Google Scholar] [CrossRef]
- Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy—An update from drug design perspective. Drug Des. Devel. Ther. 2017, 3, 599–616. [Google Scholar] [CrossRef] [Green Version]
- Heffeter, P.; Jungwirth, U.; Jakupec, M.; Hartinger, C.; Galanski, M.; Elbling, L.; Micksche, M.; Keppler, B. Resistance against novel anticancer metal compounds: Differences and similarities. Drug Resist. Updates 2008, 11, 1–16. [Google Scholar] [CrossRef]
- Marzano, C.; Pellei, M.; Tisato, F.; Santini, C. Copper complexes as anticancer agents. Anticancer Agents Med. Chem. 2009, 9, 185–211. [Google Scholar] [CrossRef] [PubMed]
- Tardito, S.; Marchiò, L. Copper compounds in anticancer strategies. Curr. Med. Chem. 2009, 16, 1325–1348. [Google Scholar] [CrossRef] [PubMed]
- Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chem. Rev. 2014, 114, 815–862. [Google Scholar] [CrossRef] [PubMed]
- Denoyer, D.; Clatworthy, S.A.S.; Cater, M.A. Copper complexes in cancer therapy. Met. Ions Life Sci. 2018, 18, 469–506. [Google Scholar] [CrossRef]
- Kellett, A.; Molphy, Z.; McKee, V.; Slator, C. Recent advances in anticancer copper compounds. Chemistry and Pharmacy 2019, 4, 91–119. [Google Scholar] [CrossRef]
- Zehra, S.; Tabassum, S.; Arjmand, F. Biochemical pathways of copper complexes: Progress over the past 5 years. Drug Discov Today 2021, 26, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Erxleben, A. Interactions of copper complexes with nucleic acids. Coord. Chem. Rev. 2018, 360, 92–121. [Google Scholar] [CrossRef]
- Zehra, S.; Roisnel, T.; Arjmand, F. Enantiomeric amino acid schiff base copper(ii) complexes as a new class of RNA-targeted metallo-intercalators: Single X-ray crystal structural details, comparative in vitro DNA/RNA binding profile, cleavage, and cytotoxicity. ACS Omega 2019, 4, 7691–7705. [Google Scholar] [CrossRef]
- Bollu, V.S.; Bathini, T.; Barui, A.K.; Roy, A.; Ragi, N.C.; Maloth, S.; Sripadi, P.; Sreedhar, B.; Nagababu, P.; Patra, C.R. Design of DNA-intercalators based copper(II) complexes, investigation of their potential anti-cancer activity and sub-chronic toxicity. Mater. Sci. Eng. C 2019, 105, 110079. [Google Scholar] [CrossRef]
- Galindo-Murillo, R.; García-Ramos, J.K.; Ruiz-Azuara, L.; Cheatham, T.E.; Cortés-Guzmán, F. Intercalation processes of copper complexes in DNA. Nucleic Acids Res. Spec. Publ. 2015, 23, 5364–5376. [Google Scholar] [CrossRef]
- Devi, C.S.; Thulasiram, B.; Aerva, R.R.; Nagababu, P. Recent advances in copper intercalators as anticancer agents. J. Fluoresc. 2018, 28, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Mahendiran, D.; Amuthakala, S.; Bhuvanesh, N.S.P.; Kumar, R.S.; Rahiman, A.K. Copper complexes as prospective anticancer agents: In vitro and in vivo evaluation, selective targeting of cancer cells by DNA damage and S phase arrest. RSC Adv. 2018, 8, 16973–16990. [Google Scholar] [CrossRef] [Green Version]
- Carcelli, M.; Tegoni, M.; Bartoli, J.; Marzano, C.; Pelosi, G.; Salvalaio, M.; Rogolino, D.; Gandin, V. In vitro and in vivo anticancer activity of tridentate thiosemicarbazone copper complexes: Unravelling an unexplored pharmacological target. Eur. J. Med. Chem. 2020, 194, 112266. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.; Usman, M.; Dhivya, R.; Balaji, P.; Alsalme, A.; AlLohedan, H.; Arjmand, F.; AlFarhan, K.; Akbarsha, M.A.; Marchetti, F.; et al. Heteroleptic copper(I) complexes of “scorpionate” bis-pyrazolyl carboxylate ligand with auxiliary phosphine as potential anticancer agents: An insight into cytotoxic mode. Sci. Rep. 2017, 7, 45229–45246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinaro, C.; Martoriati, A.; Pelinski, L.; Cailliau, K. Cooper complexes as anticancer agents targeting topoisomerases I and II. Cancers 2020, 12, 2863. