Trends on CO2 Capture with Microalgae: A Bibliometric Analysis
Abstract
:1. Introduction
2. Bibliometric Analysis for CO2 Capture with Microalgae
3. Value-Added Energy Products
4. Life Cycle in CO2 Capture with Microalgae
5. Research Opportunities in CO2 Capture with Microalgae
6. Global Microalgae Market
Company | Applications | Developments and Projections | References |
---|---|---|---|
ExxonMobil | Biofuels | 10,000 barrels of microalgae biofuels per day by 2025 | [97] |
Ecoduna | Nutraceutical | Increase production mainly in the food sector | [100] |
Heliae | Agriculture | PhycoTerra® products | [101] |
Chlorella Industry Co., LTD | Medical, pharmaceutical, and nutritional science | Manufacture and sales of Chlorella products | [102] |
Cellana | Human health, biofuel feedstock, and animal health | ReNew™ products | [103] |
PureBiomass In | Cultivation technologies | Development of cultivation systems for microalgae | [104] |
Algoliner | Cultivation technologies | Development of cultivation systems for microalgae | [105] |
Algomed | Nutraceutical | Manufacture and sales of Chlorella products | [106] |
Helios NRG | Technology development and consulting group | Development of cultivation systems for microalgae | [107] |
Carbon BioCaptur | Technology development and consulting group | Development of cultivation systems for microalgae | [108] |
Algabt | Carotenoid production | Development of bioproducts for nutraceutical, cosmetic, pharmaceutical, and aquaculture markets. | [109] |
Earthrise Californian Spirulina | Nutraceutical | Manufacture and sales of Spirulina products | [110] |
7. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Khezri, M.; Heshmati, A.; Khodaei, M. Environmental implications of economic complexity and its role in determining how renewable energies affect CO2 emissions. Appl. Energy 2022, 306, 117948. [Google Scholar] [CrossRef]
- Haider, M.B.; Maheshwari, P.; Kumar, R. CO2 capture from flue gas using phosphonium based deep eutectic solvents: Modeling and simulation approach. J. Environ. Chem. Eng. 2021, 9, 106727. [Google Scholar] [CrossRef]
- Yuan, B.; Zhan, G.; Chen, Z.; Li, Y.; Wang, L.; You, C.; Li, J. Intrinsic insight of energy-efficiency optimization for CO2 capture by amine-based solvent: Effect of mass transfer and solvent regeneration. SSRN Electron. J. 2022, 118, 103673. [Google Scholar] [CrossRef]
- Daneshvar, E.; Wicker, R.J.; Show, P.-L.; Bhatnagar, A. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization—A review. Chem. Eng. J. 2022, 427, 130884. [Google Scholar] [CrossRef]
- Escobar, D.A.; Sarache, G.W.; Jiménez-Riaño, E. The impact of a new aerial cable-car project on accessibility and CO2 emissions considering socioeconomic stratum. A case study in Colombia. J. Clean. Prod. 2022, 340, 130802. [Google Scholar] [CrossRef]
- Qin, Y. Does environmental policy stringency reduce CO2 emissions? Evidence from high-polluted economies. J. Clean. Prod. 2022, 341, 130648. [Google Scholar] [CrossRef]
- Espoir, D.K.; Sunge, R. CO2 emissions and economic development in Africa: Evidence from a dynamic spatial panel model. J. Environ. Manag. 2021, 300, 113617. [Google Scholar] [CrossRef]
- Grimm, I.J.; Alcântara, L.C.S.; Sampaio, C.A.C. O turismo no cenário das mudanças climáticas: Impactos, possibilidades e desafios. Rev. Bras. Pesqui. Tur. 2018, 12, 1–22. [Google Scholar] [CrossRef]
