Chemical Components of Oxytropis pseudoglandulosa Induce Apoptotic-Type Cell Death of Caco-2 Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Characterization of O. pseudoglandulosa
2.1.1. Reducing Sugars, Total Phenolic Content, Total Flavonoid Content
2.1.2. Polyphenolic Composition
2.1.3. Antioxidant Properties
2.2. Biological Characterization of O. pseudoglandulosa
2.2.1. Cytotoxic Properties of O. pseudoglandulosa
2.2.2. The Effect of O. pseudoglandulosa Extract on Intracellular Oxidative Stress
2.2.3. The Effect of O. pseudoglandulosa Extract on Cell Death Induction
3. Materials and Methods
3.1. Standards and Reagents
3.2. Plant Material
3.3. Extraction Procedure for Chemical Analyses
3.4. Total Phenolic Content
3.5. Total Flavonoid Content
3.6. Free Radical Scavenging Activity
3.7. LC-MS Analysis of Phenolic Compounds
3.8. Total Reducing Sugar Content
3.9. Extraction Procedure for Biological Analyses
3.10. Cell Cultures
3.11. Cell Viability
3.12. Oxidative Stress
3.13. Mitochondrial Membrane Potential (MMP)
3.14. ATP Production
3.15. Phosphatidylserine Externalization
3.16. Membrane Permeabilization
3.17. Detection of Caspases 3/7 Activity
3.18. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kruk, J.; Aboul-Enein, H.Y.; Kladna, A.; Bowser, J.E. Oxidative stress in biological systems and its relation with pathophysiological functions: The effect of physical activity on cellular redox homeostasis. Free Radic. Res. 2019, 53, 497–521. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
- Ivanišová, E.; Vasková, D.; Zagula, G.; Grynshpan, D.; Savitskaya, T.A.; Kačániová, M. Phytochemical profile and biological activity of selected kind of medicinal herbs. Potravin. Slovak J. Food Sci. 2020, 14, 573–579. [Google Scholar] [CrossRef]
- Štajer, V.; Todorović, N.; Korovljev, D.; Maksimovic, N.; Miljkovic, S.; Ratgeber, L.; Betlehem, J.; Acs, P.; Ostojic, S.M. The effects of 6-week supplementation with multicomponent herbal extract on exercise performance, antioxidant status and telomere length, and self-reported side effects in healthy men: A randomized controlled pilot trial. Curr. Top. Nutraceutical Res. 2020, 19, 520–524. [Google Scholar]
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed Pharmacol. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef]
- Narangerel, T.; Bonikowski, R.; Jastrząbek, K.; Kunicka-Styczyńska, A.; Plucińska, A.; Śmigielski, K.; Majak, I.; Bartos, A.; Leszczyńska, J. Chemical and Biological Characteristics of Oxytropis pseudoglandulosa Plant of Mongolian Origin. Molecules 2021, 26, 7573. [Google Scholar] [CrossRef]
- Zaklos-Szyda, M.; Pawlik, N.; Polka, D.; Nowak, A.; Koziołkiewicz, M.; Podsędek, A. Viburnum opulus fruit phenolic compounds as cytoprotective agents able to decrease free fatty acids and glucose uptake by Caco-2 cells. Antioxidants 2019, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Berber, A.; Zengin, G.; Aktumsek, A.; Şanda, M.A.; Uysal, T. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae) from Turkey. Rev. Biol. Trop. 2014, 62, 349–358. [Google Scholar] [CrossRef]
- Miladinovic, D.; Miladinović, L.; Najman, S. A study of the antioxidants in Oxytropis pilosa (L.) DC. J. Serb. Chem. Soc. 2011, 76, 505–512. [Google Scholar] [CrossRef]
