Air-Depleted and Solvent-Impregnated Cork Powder as a New Natural and Sustainable Fining Agent for Removal of 2,4,6-Trichloroanisole (TCA) from Red Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Performance of Air-Depleted and Solvent-Impregnated Cork Powder in the Removal of Trichloroanisole (TCA)
2.2. TCA Adsorption Isotherms of Air-Depleted Solvent-Impregnated Cork Powder in Model Wine
2.3. Impact of ADSI Cork Powder on Wine Quality
2.3.1. Impact of ADSI Cork Powder on the Chromatic Characteristics and Phenolic Composition of the Wine
2.3.2. Impact of ADSI Cork Powder on Wine Volatile Composition
3. Materials and Methods
3.1. Cork Powder Sample Preparation
3.2. Wine Contamination with TCA
3.3. Fining Experiment
3.4. Determination of 2,4,6-Trichloroanisole Extractable by Solid-Phase Microextraction (SPME) Using Gas Chromatography Coupled to Mass Spectrometry (GC-MS)
3.5. Quantification of Total Phenolic Compounds
3.6. Color Intensity, Hue, and Chromatic Characteristics
3.7. High-Performance Liquid Chromatography (HPLC) Analysis of Anthocyanins, Catechin, and Phenolic Acids
3.8. Total Pigments, Polymeric Pigments, Small Polymeric Pigments (SPPs), Large Polymeric Pigments (LPPs), Anthocyanins, and Tannins
3.9. Wine Volatile Composition Determined by SPME-GC-MS
3.10. Modeling of the Adsorption Isotherms
3.11. Statistical Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Simpson, R.F.; Sefton, M.A. Origin and fate of 2,4,6-trichloroanisole in cork bark and wine corks. Aust. J. Grape Wine Res. 2007, 13, 106–116. [Google Scholar] [CrossRef]
- Chatonnet, P.; Bonnet, S.; Boutou, S.; Labadie, M.D. Identification and responsibility of 2,4,6-tribromoanisole in musty. corked odors in wine. J. Agric. Food Chem. 2004, 52, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- INBIOTEC; Coque, J.J.R.; Perez, E.R.; dos Santos Marques, S.; Ferreira, J.R.; APCOR. Contaminação do Vinho por Haloanisóis: Desenvolvimento de Estratégias Biotecnológicas para Prevenir a Contaminação de Rolhas de Cortiça por Cloroanisóis; APCOR: Santa Maria de Lamas, Portugal, 2006. [Google Scholar]
- Sefton, M.A.; Simpson, R.F. Compounds causing cork taint and the factors affecting they transfer from natural cork closures to wine—A review. Aust. J. Grape Wine Res. 2005, 11, 226–240. [Google Scholar] [CrossRef]
- Chatonnet, P.; Fleury, A.; Boutou, S. Identification of a new source of contamination of Quercus sp. oak wood by 2.4.6-trichloroanisole and its impact on the contamination of barrel-aged wines. J. Agric. Food Chem. 2010, 58, 10528–10538. [Google Scholar] [CrossRef] [PubMed]
- Duerr, P. Wine quality evaluation. In Proceedings of the International Symposium on Cool Climate Viticulture and Enology, Corvallis, OR, USA, 25–28 June 1985; pp. 257–266. [Google Scholar]
- Hervé, E.; Price, S.; Burns, G.; Weber, P. Chemical Analysis of TCA as a Quality Control Tool for Natural Cork. 2004. Available online: https://docplayer.net/146328650-Chemical-analysis-of-tca-as-a-quality-control-tool-for-natural-corks.html (accessed on 4 June 2022).