- Cheng, Y.W.; Lim, J.S.M.; Chong, C.C.; Lam, M.K.; Lim, J.W.; Tan, I.S.; Foo, H.C.Y.; Show, P.L.; Lim, S. Unravelling CO2 capture performance of microalgae cultivation and other technologies via comparative carbon balance analysis. J. Environ. Chem. Eng. 2021, 9, 106519. [Google Scholar] [CrossRef]
- Atsu, F.; Adams, S. Energy consumption, finance, and climate change: Does policy uncertainty matter? Econ. Anal. Policy 2021, 70, 490–501. [Google Scholar] [CrossRef]
- Cheng, P.; Li, Y.; Wang, C.; Guo, J.; Zhou, C.; Zhang, R.; Ma, Y.; Ma, X.; Wang, L.; Cheng, Y.; et al. Integrated marine microalgae biorefineries for improved bioactive compounds: A review. Sci. Total Environ. 2022, 817, 152895. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Hernández, J.E.; Escobedo-Avellaneda, Z.; Iqbal, H.M.N.; Welti-Chanes, J. State-of-the-Art Extraction Methodologies for Bioactive Compounds from Algal Biome to Meet Bio-Economy Challenges and Opportunities. Molecules 2018, 23, 2953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosa-Hernández, J.E.; Romero-Castillo, K.D.; Parra-Arroyo, L.; Aguilar-Aguila-Isaías, M.A.; García-Reyes, I.E.; Ahmed, I.; Parra-Saldivar, R.; Bilal, M.; Iqbal, H.M.N. Mexican Microalgae Biodiversity and State-Of-The-Art Extraction Strategies to Meet Sustainable Circular Economy Challenges: High-Value Compounds and Their Applied Perspectives. Mar. Drugs 2019, 17, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, D.; He, N.; Khoo, K.S.; Ng, E.-P.; Chew, K.W.; Ling, T.C. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. Chemosphere 2021, 291, 132932. [Google Scholar] [CrossRef]
- Rezvani, F.; Sarrafzadeh, M.-H.; Oh, H.-M. Hydrogen producer microalgae in interaction with hydrogen consumer denitrifiers as a novel strategy for nitrate removal from groundwater and biomass production. Algal Res. 2020, 45, 101747. [Google Scholar] [CrossRef]
- Cuellar-Bermudez, S.P.; Garcia-Perez, J.S.; Rittmann, B.E.; Parra-Saldivar, R. Photosynthetic bioenergy utilizing CO2: An approach on flue gases utilization for third generation biofuels. J. Clean. Prod. 2015, 98, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Al-Jabri, H.; Das, P.; Khan, S.; AbdulQuadir, M.; Thaher, M.I.; Hoekman, K.; Hawari, A.H. A comparison of bio-crude oil production from five marine microalgae—Using life cycle analysis. Energy 2022, 251, 123954. [Google Scholar] [CrossRef]
- Lozano-Garcia, D.F.; Cuellar-Bermudez, S.P.; del Rio-Hinojosa, E.; Betancourt, F.; Aleman-Nava, G.S.; Parra, R. Potential land microalgae cultivation in Mexico: From food production to biofuels. Algal Res. 2019, 39, 101459. [Google Scholar] [CrossRef]
- García, G.; Eduardo, J.; Rodas-zuluaga, L.I.; Castillo-zacar, C.; Iqbal, H.; Parra-Saldívar, R. Accumulation of PHA in the Microalgae Scenedesmus sp. under nutrient-deficient conditions. Polymers 2021, 13, 131. [Google Scholar] [CrossRef]
- Devadas, V.V.; Khoo, K.S.; Chia, W.Y.; Chew, K.W.; Munawaroh, H.S.H.; Lam, M.-K.; Lim, J.-W.; Ho, Y.-C.; Lee, K.T.; Show, P.L. Algae biopolymer towards sustainable circular economy. Bioresour. Technol. 2021, 325, 124702. [Google Scholar] [CrossRef]
