Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goetheanus (Myrtaceae) Specimens, and in Silico Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield
2.2. Chemical Composition of the EOs
2.3. Antioxidant Activity
2.4. Phytotoxic Activity of the EOs
2.5. In Silico Study
3. Materials and Methods
3.1. Botanical Material
3.2. Preparation and Characterization of the Botanical Material
3.3. Extraction of EOs
3.4. Chemical Composition Analysis
3.5. Trolox Equivalent Antioxidant Capacity (TEAC)
3.5.1. The ABTS•+ Radical Scavenging Assay
3.5.2. DPPH• Radical Scavenging Assay
3.6. Phytotoxic Potential Activity of the EOs
3.6.1. Seed Treatment
3.6.2. Germination
3.6.3. Radicle and Hypocotyl Elongation
3.7. Prediction of Molecular Interactions
Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Asbahani, A.E.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential Oils: From Extraction to Encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.d.J.P.; Ferreira, O.O.; Antônio Barbosa de Moraes, Â.; Varela, E.L.P.; do Nascimento, L.D.; Percário, S.; de Oliveira, M.S.; de Andrade, E.H. Chemical Composition and Antioxidant Activity of Essential Oils from Eugenia patrisii Vahl, E. punicifolia (Kunth) DC.; and Myrcia Tomentosa (Aubl.) DC.; Leaf of Family Myrtaceae. Molecules 2021, 26, 3292. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan Nanoparticles Loaded with Clove Essential Oil: Characterization, Antioxidant and Antibacterial Activities. Carbohydr. Polym. 2020, 236, 116075. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, F.W.F.; de Oliveira, M.S.; Bezerra, P.N.; Cunha, V.M.B.; Silva, M.P.; da Costa, W.A.; Pinto, R.H.H.; Cordeiro, R.M.; da Cruz, J.N.; Chaves Neto, A.M.J.; et al. Extraction of Bioactive Compounds. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, Asiri, A.M., Suvardhan, K., Eds.; Elsevier: Amisterdan, The Netherlands, 2020; pp. 149–167. ISBN 9780128173886. [Google Scholar]
- De Oliveira, M.S.; Silva, S.G.; da Cruz, J.N.; Ortiz, E.; da Costa, W.A.; Bezerra, F.W.F.; Cunha, V.M.B.; Cordeiro, R.M.; de Jesus Chaves Neto, A.M.; de Aguiar Andrade, E.H.; et al. Supercritical CO2 Application in Essential Oil Extraction. In Industrial Applications of Green Solvents—Volume II; Inamuddin, R.M., Asiri, A.M., Eds.; Materials Research Foundations: Millersville, PA, USA, 2019; pp. 1–28. [Google Scholar]
- Santana de Oliveira, M.; da Cruz, J.N.; Almeida da Costa, W.; Silva, S.G.; Brito, M.d.P.; de Menezes, S.A.F.; de Jesus Chaves Neto, A.M.; de Aguiar Andrade, E.H.; de Carvalho Junior, R.N. Chemical Composition, Antimicrobial Properties of Siparuna Guianensis Essential Oil and a Molecular Docking and Dynamics Molecular Study of Its Major Chemical Constituent. Molecules 2020, 25, 3852. [Google Scholar] [CrossRef] [PubMed]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential Oils as Antimicrobials in Food Systems—A Review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Freires, I.; Denny, C.; Benso, B.; de Alencar, S.; Rosalen, P. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules 2015, 20, 7329–7358. [Google Scholar] [CrossRef]
- De Souza Neto, J.D.; Dos Santos, E.K.; Lucas, E.; Vetö, N.M.; Barrientos-Diaz, O.; Staggemeier, V.G.; Vasconcelos, T.; Turchetto-Zolet, A.C. Advances and Perspectives on the Evolutionary History and Diversification of Neotropical myrteae (Myrtaceae). Bot. J. Linn. Soc. 2022, 199, 173–195. [Google Scholar] [CrossRef]
- Ferreira, O.O.; Cruz, J.N.; de Moraes, Â.A.B.; de Jesus Pereira Franco, C.; Lima, R.R.; dos Anjos, T.O.; Siqueira, G.M.; do Nascimento, L.D.; Cascaes, M.M.; de Oliveira, M.S.; et al. Essential Oil of the Plants Growing in the Brazilian Amazon: Chemical Composition, Antioxidants, and Biological Applications. Molecules 2022, 27, 4373. [Google Scholar] [CrossRef]
- Proença, C.E.B.; Amorim, B.S.; Antonicelli, M.C.; Bünger, M.; Burton, G.P.; Caldas, D.K.D.; Costa, I.R.; Faria, J.E.Q.; Fernandes, T.; Gaem, P.H.; et al. Myrtaceae in Flora e Funga Do Brasil. Available online: https://floradobrasil.jbrj.gov.br/FB610263 (accessed on 5 May 2022).