- Prescott, J.; Norris, L.; Kunst, M.; Kim, S. Estimating a ‘consumer rejection threshold’ for cork-taint in white wine. Food Qual. Prefer. 2005, 16, 345–349. [Google Scholar] [CrossRef]
- Liacopoulos, D.; Barker, D.; Howland, P.R.; Alcorso, D.C.; Pollnitz, A.P.; Skouroumounis, G.K.; Pardon, K.H.; McLean, H.J.; Gawel, R.; Sefton, M.A. Chloroanisole taint in wines. In Proceedings of the Tenth Australian Wine Industry Technical Conference, Sydney, NSW, Australia, 2–5 August 1998; Australian Wine Industry Technical Conference Inc.: Adelaide, SA, Australia, 1999; pp. 224–226. [Google Scholar]
- Amon, J.M.; Vandeepeer, J.M.; Simpson, R.F. Compounds Responsible for Cork Taint. Aust. N. Z. Wine Ind. 1989, 4, 62–69. [Google Scholar]
- APCOR. Associação Portuguesa de Cortiça—Manual Técnico APCOR. Cork Information Bureau. 2010. Available online: https://silo.tips/download/cork-information-bureau-2010-cork-sector-in-numbers (accessed on 4 June 2022).
- Vestner, J.; Fritsch, S.; Rauhut, D. Development of a microwave assisted extraction method for the analysis of 2,4,6-trichloroanisole in cork stoppers by SIDA–SBSE–GC–MS. Anal. Chim. Acta 2010, 660, 76–80. [Google Scholar] [CrossRef]
- Juanola, R.; Guerrero, L.; Subirà, D.; Salvadó, V.; Insa, S.; Garcia Regueiro, J.A.; Anticó, E. Relationship between sensory and instrumental analysis of 2,4,6-trichloroanisole in wine and cork stoppers. Anal. Chim. Acta 2004, 513, 291–297. [Google Scholar] [CrossRef]
- Fontana, A.R.; Patil, S.H.; Banerjee, K.; Altamirano, J.C. Ultrasound- Assisted Emulsification Microextraction for Determination of 2.4.6- Trichloroanisole in Wine Samples by Gas Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2010, 58, 4576–4581. [Google Scholar] [CrossRef]
- Mazzoleni, V.; Maggi, L. Effect of wine style on the perception of 2,4,6-trichloroanisole, a compound related to cork taint in wine. Food Res. Int. 2007, 40, 694–699. [Google Scholar] [CrossRef]
- Cioni, G.A.; Cadinu, T. Physical Chemical Method to Remove the Cork Taste and in General Anomalous Smells of Cork Materials. WIPO Patent 2001 WO/2001/041989A2, 14 June 2001. [Google Scholar]
- Swan, J.S. Process for Removing Off-Flavors and Odors from Foods and Beverages. U.S. Patent US6610342B22003, 26 August 2003. [Google Scholar]
- Vuchot, P.; Puech, C.; Fernandez, O.; Fauveau, C.; Pellerin, P.; Vidal, S. Elimination des goûts de bouchon/moisi et de l’OTA à l’aide d’écorces de levures hautement adsorbantes. Rev. Internet Vitic. Œnol. 2007, 2, 62–72. [Google Scholar]
- Garde-Cerdán, T.; Zalacain, A.; Lorenzo, C.; Alonso, J.L.; Salinas, M.R. Molecularly imprinted polymer-assisted simple clean-up of 2.4.6-TCA and ethylphenols from aged red wines. Am. J. Enol. Vitic. 2008, 59, 396–400. [Google Scholar]