- Sirohi, R.; Lee, J.S.; Yu, B.S.; Roh, H.; Sim, S.J. Sustainable production of polyhydroxybutyrate from autotrophs using CO2 as feedstock: Challenges and opportunities. Bioresour. Technol. 2021, 341, 125751. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Beigbeder, J.-B.; Sanglier, M.; Dantas, J.M.D.M.; Lavoie, J.-M. CO2 capture and inorganic carbon assimilation of gaseous fermentation effluents using Parachlorella kessleri microalgae. J. CO2 Util. 2021, 50, 101581. [Google Scholar] [CrossRef]
- Onyeaka, H.; Miri, T.; Obileke, K.; Hart, A.; Anumudu, C.; Al-Sharify, Z.T. Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Sci. Technol. 2021, 1, 100007. [Google Scholar] [CrossRef]
- Raslavičius, L.; Striūgas, N.; Felneris, M. New insights into algae factories of the future. Renew. Sustain. Energy Rev. 2018, 81, 643–654. [Google Scholar] [CrossRef]
- Collet, P.; Hélias, A.; Lardon, L.; Steyer, J.-P.; Bernard, O. Recommendations for Life Cycle Assessment of algal fuels. Appl. Energy 2015, 154, 1089–1102. [Google Scholar] [CrossRef]
- Ghorbani, A.; Rahimpour, H.R.; Ghasemi, Y.; Zoughi, S.; Rahimpour, M.R. A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran. Renew. Sustain. Energy Rev. 2014, 35, 73–100. [Google Scholar] [CrossRef]
- European Commission, CORDIS. Industrial Scale Demonstration of Sustainable Algae Cultures for Biofuel Production. ALL-GAS Project. Fact Sheet. FP7. 2016. Available online: https://cordis.europa.eu/project/id/268208 (accessed on 5 July 2022).
- European Commission, CORDIS. Improving Photosynthetic Solar Energy Conversion in Microalgal Cultures for the Production of Biofuels and High Value Products. SOLENALGAE Project. Fact Sheet. H2020. 2021. Available online: https://cordis.europa.eu/project/id/679814 (accessed on 5 July 2022).
- European Commission, CORDIS. Periodic Reporting for Period 2—INTERCOME (International Commercialization of Innovative Products Based on MicroalgaE). H2020. 2018. Available online: https://cordis.europa.eu/project/id/733487/reporting (accessed on 5 July 2022).
- Tchobanian, A.; Van Oosterwyck, H.; Fardim, P. Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydr. Polym. 2019, 205, 601–625. [Google Scholar] [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Mac Dowell, N.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Hussain, M.Z.; Prasad, S.; Banerjee, U. Prospects of biodiesel production from microalgae in India. Renew. Sustain. Energy Rev. 2009, 13, 2361–2372. [Google Scholar] [CrossRef]
- Ho, S.-H.; Chen, C.-Y.; Lee, D.-J.; Chang, J.-S. Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnol. Adv. 2011, 29, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Parmar, A.; Singh, N.K.; Pandey, A.; Gnansounou, E.; Madamwar, D. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour. Technol. 2011, 102, 10163–10172. [Google Scholar] [CrossRef] [PubMed]
- Razzak, S.A.; Hossain, M.M.; Lucky, R.A.; Bassi, A.S.; de Lasa, H. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renew. Sustain. Energy Rev. 2013, 27, 622–653. [Google Scholar] [CrossRef]
- Pires, J.; Alvim-Ferraz, M.; Martins, F.; Simões, M. Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 2012, 16, 3043–3053. [Google Scholar] [CrossRef]
- Pate, R.; Klise, G.; Wu, B. Resource demand implications for US algae biofuels production scale-up. Appl. Energy 2011, 88, 3377–3388. [Google Scholar] [CrossRef]
- Wang, B.; Lan, C.Q.; Horsman, M. Closed photobioreactors for production of microalgal biomasses. Biotechnol. Adv. 2012, 30, 904–912. [Google Scholar] [CrossRef]