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Li, M.; Guo, Z.; Jin, C.; Zhang, F.; Ou, C.; Xie, Y.; Tan, S.; Wang, Z.; Zheng, S.; et al. TPP-related mitochondrial targeting Copper(II) complex induces p53-dependent apoptosis in hepatoma cells through ROS-mediated activation of Drp1. Cell Commun. Signal. 2019, 17, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Vincent, A.; Fores, J.R.; Tauziet, E.; Quévrain, E.; Dancs, Á.; Conte-Daban, A.; Bernard, A.S.; Pelupessy, P.; Coulibaly, K.; Seksik, P.; et al. An easy-to-implement combinatorial approach involving an activity-based assay for the discovery of a peptidyl copper complex mimicking superoxide dismutase. Chem. Commun. 2020, 56, 399–402. [Google Scholar] [CrossRef]
- Sîrbu, A.; Palamarciuc, O.; Babak, M.V.; Lim, J.M.; Ohui, K.; Enyedy, E.A.; Shova, S.; Darvasiová, D.; Rapta, P.; Ang, W.H.; et al. Copper(II) thiosemicarbazone complexes induce marked ROS accumulation and promote nrf2-mediated antioxidant response in highly resistant breast cancer cells. Dalton Trans. 2017, 46, 3833–3847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Chen, Z.; Wang, Y.; Guo, Z.; Wang, X. Hypotoxic copper complexes with potent anti-metastatic and anti-angiogenic activities against cancer cells. Dalton Trans. 2018, 47, 5049–5054. [Google Scholar] [CrossRef] [PubMed]
- Beeton, M.L.; Aldrich-Wright, J.R.; Bolhuis, A. The antimicrobial and antibiofilm activities of copper(II) complexes. J. Inorg. Biochem. 2014, 140, 167–172. [Google Scholar] [CrossRef]
- Rostas, A.M.; Badea, M.; Ruta, L.L.; Farcasanu, I.C.; Maxim, C.; Chifiriuc, M.C.; Popa, M.; Luca, M.; Korosin, N.C.; Korosec, R.C.; et al. Copper(II) complexes with mixed heterocycle ligands as promising antibacterial and antitumor species. Molecules 2020, 25, 3777. [Google Scholar] [CrossRef] [PubMed]
- Gandra, R.M.; McCarron, P.; Fernandes, M.F.; Ramos, L.S.; Mello, T.P.; Aor, A.C.; Branquinha, M.H.; McCann, M.; Devereux, M.; Santos, A.L.S. Antifungal potential of copper(II), manganese(II) and silver(I) 1,10-phenanthroline chelates against multidrug-resistant fungal species forming the Candida haemulonii complex: Impact on the planktonic and biofilm lifestyles. Front. Microbiol. 2017, 8, 1257. [Google Scholar] [CrossRef]
- Gordon, N.A.; McGuire, K.L.; Wallentine, S.K.; Mohl, G.A.; Lynch, J.D.; Harrison, R.G.; Busath, D.D. Divalent copper complexes as influenza A M2 inhibitors. Antiviral Res. 2017, 147, 100–106. [Google Scholar] [CrossRef]
- Malis, G.; Geromichalou, E.; Geromichalos, G.D.; Hatzidimitriou, A.G.; Psomas, G. Copper(II) complexes with non-steroidal anti-inflammatory drugs: Structural characterization, in vitro and in silico biological profile. J. Inorg. Biochem. 2021, 224, 111563. [Google Scholar] [CrossRef] [PubMed]
- Vančo, J.; Trávníček, Z.; Hošek, J.; Malina, T.; Dvořák, Z. Copper(II) complexes containing natural flavonoid pomiferin show considerable in vitro cytotoxicity and anti-inflammatory effects. Int. J. Mol. Sci. 2021, 22, 7626. [Google Scholar] [CrossRef] [PubMed]