- Cravero, M.C. Musty and Moldy Taint in Wines: A Review. Beverages 2020, 6, 41. [Google Scholar] [CrossRef]
- Capone, D.L.; Skouroumounis, G.K.; Barker, D.A.; Mclean, H.J.; Pollnitz, A.P.; Sefton, M.A. Absorption of chloroanisoles from wine by corks and by other materials. Aust. J. Grape Wine Res. 1999, 5, 91–98. [Google Scholar] [CrossRef]
- Gonzàlez-Centeno, M.R.; Tempère, S.; Teissedre, P.; Chira, K. Use of alimentary film for selective sorption of haloanisoles from contaminated red wine. Food Chem. 2021, 350, 128364. [Google Scholar] [CrossRef] [PubMed]
- Valdés, O.; Marican, A.; Avila-Salas, F.; Ignacio Castro, R.; Amalraj, J.; Felipe Laurie, V.; Santos, L.S. Polyaniline Based Materials as a Method to Eliminate Haloanisoles in Spirits Beverage. Ind. Eng. Chem. 2018, 57, 8308–8831. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Ferreira, C.I.A.; Pereira, J.C.; Silva, P.C.; Vilar, S.P.; Botelho, V.J.P.; Boaventura, C.M.S. Use of cork powder and granules for the adsorption of pollutants: A review. Water Res. 2012, 1, 1–5. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Cosme, F.; Nunes, M.F. Air Depleted and Solvent Impregnated Cork Powder as a New Natural and Sustainable Wine Fining Agent. In Advances in Grape and Wine Biotechnology; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. A Simple Method to Improve Cork Powder Waste Adsorption Properties: Valorization as a New Sustainable Wine Fining Agent. ACS Sustain. Chem. Eng. 2019, 7, 1105–1111. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- García-Calzon, J.A.; Díaz-García, M.E. Characterization of binding sites in molecularly imprinted polymers. Sens. Actuators B Chem. 2007, 123, 1180–1194. [Google Scholar] [CrossRef]
- Saeed, A.; Iqbal, M.; Höll, W.H. Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk. J. Hazard. Mater. 2009, 168, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- García-Zubiri, I.X.; González-Gaitano, G.; Isasi, J.R. Sorption models in cyclodextrin polymers: Langmuir, Freundlich, and a dual-mode approach. J. Colloid Interface Sci. 2009, 337, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Chen, X. Modeling of experimental adsorption isotherm data. Information 2015, 6, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Do, D. Adsorption analysis: Equilibria and kinetics. Ser. Chem. Eng. 1998, 2, 1–916. [Google Scholar]