- Fehlberg, I.; Ribeiro, P.R.; dos Santos, I.B.F.; dos Santos, I.I.P.; Guedes, M.L.S.; Ferraz, C.G.; Cruz, F.G. Two New Sesquiterpenoids and One New P-Coumaroyl-Triterpenoid Derivative from Myrcia Guianensis. Phytochem. Lett. 2022, 48, 5–10. [Google Scholar] [CrossRef]
- Castello, A.C.D.; Pereira, A.S.S.; Simões, A.O.; Koch, I. Aspidosperma in Flora Do Brasil 2020. Jardim Botânico Do Rio de Janeiro. 2020. Available online: https://floradobrasil2020.jbrj.gov.br/FB40978 (accessed on 19 July 2022).
- Ferreira, O.O.; Neves da Cruz, J.; de Jesus Pereira Franco, C.; Silva, S.G.; da Costa, W.A.; de Oliveira, M.S.; de Aguiar Andrade, E.H. First Report on Yield and Chemical Composition of Essential Oil Extracted from Myrcia Eximia DC (Myrtaceae) from the Brazilian Amazon. Molecules 2020, 25, 783. [Google Scholar] [CrossRef] [Green Version]
- da Silva, V.P.; Alves, C.C.F.; Miranda, M.L.D.; Bretanha, L.C.; Balleste, M.P.; Micke, G.A.; Silveira, E.V.; Martins, C.H.G.; Ambrosio, M.A.L.V.; de Souza Silva, T.; et al. Chemical Composition and in Vitro Leishmanicidal, Antibacterial and Cytotoxic Activities of Essential Oils of the Myrtaceae Family Occurring in the Cerrado Biome. Ind. Crops Prod. 2018, 123, 638–645. [Google Scholar] [CrossRef]
- Habermann, E.; Pontes, F.C.; Pereira, V.C.; Imatomi, M.; Gualtieri, S.C.J. Phytotoxic Potential of Young Leaves from Blepharocalyx salicifolius (Kunth) O. Berg (Myrtaceae). Brazilian J. Biol. 2016, 76, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasin, M.; Younis, A.; Javed, T.; Akram, A.; Ahsan, M.; Shabbir, R.; Ali, M.M.; Tahir, A.; El-Ballat, E.M.; Sheteiwy, M.S.; et al. River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture. Plants 2021, 10, 2105. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural Herbicide Activity of Satureja Hortensis L. Essential Oil Nanoemulsion on the Seed Germination and Morphophysiological Features of Two Important Weed Species. Ecotoxicol. Environ. Saf. 2017, 142, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Li, J.; Kong, Q.; Luo, S.; Wang, J.; Feng, S.; Yuan, M.; Chen, T.; Yuan, S.; Ding, C. Chemical Composition, Antioxidant, Antimicrobial, and Phytotoxic Potential of Eucalyptus Grandis × E. Urophylla Leaves Essential Oils. Molecules 2021, 26, 1450. [Google Scholar] [CrossRef]
- Smeriglio, A.; Trombetta, D.; Cornara, L.; Valussi, M.; De Feo, V.; Caputo, L. Characterization and Phytotoxicity Assessment of Essential Oils from Plant Byproducts. Molecules 2019, 24, 2941. [Google Scholar] [CrossRef] [Green Version]
- Werrie, P.-Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.-L. Phytotoxicity of Essential Oils: Opportunities and Constraints for the Development of Biopesticides. A Review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef]
- Dantas Costa, A.M.; Palomaris, D.; De Souza, M.; Cavalcante, V.; Lúcia De Araújo, V.; Ramos, A.T.; Maruo, V.M. Plantas Tóxicas De Interesse Pecuário Em Região De Ecótono Amazônia E Cerrado. Parte Ii: Araguaína, Norte Do Tocantins. Acta Vet. Bras. 2011, 317–324. [Google Scholar]
- Barbosa, J.D.; da Silveira, J.A.S.; Albernaz, T.T.; da Silva e Silva, N.; dos Santos Belo Reis, A.; Oliveira, C.M.C.; Riet-Correa, G.; Duarte, M.D. Lesões de Pele Causadas Pelos Espinhos de Mimosa Pudica (Leg. Mimosoideae) Nos Membros de Bovinos e Ovinos No Estado Do Pará. Pesqui. Vet. Bras. 2009, 29, 435–438. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, N.S.; Alves, C.C.F.; Alves, J.M.; Egea, M.B.; Martins, C.H.G.; Silva, T.S.; Bretanha, L.C.; Balleste, M.P.; Micke, G.A.; Silveira, E.V.; et al. Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oils from Leaves and Flowers of Eugenia Klotzschiana Berg (Myrtaceae). An. Acad. Bras. Cienc. 2017, 89, 1907–1915. [Google Scholar] [CrossRef]
- Pascoal, A.C.R.F.; Lourenço, C.C.; Sodek, L.; Tamashiro, J.Y.; Franchi, G.C.; Nowill, A.E.; Stefanello, M.É.A.; Salvador, M.J. Essential Oil from the Leaves of Campomanesia guaviroba (DC.) Kiaersk. (Myrtaceae): Chemical Composition, Antioxidant and Cytotoxic Activity. J. Essent. Oil Res. 2011, 23, 34–37. [Google Scholar] [CrossRef]
- Landrum, L.R. Two New Species of Calycolpus (Myrtaceae) from Brazil. Brittonia 2008, 60, 252–256. [Google Scholar] [CrossRef]
- Gaem Paulo, H. Calycolpus in Flora e Funga Do Brasil. Available online: https://floradobrasil.jbrj.gov.br/FB10263 (accessed on 5 May 2022).