- Sayre, R. Microalgae: The Potential for Carbon Capture. BioScience 2010, 60, 722–727. [Google Scholar] [CrossRef]
- Verma, R.; Suthar, S.; Chand, N.; Mutiyar, P.K. Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system. Sci. Total Environ. 2022, 833, 155110. [Google Scholar] [CrossRef]
- Zhang, P.; Feng, L.; Su, B.; Li, X. Microalgae cultivated in wastewater catalytic hydrothermal liquefaction: Effects of process parameter on products and energy balance. J. Clean. Prod. 2022, 341, 130895. [Google Scholar] [CrossRef]
- de Mendonça, H.V.; Otenio, M.H.; Marchão, L.; Lomeu, A.; de Souza, D.S.; Reis, A. Biofuel recovery from microalgae biomass grown in dairy wastewater treated with activated sludge: The next step in sustainable production. Sci. Total Environ. 2022, 824, 153838. [Google Scholar] [CrossRef]
- Katiyar, R.; Gurjar, B.; Biswas, S.; Pruthi, V.; Kumar, N.; Kumar, P. Microalgae: An emerging source of energy based bio-products and a solution for environmental issues. Renew. Sustain. Energy Rev. 2017, 72, 1083–1093. [Google Scholar] [CrossRef] [Green Version]
- Suastes-Rivas, J.K.; Hernández-Altamirano, R.; Mena-Cervantes, V.Y.; Gómez, E.J.B.; Chairez, I. Biodiesel production, through intensification and profitable distribution of fatty acid methyl esters by a microalgae-yeast co-culture, isolated from wastewater as a function of the nutrients’ composition of the culture media. Fuel 2020, 280, 118633. [Google Scholar] [CrossRef]
- Subhash, G.V.; Rohit, M.; Devi, M.P.; Swamy, Y.; Mohan, S.V. Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater. Bioresour. Technol. 2014, 169, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Park, S.; Ji, M.-K.; Ha, G.-S.; Jeon, B.-H.; Choi, J. Biodiesel production potential of microalgae, cultivated in acid mine drainage and livestock wastewater. J. Environ. Manag. 2022, 314, 115031. [Google Scholar] [CrossRef]
- Ianda, T.F.; Kalid, R.D.A.; Rocha, L.B.; Padula, A.D.; Zimmerman, W.B. Techno-economic modeling to produce biodiesel from marine microalgae in sub-Saharan countries: An exploratory study in Guinea-Bissau. Biomass Bioenergy 2022, 158, 106369. [Google Scholar] [CrossRef]
- Mondal, M.; Goswami, S.; Ghosh, A.; Oinam, G.; Tiwari, O.N.; Das, P.; Gayen, K.; Mandal, M.K.; Halder, G.N. Production of biodiesel from microalgae through biological carbon capture: A review. 3 Biotech 2017, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Yang, H.; Hu, C. Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with open raceway pond. Bioresour. Technol. 2016, 218, 571–579. [Google Scholar] [CrossRef]
- Dasan, Y.K.; Lam, M.K.; Yusup, S.; Lim, J.W.; Lee, K.T. Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. Sci. Total Environ. 2019, 688, 112–128. [Google Scholar] [CrossRef]
- Molinuevo-Salces, B.; Mahdy, A.; Ballesteros, M.; González-Fernández, C. From piggery wastewater nutrients to biogas: Microalgae biomass revalorization through anaerobic digestion. Renew. Energy 2016, 96, 1103–1110. [Google Scholar] [CrossRef]
- Sun, C.-H.; Fu, Q.; Liao, Q.; Xia, A.; Huang, Y.; Zhu, X.; Reungsang, A.; Chang, H.-X. Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems. Energy 2019, 171, 1033–1045. [Google Scholar] [CrossRef]
- Xiao, C.; Fu, Q.; Liao, Q.; Huang, Y.; Xia, A.; Chen, H.; Zhu, X. Life cycle and economic assessments of biogas production from microalgae biomass with hydrothermal pretreatment via anaerobic digestion. Renew. Energy 2020, 151, 70–78. [Google Scholar] [CrossRef]