- Roberts, D.D.; Pollien, P.; Milo, C. Solid-Phase Microextraction Method Development for Headspace Analysis of Volatile Flavor Compounds. J. Agric. Food Chem. 2000, 48, 2430–2437. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.F.; Marques, J.C.; Câmara, J.S. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Dragone, G.; Mussato, S.I.; Oliveira, J.M.; Teixeira, J.A. Characterization of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem. 2009, 112, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Zhang, Z. Volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the Loess Plateau Region of China. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef] [Green Version]
- Vararu, F.; Moreno-García, J.; Cotea, V.V.; Moreno, J. Grape musts differentiation based on selected aroma compounds using SBSE-GC-MS and statistical analysis. Vitis 2015, 54, 97–105. [Google Scholar]
- López de Lerma, N.; Peinado, R.A.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Influence of two yeast strains in free, bioimmobilized or immobilized with alginate forms on the aromatic profile of long aged sparkling wines. Food Chem. 2018, 250, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Perestrelo, R.; Silva, C.; Câmara, J.S. Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules 2019, 24, 3028. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sheng Tao, Y.; Wang, H.; Zhang, L. Impact odorants of Chardonnay dry white wine from Changli County (China). Eur. Food Res. Technol. 2008, 227, 287–292. [Google Scholar] [CrossRef]
- Pereira, V.; Cacho, J.; Marques, J.C. Volatile profile of Madeira wines submitted to traditional accelerated ageing. Food Chem 2014, 162, 122–134. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Clarification and stabilization treatments: Fining wine. In Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006; Volume 2. [Google Scholar]
- International Organization of Vine and Wine. Compendium of International Methods of Wine and Must Analysis; Edition 2020; International Organization of Vine and Wine: Paris, France, 2020; Volume 1. [Google Scholar]
- Guise, R.; Filipe-Ribeiro, L.; Nascimento, D.; Bessa, O.; Nunes, F.M.; Cosme, F. Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization. Food Chem. 2014, 156, 250–257. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Milheiro, J.; Matos, C.C.; Cosme, F.; Nunes, F.M. Data on changes in red wine phenolic compounds. headspace aroma compounds and sensory profile after treatment of red wines with activated carbons with different physicochemical characteristics. Data Brief 2017, 12, 188–202. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Milheiro, J.; Matos, C.C.; Cosme, F.; Nunes, F.M. Reduction of 4-ethylphenol and 4-ethylguaiacol in red wine by activated carbons with different physicochemical characteristics: Impact on wine quality. Food Chem. 2017, 229, 242–251. [Google Scholar] [CrossRef]