- GAEM, P.H. Calycolpus in Flora Do Brasil 2020. Jardim Botânico Do Rio de Janeiro. 2020. Available online: https://floradobrasil2020.jbrj.gov.br/FB10263 (accessed on 19 July 2022).
- Rosário, A.S.D.; Secco, R.D.S.; Amaral, D.D.D.; Santos, J.U.M.D.; Bastos, M.D.N.D.C. Flórula Fanerogâmica Das Restingas Do Estado Do Pará. Ilhas de Algodoal e Maiandeua-2. Myrtaceae A.L. de Jussieu. Série Ciências Nat. 2005, 1, 31–42. [Google Scholar]
- Pereira, R.A.; Zoghbi, M.D.G.B.; Bastos, M.D.N.D.C. Essential Oils of Twelve Species of Myrtaceae Growing Wild in the Sandbank of the Resex Maracanã, State of Pará, Brazil. J. Essent. Oil Bear. Plants 2010, 13, 440–450. [Google Scholar] [CrossRef]
- Dos Santos, E.L.; Lima, A.M.; Moura, V.F.D.S.; Setzer, W.N.; da Silva, J.K.R.; Maia, J.G.S.; Carneiro, J.D.S.; Figueiredo, P.L.B. Seasonal and Circadian Rhythm of a 1,8-Cineole Chemotype Essential Oil of Calycolpus Goetheanus From Marajó Island, Brazilian Amazon. Nat. Prod. Commun. 2020, 15, 1–9. [Google Scholar] [CrossRef]
- Mondello, L. Mass Spectra of Flavors and Fragrances of Natural and Synthetic Compounds; Wiley Blackwell: Hoboken, NJ, USA, 2015; Volume 10, pp. 4–5. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; pp. 804–806. [Google Scholar]
- Cai, Z.-M.; Peng, J.-Q.; Chen, Y.; Tao, L.; Zhang, Y.-Y.; Fu, L.-Y.; Long, Q.-D.; Shen, X.-C. 1,8-Cineole: A Review of Source, Biological Activities, and Application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
- Rossi, Y.E.; Palacios, S.M. Insecticidal Toxicity of Eucalyptus Cinerea Essential Oil and 1,8-Cineole against Musca Domestica and Possible Uses According to the Metabolic Response of Flies. Ind. Crops Prod. 2015, 63, 133–137. [Google Scholar] [CrossRef]
- Murata, S.; Shiragami, R.; Kosugi, C.; Tezuka, T.; Yamazaki, M.; Hirano, A.; Yoshimura, Y.; Suzuki, M.; Shuto, K.; Ohkohchi, N.; et al. Antitumor Effect of 1, 8-Cineole against Colon Cancer. Oncol. Rep. 2013, 30, 2647–2652. [Google Scholar] [CrossRef] [Green Version]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β -Caryophyllene and β -Caryophyllene Oxide-Natural Compounds of Anticancer and Analgesic Properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef]
- Moreira, R.R.D.; Santos, A.G.D.; Carvalho, F.A.; Perego, C.H.; Crevelin, E.J.; Crotti, A.E.M.; Cogo, J.; Cardoso, M.L.C.; Nakamura, C.V. Antileishmanial Activity of Melampodium Divaricatum and Casearia Sylvestris Essential Oils on Leishmania Amazonensis. Rev. Inst. Med. Trop. Sao Paulo 2019, 61, 1–7. [Google Scholar] [CrossRef]
- De Oliveira, C.C.; de Oliveira, C.V.; Grigoletto, J.; Ribeiro, L.R.; Funck, V.R.; Grauncke, A.C.B.; de Souza, T.L.; Souto, N.S.; Furian, A.F.; Menezes, I.R.A.; et al. Anticonvulsant Activity of β-Caryophyllene against Pentylenetetrazol-Induced Seizures. Epilepsy Behav. 2016, 56, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, L.F.; Oliveira, H.B.M.; Neves Selis, N.; Souza, C.L.S.; Júnior, M.N.S.; Souza, E.P.; Silva, L.S.C.D.; Souza Nascimento, F.; Amorim, A.T.; Campos, G.B.; et al. Anti-inflammatory Activity of β -caryophyllene Combined with Docosahexaenoic Acid in a Model of Sepsis Induced by Staphylococcus Aureus in Mice. J. Sci. Food Agric. 2019, 99, 5870–5880. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Kacaniova, M.; Dincheva, I.; Radoukova, T.; Semerdjieva, I.B.; Astatkie, T.; Schlegel, V. Essential Oil Composition, Antioxidant and Antimicrobial Activity of the Galbuli of Six Juniper Species. Ind. Crops Prod. 2018, 124, 449–458. [Google Scholar] [CrossRef]