- Vančo, J.; Trávníček, Z.; Hošek, J.; Suchý, P., Jr. In vitro and in vivo anti-inflammatory active copper(II)-lawsone complexes. PLoS ONE 2017, 12, e0181822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, A.; AlAjmi, M.F.; Rehman, M.T.; Amir, S.; Husain, F.M.; Alsalme, A.; Siddiqui, M.A.; AlKhedhairy, A.A.; Khan, R.A. Copper(II) complexes as potential anticancer and nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Sci Rep. 2019, 9, 5237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turki, H.; Abid, S.; Gharbi, R.E.; Fery-Forgues, S. Optical properties of now fluorescent iminocoumarins. Part 2. Solvatochromic study and comparison with the corresponding coumarin. Comptes Rendus Chimie 2006, 9, 1252–1259. [Google Scholar] [CrossRef]
- Samsonova, L.G.; Selivanov, N.I.; Gadirov, R.M.; Ishchenko, V.V.; Khilya, O.V. Experimental and quantum-chemical studies of the 3-pyridine-7hydroxy-2-iminocoumarin and 3-(2-methylthiazole)-7-hydroxy-2-iminocoumarin molecules. J. Struct. Chem. 2007, 48, 782–788. [Google Scholar] [CrossRef]
- Fakhfakh, M.; Turki, H.; Abid, S.; Gharbi, R.E.; Fery-Forgues, S. Preparation and optical of new fluorescent iminocoumarins: Study of N-acyl-derivatives. J. Photochem. Photobiol. A 2007, 185, 13–18. [Google Scholar] [CrossRef]
- Turki, H.; Abid, S.; Fery-Forgues, S.; Gharbi, R.E. Optical properties of now fluorescent iminocoumarins. Part 1. Dyes Pigm. 2007, 73, 311–316. [Google Scholar] [CrossRef]
- Kandavelu, V.; Huang, H.S.; Jian, J.L.; Yang, T.C.K.; Wang, K.L.; Huang, S.T. Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 2009, 83, 574–581. [Google Scholar] [CrossRef]
- Shynkarenko, P.E.; Vlasov, S.V. Convenient synthesis of substituted 2-(2-iminocoumarin-3-yl)-thieno[2,3-d]pyrimidin-4-ones. J. Heterocycl. Chem. 2010, 47, 800–806. [Google Scholar] [CrossRef]
- Fakhfakh, M.; Turki, H.; Fery-Forgues, S.; Gharbi, R.E. The synthesis and optical properties of novel fluorescent iminocoumarins and bis-iminocoumarins: Investigations in the series of urea derivatives. Dyes Pigm. 2010, 84, 108–113. [Google Scholar] [CrossRef]
- Kim, T.I.; Jeong, M.S.; Chung, S.J.; Kim, Y. An iminocoumarin-based fluorescent probe for the selective detection of dual-specific protein tyrosine phosphatases. Chem. Eur. J. 2010, 16, 5297–5300. [Google Scholar] [CrossRef]
- Huang, S.T.; Jian, J.L.; Peng, H.Z.; Wang, K.L.; Lin, C.M.; Huang, C.H.; Yang, T.C.K. The synthesis and optical characterization of novel iminocoumarin derivatives. Dyes Pigm. 2010, 86, 6–14. [Google Scholar] [CrossRef]
- Jung, H.S.; Park, M.; Han, J.H.; Lee, J.H.; Kang, C.; Jung, J.H.; Kim, J.S. Selective removal and quantification of Cu(II) using fluorescent iminocoumarin-functionalized magnetic nanosilica. Chem. Commun. 2012, 48, 5082–5084. [Google Scholar] [CrossRef]
- Liepouri, F.; Foukaraki, E.; Deligeorgiev, T.G.; Katerinopoulos, H.E. Iminocoumarin-based low affinity fluorescent Ca2+ indicators excited with visible light. Cell Calcium 2001, 30, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Liepouri, F.; Deligeorgiev, T.G.; Veneti, Z.; Savaskis, C.; Katerinopoulos, H.E. Near-membrane iminocoumarin-based low affinity fluorescent Ca2+ indicators. Cell Calcium 2002, 31, 221–227. [Google Scholar] [CrossRef]
- Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J. Am. Chem. Soc. 2007, 129, 13447–13454. [Google Scholar] [CrossRef] [PubMed]
- Shishkina, S.V.; Baumer, V.S.; Kovalenko, S.M.; Trostianko, P.V.; Bunyatyan, N.D. Usage of quantum chemical methods to understand the formation of concomitant polymorphs of acetyl 2-(N-(2-fluorophenyl)imino)coumarin-3-carboxamide. ACS Omega 2021, 6, 3120–3129. [Google Scholar] [CrossRef] [PubMed]
- Ukhov, S.V.; Kon’shin, M.E.; Odegova, T.F. Synthesis and antimicrobial activity of 2-iminocoumarin-3-carboxylic acid amides. Pharm. Chem. J. 2001, 35, 364–365. [Google Scholar] [CrossRef]