- Adams, D.O.; Harbertson, J.F.; Picciotto, E.A.; Avenue, O.S. Fractionation of Red Wine Polymeric Pigments by Protein Precipitation and Bisulfite Bleaching. Red Wine Color 2004, 17, 275–288. [Google Scholar] [CrossRef]
- Vás, G.; Gál, L.; Harangi, J.; Dobó, A.; Vékey, K. Determination of volatile compounds of Blaufrankisch wines extracted by solid-phase microextraction. J. Chromatogr. Sci. 1998, 36, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Umpleby, R.J., II; Baxter, S.C.; Chen, Y.; Shah, R.N.; Shimizu, K.D. Characterization of Molecularly Imprinted Polymers with the Langmuir-Freundlich Isotherm. Anal. Chem. 2001, 73, 4584–4591. [Google Scholar] [CrossRef]
Wine | TCA Remaining (ng/L) | OAV |
---|---|---|
Wine with 3 ng/L of TCA | ||
0.10 g/L | 2.25 ± 0.35 a | 0.56 |
0.25 g/L | 1.95 ± 0.25 a | 0.49 |
0.50 g/L | 1.35 ± 0.25 a | 0.34 |
Wine with 6 ng/L of TCA | ||
0.10 g/L | 3.30 ± 0.40 a | 0.83 |
0.25 g/L | 0.55 ± 1.05 a | 0.14 |
0.50 g/L | 1.40 ± 0.30 a | 0.35 |
Wine | Total Phenolic Compounds (mg/L) | Color Intensity a.u. | Hue | L* | a* | b* | C* | h° | ΔE* |
---|---|---|---|---|---|---|---|---|---|
Control | 1544 ± 187 a | 15.02 ± 0.24 a | 0.71 ± 0.00 a | 70.1 ± 0.5 a | 35.05 ± 0.96 a | 7.06 ± 0.15 a | 35.75 ± 0.96 a | 0.20 ± 0.01 a | - |
0.10 g/L | 1694 ± 263 a | 15.14 ± 0.53 a | 0.71 ± 0.02 a | 69.6 ± 0.7 a | 35.21 ± 1.95 a | 7.08 ± 0.49 a | 35.92 ± 2.00 a | 0.20 ± 0.01 a | 1.79 ± 1.11 a |
0.25 g/L | 1425 ± 199 a | 14.79 ± 0.07 a | 0.71 ± 0.00 a | 70.2 ± 0.7 a | 34.21 ± 0.31 a | 7.06 ± 0.13 a | 35.04 ± 0.32 a | 0.20 ± 0.00 a | 1.45 ± 0.33 a |
0.50 g/L | 1513 ± 224 a | 14.83 ± 0.29 a | 0.71 ± 0.01 a | 70.1 ± 0.7 a | 34.21 ± 0.31 a | 7.11 ± 0.35 a | 34.94 ± 0.36 a | 0.20 ± 0.01 a | 1.11 ± 0.64 a |
Wine | Total Pigments a.u. | Polymeric Pigments (SPPs + LPPs) a.u. | SPPs a.u. | LPPs a.u. | Monomeric Anthocyanins a.u. | Tannins a.u. |
---|---|---|---|---|---|---|
Control | 5.27 ± 0.09 a | 2.54 ± 0.05 a | 1.53 ± 0.05 a | 1.00 ± 0.08 a | 2.74 ± 0.04 a | 0.81 ± 0.47 a |
0.10 g/L | 5.29 ± 0.09 a | 2.54 ± 0.06 a | 1.67 ± 0.30 a | 0.87 ± 0.31 a | 2.75 ± 0.04 a | 0.87 ± 0.03 a |
0.25 g/L | 5.26 ± 0.15 a | 2.52 ± 0.08 a | 1.51 ± 0.07 a | 1.01 ± 0.10 a | 2.74 ± 0.07 a | 0.80 ± 0.24 a |
0.50 g/L | 5.38 ± 0.23 a | 2.59 ± 0.10 a | 1.51 ± 0.14 a | 1.08 ± 0.16 a | 2.79 ± 0.14 a | 1.15 ± 0.75 a |
Wine | Catechin | Gallic Acid | trans-Caftaric Acid | Coutaric Acid Isomer | Coutaric Acid | Caffeic Acid | p-Coumaric Acid | Ferulic Acid | Ethyl Ester of Caffeic Acid | Ethyl Ester of Coumaric Acid |
---|---|---|---|---|---|---|---|---|---|---|