- Casiglia, S.; Bruno, M.; Bramucci, M.; Quassinti, L.; Lupidi, G.; Fiorini, D.; Maggi, F. Kundmannia sicula (L.) DC: A Rich Source of Germacrene D. J. Essent. Oil Res. 2017, 29, 437–442. [Google Scholar] [CrossRef]
- Guo, X.; Shang, X.; Li, B.; Zhou, X.Z.; Wen, H.; Zhang, J. Acaricidal Activities of the Essential Oil from Rhododendron nivale Hook. f. and Its Main Compund, δ-Cadinene against Psoroptes Cuniculi. Vet. Parasitol. 2017, 236, 51–54. [Google Scholar] [CrossRef]
- Pérez-López, A.; Cirio, A.T.; Rivas-Galindo, V.M.; Aranda, R.S.; De Torres, N.W. Activity against Streptococcus Pneumoniae of the Essential Oil and δ-Cadinene Isolated from Schinus Molle Fruit. J. Essent. Oil Res. 2011, 23, 25–28. [Google Scholar] [CrossRef]
- Hui, L.-M.; Zhao, G.-D.; Zhao, J.-J. δ-Cadinene Inhibits the Growth of Ovarian Cancer Cells via Caspase-Dependent Apoptosis and Cell Cycle Arrest. Int. J. Clin. Exp. Pathol. 2015, 8, 6046–6056. [Google Scholar]
- Plengsuriyakarn, T.; Karbwang, J.; Na-Bangchang, K. Anticancer Activity Using Positron Emission Tomography-Computed Tomography and Pharmacokinetics of β -Eudesmol in Human Cholangiocarcinoma Xenografted Nude Mouse Model. Clin. Exp. Pharmacol. Physiol. 2015, 42, 293–304. [Google Scholar] [CrossRef]
- Kotawong, K.; Chaijaroenkul, W.; Muhamad, P.; Na-Bangchang, K. Cytotoxic Activities and Effects of Atractylodin and β-Eudesmol on the Cell Cycle Arrest and Apoptosis on Cholangiocarcinoma Cell Line. J. Pharmacol. Sci. 2018, 136, 51–56. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the Total Antioxidant Capacity and Total Polyphenol Content of 23 Commercially Available Vegetable Juices before and after in Vitro Digestion Measured by FRAP, DPPH, ABTS and Folin-Ciocalteu Methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Santos, D.N.; De Souza, L.L.; De Oliveira, C.A.F.; Silva, E.R.; Oliveira, A.L. De Arginase Inhibition, Antibacterial and Antioxidant Activities of Pitanga Seed (Eugenia uniflora L.) Extracts from Sustainable Technologies of High Pressure Extraction. Food Biosci. 2015, 12, 93–99. [Google Scholar] [CrossRef]
- Ferreira, O.O.; Franco, C.D.J.P.; Varela, E.L.P.; Silva, S.G.; Cascaes, M.M.; Percário, S.; de Oliveira, M.S.; Andrade, E.H.D.A. Chemical Composition and Antioxidant Activity of Essential Oils from Leaves of Two Specimens of Eugenia Florida DC. Molecules 2021, 26, 5848. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Kaur, S.; Negi, K.; Kumari, S.; Saini, V.; Batish, D.R.; Kohli, R.K. Assessment of in Vitro Antioxidant Activity of Essential Oil of Eucalyptus Citriodora (Lemon-Scented Eucalypt; Myrtaceae) and Its Major Constituents. LWT–Food Sci. Technol. 2012, 48, 237–241. [Google Scholar] [CrossRef]
- Diniz Do Nascimento, L.; Antônio Barbosa De Moraes, A.; Santana Da Costa, K.; Marcos, J.; Galúcio, P.; Taube, P.S.; Leal Costa, M.; Neves Cruz, J.; Helena De Aguiar Andrade, E.; Guerreiro De Faria, L.J. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Lima, R.K.; Cardoso, M.D.G.; Andrade, M.A.; Guimarães, P.L.; Batista, L.R.; Nelson, D.L. Bactericidal and Antioxidant Activity of Essential Oils from Myristica fragrans Houtt and Salvia microphylla H.B.K. JAOCS, J. Am. Oil Chem. Soc. 2012, 89, 523–528. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Iqbal, T.; Bhatti, I.A. Antioxidant Attributes of Four Lamiaceae Essential Oils. Pakistan J. Bot. 2011, 43, 1315–1321. [Google Scholar]