- Milevskaya, V.V.; Prasad, S.; Temerdashev, Z.A. Extraction and chromatographic determination of phenolic compounds from medicinal herbs in the Lamiaceae and Hypericaceae families: A review. Microchem. J. 2019, 145, 1036–1049. [Google Scholar] [CrossRef]
- Kachmar, M.R.; Oliveira, A.; Valentão, P.; Gil-Izquierdo, A.; Domínguez-Perles, R.; Ouahbi, A.; El Badaoui, K.; Andrade, P.B.; Ferreres, F. HPLC-DAD-ESI/MSn phenolic profile and in vitro biological potential of Centaurium erythraea Rafn aqueous extract. Food Chem. 2018, 278, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Llorach, R.; Gil-Izquierdo, A. Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2004, 39, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.H.; Kim, H.W.; Lee, M.K.; Jeong, S.Y.; Bak, A.R.; Lee, D.J.; Kim, J.B. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J. Biol. Sci. 2018, 25, 1622–1631. [Google Scholar] [CrossRef]
- Wang, S.-S.; Zhang, X.-J.; Que, S.; Tu, G.-Z.; Wan, D.; Cheng, W.; Liang, H.; Ye, J.; Zhang, Q.-Y. 3-hydroxy-3-methylglutaryl flavonol glycosides from Oxytropis falcata. J. Nat. Prod. 2012, 75, 1359–1364. [Google Scholar] [CrossRef]
- Jiang, H.; Zhan, W.Q.; Liu, X.; Jiang, S. Antioxidant activities of extracts and flavonoid compounds from Oxytropis falcate Bunge. Nat. Prod. Res. 2008, 22, 1650–1656. [Google Scholar] [CrossRef]
- Zaklos-Szyda, M.; Majewska, I.; Redzynia, M.; Koziolkiewicz, M. Antidiabetic effect of polyphenolic extracts from selected edible plants as alpha-amylase, alpha-glucosidase and PTP1B inhibitors, and beta pancreatic cells cytoprotective agents—A comparative study. Curr. Top. Med. Chem. 2015, 15, 2431–2444. [Google Scholar] [CrossRef]
- Zielinska-Blizniewska, H.; Sitarek, P.; Merecz-Sadowska, A.; Malinowska, K.; Zajdel, K.; Jablonska, M.; Sliwinski, T.; Zajdel, R. Plant extracts and reactive oxygen species as two counteracting agents with anti- and pro-obesity properties. Int. J. Mol. Sci. 2019, 20, 4556. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.A.; Woo, J.J.; Jung, M.J.; Hwang, G.-S.; Choi, J.S. Kaempferol glycosides with antioxidant activity from Brassica juncea. Arch. Pharmacal Res. 2009, 32, 1379–1384. [Google Scholar] [CrossRef]
- Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE 2018, 13, e0197563. [Google Scholar] [CrossRef]
- Al-Numair, K.S.; Chandramohan, G.; Veeramani, C.; Alsaif, M.A. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. 2015, 20, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Antunes-Ricardo, M.; Gutiérrez-Uribe, J.A.; Martínez-Vitela, C.; Serna-Saldívar, S.O. Topical anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica. BioMed Res. Int. 2015, 2015, 847320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Yang, Q.; Ma, W.; Li, J.; Qu, L.-Z.; Wang, M. Protocatechuic acid ameliorated palmitic-acid-induced oxidative damage in endothelial cells through activating endogenous antioxidant enzymes via an adenosine-monophosphate-activated-protein-kinase-dependent pathway. J. Agric. Food Chem. 2018, 66, 10400–10409. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, G.; Zhang, P.; Fan, J. Programmed cell death and its role in inflammation. Mil. Med. Res. 2015, 2, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluska, M.; Juszczak, M.; Wysokinski, D.; Żuchowski, J.; Stochmal, A.; Wozniak, K. Kaempferol derivatives isolated from Lens culinaris Medik. reduce DNA damage induced by etoposide in peripheral blood mononuclear cells. Toxicol. Res. 2019, 8, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lan, Z.H.; Wei, L.L.; Zhang, W.J.; Zhang, R.X.; Jia, Z.P. Phytochemical and biological studies of plants from the genus Oxytropis. Rec. Nat. Prod. 2012, 6, 1–20. [Google Scholar]