Control | 7.36 ± 1.43 a | 20.34 ± 0.49 a | 5.57 ± 0.20 a | 6.56 ± 0.14 a | 2.20 ± 0.28 a | 3.16 ± 0.15 a | 1.53 ± 0.08 a | 0.76 ± 0.12 a | 0.37 ± 0.01 a | 1.66 ± 0.06 b |
0.10 g/L | 7.73 ± 1.14 a | 20.63 ± 0.24 a | 5.53 ± 0.38 a | 6.46 ± 0.73 a | 1.90 ± 0.43 a | 3.18 ± 0.16 a | 1.56 ± 0.24 a | 0.96 ± 0.43 a | 0.36 ± 0.03 a | 1.48 ± 0.11 a |
0.25 g/L | 8.29 ± 0.93 a | 20.31 ± 0.35 a | 5.76 ± 0.05 a | 6.64 ± 0.24 a | 2.20 ± 0.34 a | 3.10 ± 0.24 a | 1.68 ± 0.14 a | 0.82 ± 0.14 a | 0.37 ± 0.03 a | 1.49 ± 0.19 b |
0.50 g/L | 8.02 ± 0.65 a | 20.65 ± 0.21 a | 5.48 ± 0.39 a | 6.45 ± 0.63 a | 2.22 ± 0.37 a | 3.02 ± 0.20 a | 1.47 ± 0.17 a | 0.70 ± 0.04 a | 0.36 ± 0.01 a | 1.52 ± 0.10 ab |
Wine | D-3-G | C-3-G | Pet-3-G | Peo-3-G | M-3-G | D-3-A | Pet-3-A | Peo-3-A | M-3-A | C-3-C | M-3-C | Total Monomeric Anthocyanins |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1.11 ± 0.06 a | 4.65 ± 0.35 a | 6.88 ± 0.34 a | 5.56 ± 0.11 a | 32.22 ± 0.43 a | 0.28 ± 0.03 a | 0.46 ± 0.04 a | 0.08 ± 0.16 a | 4.27 ± 0.56 a | 0.38 ± 0.03 a | 5.15 ± 0.37 a | 61.05 ± 0.72 a |
0.10 g/L | 1.04 ± 0.17 a | 4.46 ± 0.17 a | 6.96 ± 0.18 | 5.55 ± 0.38 a | 32.10 ± 1.75 a | 0.24 ± 0.16 a | 0.51 ± 0.21 a | 0.08 ± 0.16 a | 4.18 ± 0.48 a | 0.36 ± 0.06 a | 4.79 ± 0.96 a | 60.27 ± 1.20 a |
0.25 g/L | 1.01 ± 0.14 a | 4.65 ± 0.16 a | 6.78 ± 0.31 a | 5.59 ± 0.34 a | 31.98 ± 1.08 a | 0.21 ± 0.15 a | 0.51 ± 0.11 a | 0.18 ± 0.20 a | 4.26 ± 0.34 a | 0.35 ± 0.07 a | 5.17 ± 0.20 a | 60.69 ± 1.40 a |
0.50 g/L | 0.98 ± 0.12 a | 4.32 ± 0.25 a | 6.70 ± 0.14 a | 5.30 ± 0.60 a | 31.92 ± 1.29 a | 0.22 ± 0.17 a | 0.59 ± 0.14 a | 0.23 ± 0.17 a | 4.55 ± 0.18 a | 0.42 ± 0.12 a | 5.24 ± 0.28 a | 60.46 ± 1.89 a |
Peak | Compound | RI | Aroma Descriptors | With Re-Equilibration | Without Re-Equilibration | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | 0.10 g/L | 0.25 g/L | 0.50 g/L | Control | 0.10 g/L | 0.25 g/L | 0.50 g/L | ||||
1 | Hexanal ** | 1083 | Green, woody, vegetative, apple, grassy, citrus, and orange | 0.19 ± 0.01 a | 0.13 ± 0.01 b | 0.14 ± 0.01 b | 0.13 ± 0.01 b | 0.038 ± 0.002 a | 0.034 ± 0.003 a,b | 0.029 ± 0.001 a,b | 0.027 ± 0.004 b |
2 | Acetaldehyde ethyl amyl acetal ** | 1098 | 0.31 ± 0.02 a | 0.26 ± 0.00 a,b | 0.26 ± 0.00 a,b | 0.24 ± 0.01 b | 0.023 ± 0.000 a | 0.022 ± 0.001 a | 0.024 ± 0.000 a | 0.021 ± 0.003 a | |
3 | Isoamyl acetate * | 1144 | Banana | 5.09 ± 0.47 a | 3.67 ± 0.42 b | 3.37 ± 0.12 b | 3.16 ± 0.24 b | 1.02 ± 0.07 a | 1.16 ± 0.04 a | 1.01 ± 0.04 a | 0.71 ± 0.02 b |
4 | Isoamyl alcohol * | 1194 | Alcohol, floral, cheese | 40.6 ± 4.8 a | 34.1 ± 1.1 a | 33.9 ± 0.3 a | 32.0 ± 1.7 a | 7.89 ± 0.25 a | 8.19 ± 0.07 a | 8.26 ± 0.13 a | 8.06 ± 0.02 a |