- Kundu, A.; Saha, S.; Walia, S.; Ahluwalia, V.; Kaur, C. Antioxidant Potential of Essential Oil and Cadinene Sesquiterpenes of Eupatorium Adenophorum. Toxicol. Environ. Chem. 2013, 95, 127–137. [Google Scholar] [CrossRef]
- Assaeed, A.; Elshamy, A.; El Gendy, A.E.N.; Dar, B.; Al-Rowaily, S.; Abd-ElGawad, A. Sesquiterpenes-Rich Essential Oil from above Ground Parts of Pulicaria Somalensis Exhibited Antioxidant Activity and Allelopathic Effect Onweeds. Agronomy 2020, 10, 399. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, M.S.; da Costa, W.A.; Pereira, D.S.; Botelho, J.R.S.; de Alencar Menezes, T.O.; de Aguiar Andrade, E.H.; da Silva, S.H.M.; da Silva Sousa Filho, A.P.; de Carvalho, R.N. Chemical Composition and Phytotoxic Activity of Clove (Syzygium aromaticum) Essential Oil Obtained with Supercritical CO2. J. Supercrit. Fluids 2016, 118, 185–193. [Google Scholar] [CrossRef]
- Gurgel, E.S.C.; de Oliveira, M.S.; Souza, M.C.; da Silva, S.G.; de Mendonça, M.S.; Souza Filho, A.P.d.S. Chemical Compositions and Herbicidal (Phytotoxic) Activity of Essential Oils of Three Copaifera Species (Leguminosae-Caesalpinoideae) from Amazon-Brazil. Ind. Crops Prod. 2019, 142, 111850. [Google Scholar] [CrossRef]
- Rodrigues, I.M.C.; Souza Filho, A.P.S.; Ferreira, F.A.; Demuner, A.J. Prospecção Química de Compostos Produzidos Por Senna Alata Com Atividade Alelopática. Planta Daninha 2010, 28, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Souza Filho, A.P.S.; Mourão Jr., M. Padrão de Resposta de Mimosa Pudica e Senna Obtusifolia à Atividade Potencialmente Alelopática de Espécies de Poaceae. Planta Daninha 2010, 28, 927–938. [Google Scholar] [CrossRef] [Green Version]
- Ootani, M.A.; dos Reis, M.R.; Cangussu, A.S.R.; Capone, A.; Fidelis, R.R.; Oliveira, W.; Barros, H.B.; Portella, A.C.F.; de Souza Aguiar, R.; dos Santos, W.F. Phytotoxic Effects of Essential Oils in Controlling Weed Species Digitaria Horizontalis and Cenchrus Echinatus. Biocatal. Agric. Biotechnol. 2017, 12, 59–65. [Google Scholar] [CrossRef]
- Gatto, L.J.; Fabri, N.T.; Souza, A.M.D.; Fonseca, N.S.T.D.; Furusho, A.D.S.; Miguel, O.G.; Dias, J.D.F.G.; Zanin, S.M.W.; Miguel, M.D. Chemical Composition, Phytotoxic Potential, Biological Activities and Antioxidant Properties of Myrcia hatschbachii D. Legrand Essential Oil. Braz. J. Pharm. Sci. 2020, 56, 1–9. [Google Scholar] [CrossRef]
- Cândido, A.C.S.; Scalon, S.P.Q.; Silva, C.B.; Simionatto, E.; Morel, A.F.; Stüker, C.Z.; Matos, M.F.C.; Peres, M.T.L.P. Chemical Composition and Phytotoxicity of Essential Oils of Croton doctoris S. Moore (Euphorbiaceae). Brazilian J. Biol. 2022, 82, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Hu, Y.; Han, C.; Wei, C.; Zhou, S.; Zhang, C.; Zhang, C. Chemical Composition and Phytotoxic Activity of Seriphidium terrae-albae (Krasch) Poljakov (Compositae) Essential Oil. Chem. Biodivers. 2018, 15, e1800348. [Google Scholar] [CrossRef]