- Djandja, O.S.; Wang, Z.; Chen, L.; Qin, L.; Wang, F.; Xu, Y.-P.; Duan, P.-G. Progress in Hydrothermal Liquefaction of Algal Biomass and Hydrothermal Upgrading of the Subsequent Crude Bio-Oil: A Mini Review. Energy Fuels 2020, 34, 11723–11751. [Google Scholar] [CrossRef]
- Leng, L.; Zhang, W.; Peng, H.; Li, H.; Jiang, S.; Huang, H. Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: A review. Chem. Eng. J. 2020, 401, 126030. [Google Scholar] [CrossRef]
- Gu, X.; Martinez-Fernandez, J.; Pang, N.; Fu, X.; Chen, S. Recent development of hydrothermal liquefaction for algal biorefinery. Renew. Sustain. Energy Rev. 2020, 121, 109707. [Google Scholar] [CrossRef]
- Tian, C.; Li, B.; Liu, Z.; Zhang, Y.; Lu, H. Hydrothermal liquefaction for algal biorefinery: A critical review. Renew. Sustain. Energy Rev. 2014, 38, 933–950. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, J.; Chen, M.; Zhao, G.; Wu, S. Influence of catalyst and solvent on the hydrothermal liquefaction of woody biomass. Bioresour. Technol. 2022, 346, 126354. [Google Scholar] [CrossRef]
- Chakraborty, M.; Miao, C.; McDonald, A.; Chen, S. Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology. Fuel 2012, 95, 63–70. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Pan, W.; An, G.; Deng, Y.; Li, Y.; Hu, Y.; Xiao, Y.; Liu, T.; Leng, S.; et al. A novel strategy to simultaneously enhance bio-oil yield and nutrient recovery in sequential hydrothermal liquefaction of high protein microalgae. Energy Convers. Manag. 2022, 255, 115330. [Google Scholar] [CrossRef]
- Shahi, T.; Beheshti, B.; Zenouzi, A.; Almasi, M. Bio-oil production from residual biomass of microalgae after lipid extraction: The case of Dunaliella sp. Biocatal. Agric. Biotechnol. 2020, 23, 101494. [Google Scholar] [CrossRef]
- Ren, R.; Han, X.; Zhang, H.; Lin, H.; Zhao, J.; Zheng, Y.; Wang, H. High yield bio-oil production by hydrothermal liquefaction of a hydrocarbon-rich microalgae and biocrude upgrading. Carbon Resour. Convers. 2018, 1, 153–159. [Google Scholar] [CrossRef]
- Chew, K.W.; Chia, S.R.; Show, P.L.; Yap, Y.J.; Ling, T.C.; Chang, J.-S. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. J. Taiwan Inst. Chem. Eng. 2018, 91, 332–344. [Google Scholar] [CrossRef]
- Obeid, F.; Van, T.C.; Brown, R.; Rainey, T. Nitrogen and sulphur in algal biocrude: A review of the HTL process, upgrading, engine performance and emissions. Energy Convers. Manag. 2019, 181, 105–119. [Google Scholar] [CrossRef]
- Palomino, A.; Godoy-Silva, R.D.; Raikova, S.; Chuck, C.J. The storage stability of biocrude obtained by the hydrothermal liquefaction of microalgae. Renew. Energy 2020, 145, 1720–1729. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, C.; Yang, X. Optimizing process of hydrothermal liquefaction of microalgae via flash heating and isolating aqueous extract from bio-crude. J. Clean. Prod. 2020, 258, 120660. [Google Scholar] [CrossRef]
- Huang, Z.; Wufuer, A.; Wang, Y.; Dai, L. Hydrothermal liquefaction of pretreated low-lipid microalgae for the production of bio-oil with low heteroatom content. Process Biochem. 2018, 69, 136–143. [Google Scholar] [CrossRef]