5 | Ethyl hexanoate * | 1203 | Fruity, strawberry, green apple, anise | 29.7 ± 3.4 a | 23.5 ± 0.4 a,b | 22.2 ± 0.4 b | 20.2 ± 0.6 b | 2.90 ± 0.07 a | 3.05 ± 0.06 a | 3.07 ± 0.09 a | 2.86 ± 0.03 a |
6 | p-Cymene ** | 1223 | Fruity, sweet | 0.20 ± 0.01 a | 0.17 ± 0.00 b | 0.15 ± 0.00 c | 0.12 ± 0.01 d | 0.030 ± 0.001 a | 0.024 ± 0.001 b | 0.025 ± 0.000 b | 0.019 ± 0.001 c |
7 | Hexanol * | 1340 | Green grass | 0.21 ± 0.0 a | 0.18 ± 0.01 a,b | 0.17 ± 0.00 b | 0.17 ± 0.00 b | 0.031 ± 0.001 a | 0.031 ± 0.001 a | 0.029 ± 0.001 a | 0.029 ± 0.001 a |
8 | Ethyl octanoate * | 1418 | Sweet, fruit, fresh, pineapple, pear, floral | 320 ± 29 a | 248 ± 3 b | 220 ± 2 b | 190 ± 2 b | 10.4 ± 0.1 a | 10.3 ± 0.4 a | 9.88 ± 0.47 a,b | 8.76 ± 0.23 b |
9 | Isopentyl hexnaoate ** | 1420 | Fruity, banana, apple, pineapple, green | 0.04 ± 0.00 a | 0.02 ± 0.01 a,b | 0.02 ± 0.00 a,b | 0.02 ± 0.00 b | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a | 0.001 ± 0.000 a |
10 | Terpinen-4-ol acetate ** | 1462 | Peppery, woody, earthy, musty, sweet | 0.21 ± 0.00 a | 0.19 ± 0.00 b | 0.17 ± 0.00 b | 0.15 ± 0.01 c | 0.003 ± 0.000 a | 0.003 ± 0.000 a | 0.002 ± 0.000 a,b | 0.002 ± 0.000 b |
11 | Vitispirane A ** | 1475 | Fruity, floral, earthy, woody, camphor, eucalyptus, spice | 1.50 ± 0.10 a | 1.25 ± 0.00 b | 1.10 ± 0.00 b,c | 0.95 ± 0.02 c | 0.025 ± 0.000 a | 0.026 ± 0.001 a | 0.023 ± 0.000 b | n.d. c |
12 | Vitispirane B ** | 1487 | Floral, camphor, eucalyptus, spice, wood | 0.51 ± 0.03 a | 0.45 ± 0.00 a,b | 0.41 ± 0.01 b,c | 0.34 ± 0.01 d | 0.009 ± 0.000 a | 0.010 ± 0.000 a | 0.009 ± 0.001 a | n.d.b |
13 | Ethyl decanoate * | 1625 | Grape, pleasant, soap | 153 ± 16 a | 105 ± 3 b | 80.9 ± 1.8 c,d | 57.0 ± 1.6 d | 6.65 ± 0.14 a | 6.47 ± 0.45 a | 5.35 ± 0.47 a,b | 4.48 ± 0.36 b |
14 | 3-methylbutanoic acid ** | 1672 | Cheese, fatty, rancid | 0.07 ± 0.00 a | 0.07 ± 0.00 a | 0.07 ± 0.00 a | 0.07 ± 0.01 a | 0.006 ± 0.000 a | 0.004 ± 0.000 b | 0.004 ± 0.000 b,c | 0.003 ± 0.000 c |
15 | Diethyl succinate * | 1683 | Fruity, apple, cooked apple, ylang | 104 ± 4 a | 95.6 ± 0.6 a | 96.1 ± 5.2 a | 91.1 ± 9.1 a | 3.76 ± 0.21 a | 4.27 ± 0.06 b | 3.23 ± 0.02 c | 3.18 ± 0.04 c |
16 | 1,1,6-trimethyl-1,2-dihydronaphatalene (TDN) ** | 1716 | Floral, fruit, pleasant, | 8.59 ± 0.75 a | 5.02 ± 0.26 b | 3.66 ± 0.03 c,d | 2.70 ± 0.16 d | 0.59 ± 0.03 a | 0.50 ± 0.02 b | 0.46 ± 0.01 b,c | 0.42 ± 0.01 c |
17 | Phenylethyl acetate * | 1815 | Roses, flowery | 1.49 ± 0.00 a | 1.50 ± 0.23 a | 1.17 ± 0.10 a | 1.06 ± 0.04 a | 0.012 ± 0.001 a | n.d.b | n.d.b | n.d.b |
18 | Ethyl dodecanoate * | 1819 | Flowery, fruity | 7.31 ± 0.44 a | 3.76 ± 0.00 b | 2.21 ± 0.40 c | 1.17 ± 0.15 c | 0.39 ± 0.04 a | 0.32 ± 0.04 a,b | 0.19 ± 0.03 b | 0.19 ± 0.03 b |