- Alipour, M.; Saharkhiz, M.J. Phytotoxic Activity and Variation in Essential Oil Content and Composition of Rosemary (Rosmarinus officinalis L.) during Different Phenological Growth Stages. Biocatal. Agric. Biotechnol. 2016, 7, 271–278. [Google Scholar] [CrossRef]
- Sharma, M.; Arora, K.; Sachdev, R.K. Bio-Herbicidal Potential of Essential Oil of Callistemon—A Review. Indian J. Ecol. 2021, 48, 252–260. [Google Scholar]
- Caputo, L.; Trotta, M.; Romaniello, A.; De Feo, V. Chemical Composition and Phytotoxic Activity of Rosmarinus Officinalis Essential Oil. Nat. Prod. Commun. 2018, 13, 1367–1370. [Google Scholar] [CrossRef] [Green Version]
- Amri, I.; Hanana, M.; Jamoussi, B.; Hamrouni, L. Essential Oils of Pinus Nigra J.F. Arnold Subsp. Laricio Maire: Chemical Composition and Study of Their Herbicidal Potential. Arab. J. Chem. 2017, 10, S3877–S3882. [Google Scholar] [CrossRef]
- Araniti, F.; Sánchez-Moreiras, A.M.; Graña, E.; Reigosa, M.J.; Abenavoli, M.R. Terpenoid Trans-Caryophyllene Inhibits Weed Germination and Induces Plant Water Status Alteration and Oxidative Damage in Adult Arabidopsis. Plant Biol. 2017, 19, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, N.A. Review of the Taxonomy, Ethnobotany, Phytochemistry, Phytotherapy and Phytotoxicity of Germander Plant (Teucrium polium L.). Asian J. Pharm. Clin. Res. 2015, 8, 13–19. [Google Scholar]
- Elshamy, A.I.; Abd-ElGawad, A.M.; El-Amier, Y.A.; El Gendy, A.E.G.; Al-Rowaily, S.L. Interspecific Variation, Antioxidant and Allelopathic Activity of the Essential Oil from Three Launaea Species Growing Naturally in Heterogeneous Habitats in Egypt. Flavour Fragr. J. 2019, 34, 316–328. [Google Scholar] [CrossRef]
- Lin, H.Y.; Yang, J.F.; Wang, D.W.; Hao, G.F.; Dong, J.Q.; Wang, Y.X.; Yang, W.C.; Wu, J.W.; Zhan, C.G.; Yang, G.F. Molecular Insights into the Mechanism of 4-Hydroxyphenylpyruvate Dioxygenase Inhibition: Enzyme Kinetics, X-Ray Crystallography and Computational Simulations. FEBS J. 2019, 286, 975–990. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Zhang, X.; Bai, S.; Jin, T.; Liu, W.; Wang, J. Unravelling Phytotoxicity and Mode of Action of Tripyrasulfone, a Novel Herbicide. J. Agric. Food Chem. 2021, 69, 7168–7177. [Google Scholar] [CrossRef]
- Wang, H.; Liu, B.; Lei, P.; Zhu, J.; Chen, L.; He, Q.; He, J. Improving the Herbicide Resistance of 4-Hydroxyphenylpyruvate Dioxygenase SpHPPD by Directed Evolution. Enzyme Microb. Technol. 2022, 154, 109964. [Google Scholar] [CrossRef]
- Neuckermans, J.; Lequeue, S.; Mertens, A.; Branson, S.; Schwaneberg, U.; De Kock, J. High-Throughput Quantification of Ochronotic Pigment Formation in Escherichia Coli to Evaluate the Potency of Human 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors in Multi-Well Format. MethodsX 2021, 8, 101181. [Google Scholar] [CrossRef]
- Cascaes, M.M.; Carneiro, O.D.S.; Nascimento, L.D.D.; de Moraes, Â.A.B.; de Oliveira, M.S.; Cruz, J.N.; Guilhon, G.M.S.P.; Andrade, E.H.D.A. Essential Oils from Annonaceae Species from Brazil: A Systematic Review of Their Phytochemistry, and Biological Activities. Int. J. Mol. Sci. 2021, 22, 12140. [Google Scholar] [CrossRef]