- Khalil, A.M.; Berghot, M.A.; Gouda, M.A. Synthesis and antibacterial activity of some new heterocycles incorporating phthalazine. Eur. J. Med. Chem. 2009, 44, 4448–4454. [Google Scholar] [CrossRef]
- Zhuravel, I.O.; Kovalenko, S.M.; Ivachtchenko, A.V.; Balakin, K.V.; Kazmirchuk, V.V. Synthesis and antimicrobial activity of 5-hydroxymethyl-8-methyl-2-(N-arylimino)-pyrano[2,3-c]pyridine-3-(N-aryl)-carboxamides. Bioorg. Med. Chem. Lett. 2005, 15, 5483–5487. [Google Scholar] [CrossRef]
- Bylov, I.E.; Vasylyev, M.V.; Bilokin, Y.V. Synthesis and anti-inflammatory activity of N-substituted 2-oxo-2H-1-benzopyran-3-carboxamides and their 2-iminoanalogues. Eur. J. Med. Chem. 1999, 34, 997–1001. [Google Scholar] [CrossRef]
- Iraji, A.; Firuzi, O.; Khoshneviszadeh, M.; Tavakkoli, M.; Mahdavi, M.; Nadri, H.; Edraki, N.; Miri, R. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory neuroprotective and metal chelating properties targeting Alzheimer’s disease. Eur. J. Med. Chem. 2017, 141, 690–702. [Google Scholar] [CrossRef]
- O’Callaghan, C.N.; Conalty, M.L. Anticancer Agents XIII. Synthesis and antitumour activity of 2-iminochromene derivatives. Proc. R. Ir. Acad. Sect. B 1979, 79, 87–98. [Google Scholar]
- Huang, C.K.; Wu, F.Y.; Ai, Y.X. Polyhydroxylated 3-(N-phenyl) carbamoyl-2-iminochromene derivatives as potent inhibitors of tyrosine kinase p60c-src. Bioorg. Med. Chem. Lett. 1995, 5, 2423–2428. [Google Scholar] [CrossRef]
- Huang, C.K. 2-Iminochromene Derivatives as Inhibitors of Protein Tyrosine Kinase; WO 96/40670 (PTC/US96/07295); Research Corporation Technologies, Inc.: Tucson, AZ, USA, 1996. [Google Scholar]
- Burke, T.R.; Lim, B.; Marquez, V.E.; Li, Z.H.; Bolen, J.B.; Stefanova, I.; Horak, I.D. Bicyclic compounds as ring-constrained inhibitors of protein-tyrosine kinase p56lck1. J. Med. Chem. 1993, 36, 425–432. [Google Scholar] [CrossRef]
- Gill, R.K.; Kumari, J.; Bariwal, J. New 2-imino-2H-chromene-3(N-aryl)carboxamides as potential cytotoxic agents. Anti-Cancer Agents Med. Chem. 2017, 17, 85–92. [Google Scholar] [CrossRef]
- Soliman, M.H.; Mohamed, G.G.; Elgemei, G.H. Novel synthesis of 2-imino-2H-chromene-3-carboximide metal complexes. Thermal decomposition, spectral studies and antimicrobial activity evaluation. J. Therm. Anal. Calorim. 2016, 123, 583–594. [Google Scholar] [CrossRef]
- Kerflani, A.; Larbi, K.S.; Rabahi, A.; Bouchoucha, A.; Zaater, S.; Terrachet-Bouaziz, S. Novel palladium(II) complexes with iminocoumarin ligands: Synthesis, characterisation, electrochemical behaviour, DFT calculations and biological activities, ADMET study and molecular docking. Inorganica Chim. Acta 2022, 529, 120659. [Google Scholar] [CrossRef]
- Makowska, A.; Sączewski, F.; Bednarski, P.J.; Sączewski, J.; Balewski, Ł. Hybrid molecules composed of 2,4-diamino-1,3,5-triazines and 2-imino-coumarins and coumarins. Synthesis and cytotoxic properties. Molecules 2018, 23, 1616. [Google Scholar] [CrossRef] [Green Version]
- Makowska, A.; Wolff, L.; Sączewski, F.; Bednarski, P.J.; Kornicka, A. Synthesis and cytotoxic evaluation of benzoxazole/benzothiazole-2-imino-coumarin hybrids and their coumarin analogues as potential anticancer agents. Pharmazie 2019, 74, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Bracht, K.; Boubakari; Grünert, R.; Bednarski, J.P. Correlations between the activities of 19 antitumor agents and the intracellular glutathione concentrations in a panel of 14 human cancer cell lines: Comparisons with the National Cancer Institute data. Anticancer Drugs 2006, 17, 41–51. [Google Scholar] [CrossRef]
- CrysAlisPro Software System, Version 1.171.33.48; Oxford Diffraction Ltd.: Oxford, UK, 2009.