- Miranda, A.M.; Ocampo, D.; Vargas, G.J.; Ríos, L.A.; Sáez, A.A. Nitrogen content reduction on scenedesmus obliquus biomass used to produce biocrude by hydrothermal liquefaction. Fuel 2021, 305, 121592. [Google Scholar] [CrossRef]
- Porto, B.; Gonçalves, A.L.; Esteves, A.F.; de Souza, S.M.G.U.; de Souza, A.A.; Vilar, V.J.; Pires, J.C. Assessing the potential of microalgae for nutrients removal from a landfill leachate using an innovative tubular photobioreactor. Chem. Eng. J. 2021, 413, 127546. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef]
- Di Caprio, F.; Nguemna, L.T.; Stoller, M.; Giona, M.; Pagnanelli, F. Microalgae cultivation by uncoupled nutrient supply in sequencing batch reactor (SBR) integrated with olive mill wastewater treatment. Chem. Eng. J. 2021, 410, 128417. [Google Scholar] [CrossRef]
- Axelsson, L.; Franzén, M.; Ostwald, M.; Berndes, G.; Lakshmi, G.; Ravindranath, N.H. Perspective: Jatropha cultivation in southern India: Assessing farmers’ experiences. Biofuels Bioprod. Biorefin. 2012, 6, 246–256. [Google Scholar] [CrossRef]
- Wu, W.; Lei, Y.-C.; Chang, J.-S. Life cycle assessment of upgraded microalgae-to-biofuel chains. Bioresour. Technol. 2019, 288, 121492. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Liu, Q.; Qi, Y.; Chen, G.; Song, Y.; Kansha, Y.; Kitamura, Y. Absorption-microalgae hybrid CO2 capture and biotransformation strategy—A review. Int. J. Greenh. Gas Control 2019, 88, 109–117. [Google Scholar] [CrossRef]
- Zaimes, G.G.; Khanna, V. Microalgal biomass production pathways: Evaluation of life cycle environmental impacts. Biotechnol. Biofuels 2013, 6, 88. [Google Scholar] [CrossRef] [Green Version]
- Valentina, R.; Luisa, D.P.; Vincenzo, P.; Angelo, B.; Marcello, D.F.; Alessandro, G. Are biofuels sustainable? An LCA/multivariate perspective on feedstocks and processes. Asia Pac. J. Chem. Eng. 2016, 7, 743–753. [Google Scholar]
- Pankratz, S.; Kumar, M.; Oyedun, A.O.; Gemechu, E.; Kumar, A. Environmental performances of diluents and hydrogen production pathways from microalgae in cold climates: Open raceway ponds and photobioreactors coupled with thermochemical conversion. Algal Res. 2020, 47, 101815. [Google Scholar] [CrossRef]
- DeRose, K.; DeMill, C.; Davis, R.W.; Quinn, J.C. Integrated techno economic and life cycle assessment of the conversion of high productivity, low lipid algae to renewable fuels. Algal Res. 2019, 38, 101412. [Google Scholar] [CrossRef]
- Masoumi, S.; Dalai, A.K. Techno-economic and life cycle analysis of biofuel production via hydrothermal liquefaction of microalgae in a methanol-water system and catalytic hydrotreatment using hydrochar as a catalyst support. Biomass Bioenergy 2021, 151, 106168. [Google Scholar] [CrossRef]
- Marangon, B.; Castro, J.; Assemany, P.; Couto, E.; Calijuri, M. Environmental performance of microalgae hydrothermal liquefaction: Life cycle assessment and improvement insights for a sustainable renewable diesel. Renew. Sustain. Energy Rev. 2022, 155, 111910. [Google Scholar] [CrossRef]
- Branco-Vieira, M.; Lopes, M.; Caetano, N. Algae-based bioenergy production aligns with the Paris agreement goals as a carbon mitigation technology. Energy Rep. 2022, 8, 482–488. [Google Scholar] [CrossRef]
- Japar, A.S.; Takriff, M.S.; Yasin, N.H.M. Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. Algal Res. 2021, 53, 102163. [Google Scholar] [CrossRef]