- Lee, J.; Lee, C.; Seo, H.; Bazarragchaa, B.; Batdelger, G.; Choi, S.; Hwang, K.; Lee, S.; Lim, S. Extract of Oxytropis pseudoglandulosa inhibits vascular smooth muscle cell proliferation and migration via suppression of ERK1/2 and Akt signaling pathways. Clin. Hemorheology Microcirculation 2018, 69, 277–287. [Google Scholar] [CrossRef]
No. | Identification | Rtime | UV Max | [M − H]− m/z | Fragmentation Ions |
---|---|---|---|---|---|
1 | Protocatechuic acid | 13.56 | 317 | 315.09 | 153.02, 152.01 |
2 | 5-Caffeoylquinic acid (stn) | 18.82 | 328 | 353.09 | 191.06 |
3 | 4-Caffeoylquinic acid | 19.22 | 296/320 | 353.09 | 191.06,179.03, 173.03 |
4 | K-3-(Rhm)Rut-7-Rhm | 21.51 | 267/347 | 885.27 | 739.21, 285.04 |
5 | Q-3-O-Rut-7-O-Rhm | 23.56 | 259/356 | 755.21 | 609.15, 301.03 |
6 | K-3-Rut-7-Rut | 24.02 | 267/347 | 901.27 | 593.15, 285.04 |
7 | K-3-O-Rob-7-O-Rhm (stn) | 25.27 | 267/349 | 739.21 | 593.15, 285.04 |
8 | K-3-O-Rut-7-O-Rhm | 25.98 | 266/347 | 739.21 | 593.15, 285.04 |
9 | K-3-(p-Coum, Rhm)Rut-7-Rhm | 28.76 | 270/318 | 1031.31 | 885.25, 739.20, 539.15, 285.04 |
10 | K-3-O-Rut (stn) | 29.19 | 267/342 | 593.15 | 285.04 |
11 | I-3-O-Rut | 30.57 | 267/355 | 623.16 | 315.05 |
12 | K-3-O-Rhm | 40.92 | 267/364 | 431.10 | 285.04 |
No. | Compound | Total Content (mg/kg Dry Mass) |
---|---|---|
1 | Protocatechuic acid | 26.7 |
2 | 5-Caffeoylquinic acid (std) | 34.4 |
3 | 4-Caffeoylquinic acid | 69.5 |
4 | K-3-(Rhm)Rut-7-Rhm | 1592.8 |
5 | Q-3-O-Rut-7-O-Rhm | 525.5 |
6 | K-3-Rut-7-Rut | 387.5 |
7 | K-3-O-Rob-7-O-Rhm (std) | 12355 |
8 | K-3-O-Rut-7-O-Rhm | 498.9 |
9 | K-3-(p-Coum, Rhm)Rut-7-Rhm | 861.4 |
10 | K-3-O-Rut (std) | 620.2 |
11 | I-3-O-Rut | 307.7 |
12 | K-3-O-Rhm | 318.4 |
Total polyphenolic compounds | 17,598 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narangerel, T.; Zakłos-Szyda, M.; Sójka, M.; Majak, I.; Koziołkiewicz, M.; Leszczyńska, J. Chemical Components of Oxytropis pseudoglandulosa Induce Apoptotic-Type Cell Death of Caco-2 Cells. Molecules 2022, 27, 4609. https://doi.org/10.3390/molecules27144609
Narangerel T, Zakłos-Szyda M, Sójka M, Majak I, Koziołkiewicz M, Leszczyńska J. Chemical Components of Oxytropis pseudoglandulosa Induce Apoptotic-Type Cell Death of Caco-2 Cells. Molecules. 2022; 27(14):4609. https://doi.org/10.3390/molecules27144609
Chicago/Turabian StyleNarangerel, Tuya, Małgorzata Zakłos-Szyda, Michał Sójka, Iwona Majak, Maria Koziołkiewicz, and Joanna Leszczyńska. 2022. "Chemical Components of Oxytropis pseudoglandulosa Induce Apoptotic-Type Cell Death of Caco-2 Cells" Molecules 27, no. 14: 4609. https://doi.org/10.3390/molecules27144609
APA StyleNarangerel, T., Zakłos-Szyda, M., Sójka, M., Majak, I., Koziołkiewicz, M., & Leszczyńska, J. (2022). Chemical Components of Oxytropis pseudoglandulosa Induce Apoptotic-Type Cell Death of Caco-2 Cells. Molecules, 27(14), 4609. https://doi.org/10.3390/molecules27144609