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Wavefunction Inc. Molecular Modelling Studies Were Performed at Ab Initio Level Using the Density Functional (B3LYP) Method with the 6-31G* Basis Set as Implemented into SPARTAN Program Version’14 V 1.1.4; Wavefunction Inc.: Irvine, CA, USA, 2019; Available online: www.wavefun.com (accessed on 1 September 2022).
- Chen, H.; Li, S.; Yao, Y.; Zhou, L.; Zhao, J.; Gu, Y.; Wang, K.; Li, X. Design, synthesis and anti-tumor activities of novel triphenylene-coumarin hybrids, and their interaction with Ct-DNA. Bioorg. Med. Chem. Lett. 2013, 23, 4785–4789. [Google Scholar] [CrossRef]
- Sarwar, T.; Rehman, S.U.; Husain, M.A.; Ishiqi, H.M.; Tabish, M. Interaction of coumarin with calf thymus DNA: Deciphering the mode of binding by in vitro studies. Int. J. Biol. Macromol. 2015, 73, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, R.; Hamidullah; Hasanain, M.; Pandey, P.; Maheshwari, M.L.; Singh, L.R.M.; Siddiqui, M.Q.; Konwar, R.; Sashidhara, K.V.; Sarkar, J. Coumarin-chalcone hybrid instigates DNA damage by minor groove binding and stabilizes p53 through post translational modifications. Sci. Rep. 2017, 7, 45287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, K.M.; Taha, A.M.; George, R.F.; Mohamed, N.M.; Elsenduny, F.F. Synthesis, antitumor activity evaluation, and DNA-binding study of coumarin-based agents. Arch Pharm 2018, 351, 1700199. [Google Scholar] [CrossRef] [PubMed]
Compd: Complex (ligand) | R | R1 | R2 | Cell Line | ||||
DAN-G | A-427 | LCLC-103H | SISO | RT-4 | ||||
2a (L1a) | H | H | 10.60 ± 1.24 (15.12) a | 10.69 ± 1.19 (9.04) | 10.13 ± 3.55 (14.17) | 15.66 ± 4.28 (21.33) | 1.82 ± 0.75 (16.24) | |
2b (L1b) | H | (C2H5)2N | 2.34 ± 0.12 (9.21) | 12.97 ± 2.11 (7.62) | 8.02 ± 2.80 (6.18) | 6.14 ± 0.21 (5.67) | * | |
2c (L1c) | H | (C2H5)2N | 8.15 ± 0.28 (11.19) | 2.19 ± 0.54 (8.16) | * | 7.59 ± 0.53 (11.64) | 7.17 ± 0.72 (11.04) | |
2d (L1d) | Br | H | * | * | 6.97 ± 3.18 (27.42) | 6.94 ± 0.48 (7.69) | 1.21 ± 1.41 (21.40) | |
2e (L1e) | CH3 | H | 6.76 ± 0.84 (11.91) | 3.60 ± 0.59 (13.56) | 11.14 ± 1.83 (15.47) | 7.33 ± 0.31 (14.44) | 11.17 ± 1.78 (6.91) | |
2f (L1f) | H | H | 8.73 ± 0.62 (8.35) | 6.29 ± 0.46 (14.79) | 8.84 ± 3.57 (21.12) | 12.99 ± 1.18 (15.24) | 7.05 ± 1.22 (16.24) | |
2g (L1g) | H | (C2H5)2N | 1.61 ± 0.09 (2.14) | 1.31 ± 0.37 (1.51) | 1.66 ± 0.07 (2.21) | * | 1.21 ± 0.07 (1.66) | |