- Ramos da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; de Jesus Pereira Franco, C.; Oliveira dos Anjos, T.; Cascaes, M.M.; Almeida da Costa, W.; Helena de Aguiar Andrade, E.; Santana de Oliveira, M. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid. Based Complement. Altern. Med. 2021, 2021, 6748052. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, K.D.S.M.; Feitosa, B.D.S.; Cruz, J.N.; Ferreira, O.O.; Franco, C.D.J.P.; Cascaes, M.M.; Oliveira, M.S.D.; Andrade, E.H.D.A. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia circinnata Link Var. circinnata. (Piperaceae) in Artemia Salina Leach. Molecules 2021, 26, 7359. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.S.; Cruz, J.N.; Ferreira, O.O.; Pereira, D.S.; Pereira, N.S.; Oliveira, M.E.C.; Venturieri, G.C.; Guilhon, G.M.S.P.; Souza Filho, A.P.D.S.; Andrade, E.H.D.A. Chemical Composition of Volatile Compounds in Apis Mellifera Propolis from the Northeast Region of Pará State, Brazil. Molecules 2021, 26, 3462. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.N.; de Oliveira, M.S.; Andrade, E.H.D.A.; Rodrigues Lima, R. Molecular Modeling Approaches Can Reveal the Molecular Interactions Established between a Biofilm and the Bioactive Compounds of the Essential Oil of Piper Divaricatum. Molecules 2022, 27, 4199. [Google Scholar] [CrossRef] [PubMed]
- da Rocha Galucio, N.C.; de Araújo Moysés, D.; Pina, J.R.S.; Marinho, P.S.B.; Júnior, P.C.G.; Cruz, J.N.; Vale, V.V.; Khayat, A.S.; do Rosario Marinho, A.M. Antiproliferative, Genotoxic Activities and Quantification of Extracts and Cucurbitacin B Obtained from Luffa operculata (L.) Cogn. Arab. J. Chem. 2022, 15, 103589. [Google Scholar] [CrossRef]
- Neto, R.D.A.; Santos, C.B.; Henriques, S.V.; Machado, L.D.O.; Cruz, J.N.; da Silva, C.H.D.P.; Federico, L.B.; Oliveira, E.H.D.; de Souza, M.P.; da Silva, P.N.; et al. Novel Chalcones Derivatives with Potential Antineoplastic Activity Investigated by Docking and Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2022, 40, 2204–2216. [Google Scholar] [CrossRef]
- Castro, A.L.G.; Cruz, J.N.; Sodré, D.F.; Correa-Barbosa, J.; Azonsivo, R.; de Oliveira, M.S.; de Sousa Siqueira, J.E.; da Rocha Galucio, N.C.; de Oliveira Bahia, M.; Burbano, R.M.R.; et al. Evaluation of the Genotoxicity and Mutagenicity of Isoeleutherin and Eleutherin Isolated from Eleutherine Plicata Herb. Using Bioassays and in Silico Approaches. Arab. J. Chem. 2021, 14, 103084. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; He, L.; Yang, X.; Shi, Y.; Liao, S.; Yang, S.; Cheng, J.; Ren, T. Interactions of Fipronil within Fish and Insects: Experimental and Molecular Modeling Studies. J. Agric. Food Chem. 2018, 66, 5756–5761. [Google Scholar] [CrossRef]
- Gao, Y.; He, L.; Zhu, J.; Cheng, J.; Li, B.; Liu, F.; Mu, W. The Relationship between Features Enabling SDHI Fungicide Binding to the Sc-Sdh Complex and Its Inhibitory Activity against Sclerotinia Sclerotiorum. Pest Manag. Sci. 2020, 76, 2799–2808. [Google Scholar] [CrossRef]
- Ribeiro, F.P.; Santana de Oliveira, M.; de Oliveira Feitosa, A.; Santana Barbosa Marinho, P.; Moacir do Rosario Marinho, A.; de Aguiar Andrade, E.H.; Favacho Ribeiro, A. Chemical Composition and Antibacterial Activity of the Lippia Origanoides Kunth Essential Oil from the Carajás National Forest, Brazil. Evid. Based Complement. Altern. Med. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Cascaes, M.M.; Silva, S.G.; Cruz, J.N.; Santana de Oliveira, M.; Oliveira, J.; de Moraes, A.A.B.; da Costa, F.A.M.; da Costa, K.S.; Diniz do Nascimento, L.; Helena de Aguiar Andrade, E. First Report on the Annona Exsucca DC. Essential Oil and in Silico Identification of Potential Biological Targets of Its Major Compounds. Nat. Prod. Res. 2021, 35, 1–4. [Google Scholar] [CrossRef]