19 | Benzyl alcohol * | 1885 | Floral, citrusy, sweet | 0.18 ± 0.01 a | 0.19 ± 0.00 a | 0.18 ± 0.00 a | 0.18 ± 0.03 a | 0.007 ± 0.000 a | 0.006 ± 0.000 a | 0.006 ± 0.000 a | 0.006 ± 0.001 a |
20 | Phenylethanol * | 1919 | Roses, sweet | 163 ± 3 a | 145 ± 9 a | 145 ± 4 a | 158 ± 24 a | 3.81 ± 0.28 a | 2.75 ± 0.16 b | 2.68 ± 0.28 b | 2.40 ± 0.02 b |
21 | β-Caryophyllene oxide ** | 2005 | Sweet, fresh, dry, woody, spicy | 1.70 ± 0.05 a | 1.21 ± 0.10 b | 0.88 ± 0.01 c | 0.68 ± 0.03 c | 0.042 ± 0.001 a | n.d.b | n.d.b | n.d.b |
22 | Octanoic acid * | 2061 | Fatty acid, rancid | 10.4 ± 0.7 a | 6.44 ± 0.18 b | 5.97 ± 0.37 b | 5.71 ± 0.63 b | 0.25 ± 0.02 a | 0.21 ± 0.01 a | 0.12 ± 0.01 b | 0.13 ± 0.02 b |
23 | Ethyl hexadecanoate * | 2255 | Fatty, rancid, fruity, sweet | 0.06 ± 0.00 a | 0.03 ± 0.01 b | 0.03 ± 0.00 b | 0.02 ± 0.00 b | 0.006 ± 0.001 a | n.d.b | n.d.b | n.d.b |
24 | Decanoic acid * | 2281 | Fatty, rancid, soap | 3.35 ± 0.15 a | 2.82 ± 0.98 a | 1.89 ± 0.13 a | 1.54 ± 0.22 a | 0.10 ± 0.01 a | n.d.b | n.d.b | n.d.b |
25 | Ethyl hydrogen succinate ** | 2378 | Sweet, sour, fruity | 2.24 ± 0.09 a | 1.99 ± 0.50 a,b | 1.10 ± 0.01 b | 2.10 ± 0.16 a,b | 0.096 ± 0.007 a | 0.071 ± 0.003 b | 0.056 ± 0.005 b | n.d.c |
26 | Dodecanoic acid * | 2464 | Fatty, acidic, soapy, waxy | 0.03 ± 0.00 a | 0.02 ± 0.01 a,b | 0.01 ± 0.01 a,b | 0.01 ± 0.00 b | 0.003 ± 0.001 a | 0.003 ± 0.000 a | 0.002 ± 0.000 a,b | n.d. b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosme, F.; Gomes, S.; Vilela, A.; Filipe-Ribeiro, L.; Nunes, F.M. Air-Depleted and Solvent-Impregnated Cork Powder as a New Natural and Sustainable Fining Agent for Removal of 2,4,6-Trichloroanisole (TCA) from Red Wines. Molecules 2022, 27, 4614. https://doi.org/10.3390/molecules27144614
Cosme F, Gomes S, Vilela A, Filipe-Ribeiro L, Nunes FM. Air-Depleted and Solvent-Impregnated Cork Powder as a New Natural and Sustainable Fining Agent for Removal of 2,4,6-Trichloroanisole (TCA) from Red Wines. Molecules. 2022; 27(14):4614. https://doi.org/10.3390/molecules27144614
Chicago/Turabian StyleCosme, Fernanda, Sara Gomes, Alice Vilela, Luís Filipe-Ribeiro, and Fernando M. Nunes. 2022. "Air-Depleted and Solvent-Impregnated Cork Powder as a New Natural and Sustainable Fining Agent for Removal of 2,4,6-Trichloroanisole (TCA) from Red Wines" Molecules 27, no. 14: 4614. https://doi.org/10.3390/molecules27144614
APA StyleCosme, F., Gomes, S., Vilela, A., Filipe-Ribeiro, L., & Nunes, F. M. (2022). Air-Depleted and Solvent-Impregnated Cork Powder as a New Natural and Sustainable Fining Agent for Removal of 2,4,6-Trichloroanisole (TCA) from Red Wines. Molecules, 27(14), 4614. https://doi.org/10.3390/molecules27144614