2h (L1h) | Cl | H | 3.28 ± 0.33 (23.26) | 2.33 ± 0.42 (37.19) | 2.77 ± 1.09 (34.24) | 4.09 ± 0.23 (29.86) | 1.97 ± 0.94 (26.32) | |
CDDP b | 0.73 ± 0.34 | 1.96 ± 0.54 | 0.90 ± 0.19 | 0.24 ± 0.06 | 1.61 ± 0.16 |
Compd: Complex (ligand) | R1 | R2 | Cell Line | ||||
DAN-G | A-427 | LCLC-103H | SISO | RT-4 | |||
4a (L3a) | F | H | 13.50 ± 1.8 (1.96) a | 2.25 ± 0.12 (2.38) | 2.35 ± 0.26 (0.99) | 12.72 ± 8.41 (2.44) | 2.76 ± 0.35 (3.22) |
4b (L3b) | H | (C2H5)2N | * | * | 0.04 ± 0.01 (0.06) | 0.08 ± 0.01 (0.29) | 0.08 ± 0.02 (0.27) |
6a (L5a) | F | H | 1.56 ± 0.01 (1.45) | * | 0.13 ± 0.01 (0.98) | 1.45 ± 0.19 (1.12) | 2.08 ± 0.28 (1.11) |
6b (L5b) | H | (C2H5)2N | 1.18 ± 0.09 (1.05) | 1.34 ± 0.29 (1.22) | * | 1.33 ± 0.01 (1.13) | 1.96 ± 0.05 (0.54) |
6c (L5c) | CH3 | H | 12.99 ± 2.65 (12.74) | 13.42 ± 1.34 (13.05) | 12.43 ± 3.43 (13.67) | 13.07 ± 1.76 (13.14) | 10.75 ± 1.84 (14.03) |
CDDP b | 0.73 ± 0.34 | 1.96 ± 0.54 | 0.90 ± 0.19 | 0.24 ± 0.06 | 1.61 ± 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makowska, A.; Sączewski, F.; Bednarski, P.J.; Gdaniec, M.; Balewski, Ł.; Warmbier, M.; Kornicka, A. Synthesis, Structure and Cytotoxic Properties of Copper(II) Complexes of 2-Iminocoumarins Bearing a 1,3,5-Triazine or Benzoxazole/Benzothiazole Moiety. Molecules 2022, 27, 7155. https://doi.org/10.3390/molecules27217155
Makowska A, Sączewski F, Bednarski PJ, Gdaniec M, Balewski Ł, Warmbier M, Kornicka A. Synthesis, Structure and Cytotoxic Properties of Copper(II) Complexes of 2-Iminocoumarins Bearing a 1,3,5-Triazine or Benzoxazole/Benzothiazole Moiety. Molecules. 2022; 27(21):7155. https://doi.org/10.3390/molecules27217155
Chicago/Turabian StyleMakowska, Anna, Franciszek Sączewski, Patrick J. Bednarski, Maria Gdaniec, Łukasz Balewski, Magdalena Warmbier, and Anita Kornicka. 2022. "Synthesis, Structure and Cytotoxic Properties of Copper(II) Complexes of 2-Iminocoumarins Bearing a 1,3,5-Triazine or Benzoxazole/Benzothiazole Moiety" Molecules 27, no. 21: 7155. https://doi.org/10.3390/molecules27217155
APA StyleMakowska, A., Sączewski, F., Bednarski, P. J., Gdaniec, M., Balewski, Ł., Warmbier, M., & Kornicka, A. (2022). Synthesis, Structure and Cytotoxic Properties of Copper(II) Complexes of 2-Iminocoumarins Bearing a 1,3,5-Triazine or Benzoxazole/Benzothiazole Moiety. Molecules, 27(21), 7155. https://doi.org/10.3390/molecules27217155