- Culaba, A.; Ubando, A.; Ching, P.; Chen, W.-H.; Chang, J.-S. Biofuel from Microalgae: Sustainable Pathways. Sustainability 2020, 12, 8009. [Google Scholar] [CrossRef]
- Zhang, T.-Y.; Hu, H.-Y.; Wu, Y.-H.; Zhuang, L.-L.; Xu, X.-Q.; Wang, X.-X.; Dao, G.-H. Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renew. Sustain. Energy Rev. 2016, 60, 1602–1614. [Google Scholar] [CrossRef]
- Dragone, G. Challenges and opportunities to increase economic feasibility and sustainability of mixotrophic cultivation of green microalgae of the genus Chlorella. Renew. Sustain. Energy Rev. 2022, 160, 112284. [Google Scholar] [CrossRef]
- Pang, N.; Gu, X.; Chen, S.; Kirchhoff, H.; Lei, H.; Roje, S. Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae. Renew. Sustain. Energy Rev. 2019, 112, 450–460. [Google Scholar] [CrossRef]
- Rioja-Cabanillas, A.; Valdesueiro, D.; Fernández-Ibáñez, P.; Byrne, J.A. Hydrogen from wastewater by photocatalytic and photoelectrochemical treatment. J. Phys. Energy 2021, 3, 012006. [Google Scholar] [CrossRef]
- Kholssi, R.; Ramos, P.V.; Marks, E.A.; Montero, O.; Rad, C. 2Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. Biocatal. Agric. Biotechnol. 2021, 36, 102114. [Google Scholar] [CrossRef]
- Chia, S.R.; Chew, K.W.; Leong, H.Y.; Ho, S.-H.; Munawaroh, H.S.H.; Show, P.L. CO2 mitigation and phycoremediation of industrial flue gas and wastewater via microalgae-bacteria consortium: Possibilities and challenges. Chem. Eng. J. 2021, 425, 131436. [Google Scholar] [CrossRef]
- Mapstone, L.J.; Leite, M.N.; Purton, S.; Crawford, I.A.; Dartnell, L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol. Adv. 2022, 59, 107946. [Google Scholar] [CrossRef]
- Fackrell, L.E.; Schroeder, P.A.; Thompson, A.; Stockstill-Cahill, K.; Hibbitts, C.A. Development of martian regolith and bedrock simulants: Potential and limitations of martian regolith as an in-situ resource. Icarus 2021, 354, 114055. [Google Scholar] [CrossRef]
- Fields, F.J.; Lejzerowicz, F.; Schroeder, D.; Ngoi, S.M.; Tran, M.; McDonald, D.; Jiang, L.; Chang, J.T.; Knight, R.; Mayfield, S. Effects of the microalgae Chlamydomonas on gastrointestinal health. J. Funct. Foods 2020, 65, 103738. [Google Scholar] [CrossRef]
- de Mendonça, H.V.; Assemany, P.; Abreu, M.; Couto, E.; Maciel, A.M.; Duarte, R.L.; dos Santos, M.G.B.; Reis, A. Microalgae in a global world: New solutions for old problems? Renew. Energy 2021, 165, 842–862. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F. Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ. Chall. 2021, 5, 100207. [Google Scholar] [CrossRef]
- ExxonMobil. Advanced Biofuels and Algae Research. 2022. Available online: https://corporate.exxonmobil.com/Climate-solutions/Advanced-biofuels/Advanced-biofuels-and-algae-research (accessed on 5 July 2022).
- Show, P.L. Global market and economic analysis of microalgae technology: Status and perspectives. Bioresour. Technol. 2022, 357, 127329. [Google Scholar] [CrossRef]
- Magoni, C.; Bertacchi, S.; Giustra, C.M.; Guzzetti, L.; Cozza, R.; Ferrari, M.; Torelli, A.; Marieschi, M.; Porro, D.; Branduardi, P.; et al. Could microalgae be a strategic choice for responding to the demand for omega-3 fatty acids? A European perspective. Trends Food Sci. Technol. 2022, 121, 142–155. [Google Scholar] [CrossRef]
- Jongerius Ecoduna. 2022. Available online: https://jongerius-ecoduna.at/unternehmen/unternehmensentwicklung/ (accessed on 5 July 2022).
- Heliae Development—Sustainable & Regenerative Agriculture Solutions. 2022. Available online: https://heliae.com/ (accessed on 5 July 2022).
- Chlorella Industria Co., Ltd. 2022. Available online: https://www.chlorella.co.jp/en/ (accessed on 5 July 2022).
- Cellana—Algae-Based Products for a Sustainable Future—Just Another WordPress Site. 2022. Available online: http://cellana.com/ (accessed on 5 July 2022).
- PureBiomass Inc. 2022. Available online: https://www.purebiomass.org/ (accessed on 5 July 2022).
- Algoliner. 2022. Available online: https://www.algoliner.de/ (accessed on 5 July 2022).
- ALGOMED® Chlorella. 2022. Available online: https://www.algomed.de/es/home-4/ (accessed on 5 July 2022).
- Helios-NRG. 2022. Available online: https://helios-nrg.com/ (accessed on 5 July 2022).
- Carbon Capture as a Service—Carbon BioCapture LLC. 2022. Available online: https://carbonbiocapture.com/ (accessed on 5 July 2022).
- Algabt. 2022. Available online: https://www.algabt.com/ (accessed on 5 July 2022).
- Earthrise Californian Spirulina. 2022. Available online: https://www.earthrise.com/ (accessed on 5 July 2022).
Title | Journals | Authors Affiliation Countries | Number of Citations | Number of Citations per Year | References |
---|---|---|---|---|---|
Carbon capture, storage, and utilization technologies: A critical analysis and comparison of their life cycle environmental impacts | Journal of CO2 Utilization | United Kingdom | 751 | 93.87 | [32] |
The technological and economic prospects for CO2 utilization and removal | Nature | Germany, United Kingdom, States United | 393 | 98.00 | [33] |
Prospects of biodiesel production from microalgae in India | Renewable and Sustainable Energy Reviews | India | 388 | 27.71 | [34] |
Perspectives on microalgal CO2-emission mitigation systems—A review | Biotechnology Advances | Taiwan | 382 | 31.83 | [35] |
Cyanobacteria and microalgae: A positive prospect for biofuels | Bioresource Technology | India, Suiza | 379 | 31.58 | [36] |
Integrated CO2 capture, wastewater treatment, and biofuel production by microalgae culturing—A review | Renewable and Sustainable Energy Reviews | Saudi Arabia, Canada | 349 | 34.90 | [37] |
Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept | Renewable and Sustainable Energy Reviews | Portugal | 283 | 25.72 | [38] |
Resource demand implications for US algae biofuels production scale-up | Applied Energy | United States | 247 | 20.58 | [39] |
Closed photobioreactors for the production of microalgal biomasses | Biotechnology Advances | Canada | 245 | 22.27 | [40] |
Microalgae: The potential for carbon capture | BioScience | United States | 243 | 18.69 | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, A.M.; Hernandez-Tenorio, F.; Ocampo, D.; Vargas, G.J.; Sáez, A.A. Trends on CO2 Capture with Microalgae: A Bibliometric Analysis. Molecules 2022, 27, 4669. https://doi.org/10.3390/molecules27154669
Miranda AM, Hernandez-Tenorio F, Ocampo D, Vargas GJ, Sáez AA. Trends on CO2 Capture with Microalgae: A Bibliometric Analysis. Molecules. 2022; 27(15):4669. https://doi.org/10.3390/molecules27154669
Chicago/Turabian StyleMiranda, Alejandra M., Fabian Hernandez-Tenorio, David Ocampo, Gabriel J. Vargas, and Alex A. Sáez. 2022. "Trends on CO2 Capture with Microalgae: A Bibliometric Analysis" Molecules 27, no. 15: 4669. https://doi.org/10.3390/molecules27154669
APA StyleMiranda, A. M., Hernandez-Tenorio, F., Ocampo, D., Vargas, G. J., & Sáez, A. A. (2022). Trends on CO2 Capture with Microalgae: A Bibliometric Analysis. Molecules, 27(15), 4669. https://doi.org/10.3390/molecules27154669