- Souza da Silva Júnior, O.; de Jesus Pereira Franco, C.; Barbosa de Moraes, A.A.; Cruz, J.N.; Santana da Costa, K.; Diniz do Nascimento, L.; Helena de Aguiar Andrade, E. In Silico Analyses of Toxicity of the Major Constituents of Essential Oils from Two Ipomoea L. Species. Toxicon 2021, 195, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.D.D.; Silva, S.G.; Cascaes, M.M.; Costa, K.S.D.; Figueiredo, P.L.B.; Costa, C.M.L.; Andrade, E.H.D.A.; de Faria, L.J.G. Drying Effects on Chemical Composition and Antioxidant Activity of Lippia Thymoides Essential Oil, a Natural Source of Thymol. Molecules 2021, 26, 2621. [Google Scholar] [CrossRef] [PubMed]
- van Den Dool, H.; Dec Kratz, P. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Miller, M.; Rao, J.K.M.; Wlodawer, A.; Gribskov, M.R. A Left-Handed Crossover Involved in Amidohydrolase Catalysis. Crystal Structure of Erwinia Chrysanthemi l-Asparaginase with Bound l-Aspartate. FEBS Lett. 1993, 328, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision 16.A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Thomsen, R.; Christensen, M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef]
- Santana de Oliveira, M.; Pereira da Silva, V.M.; Cantão Freitas, L.; Gomes Silva, S.; Nevez Cruz, J.; Aguiar Andrade, E.H. Extraction Yield, Chemical Composition, Preliminary Toxicity of Bignonia nocturna (Bignoniaceae) Essential Oil and in Silico Evaluation of the Interaction. Chem. Biodivers. 2021, 18, e2000982. [Google Scholar] [CrossRef]
- Costa, E.B.; Silva, R.C.; Espejo-Román, J.M.; Neto, M.F.d.A.; Cruz, J.N.; Leite, F.H.A.; Silva, C.H.T.P.; Pinheiro, J.C.; Macêdo, W.J.C.; Santos, C.B.R. Chemometric Methods in Antimalarial Drug Design from 1,2,4,5-Tetraoxanes Analogues. SAR QSAR Environ. Res. 2020, 31, 677–695. [Google Scholar] [CrossRef] [PubMed]
RIL | RIC | Constituents | Specimen | ||
---|---|---|---|---|---|
A (%) | B (%) | C (%) | |||
932 | 933 | α-Pinene | 0.33 | ||
988 | 990 | Myrcene | 0.17 | ||
1014 | 1016 | α-Terpinene | 0.08 | ||
1020 | 1024 | ρ-Cymene | 0.03 | ||
1026 | 1033 | 1,8-Cineole | 8.64 | ||
1044 | 1046 | (E)-β-Ocimene | 0.03 | ||
1054 | 1057 | γ-Terpinene | 0.28 | ||
1086 | 1088 | Terpinolene | 0.09 | ||
1095 | 1099 | Linalool | 0.77 | 0.36 | |
1162 | 1166 | δ-Terpineol | 0.04 | ||
1174 | 1177 | Terpinen-4-ol | 0.24 | ||
1186 | 1192 | α-Terpineol | 2.5 | ||
1335 | 1340 | δ-Elemene | 2.91 | ||
1345 | 1352 | α-Cubebene | 0.16 | 0.91 | |
1369 | 1369 | Cyclosativene | 0.16 | 0.07 | |
1373 | 1374 | α-Ylangene | 0.31 | 0.06 | 0.04 |
1374 | 1379 | α-Copaene | 0.97 | 2.53 | 2.92 |
1390 | 1393 | Sativene | 0.11 | ||
1389 | 1394 | β-Elemene | 2.71 | ||
1400 | 1398 | β-Longipinene | 0.04 | ||
1409 | 1414 | α-Gurjunene | 0.17 | 2.24 | 0.24 |
1417 | 1426 | (E)-Caryophyllene | 14.61 | 5.86 | 6.74 |
1421 | 1428 | β-Duprezianene | 0.01 | ||
1430 | 1432 | β-Copaene | 0.19 | 0.27 | 0.74 |
1434 | 1442 | γ-Elemene | 0.14 | 2.91 | |
1439 | 1442 | Aromadendrene | 0.52 | 0.24 | |
1442 | 1446 | 6,9-Guaiadiene | 0.47 | ||
1448 | 1449 | cis-Muurola-3,5-diene | 0.77 | 0.02 | |
1451 | 1454 | trans-Muurola-3,5-diene | 0.61 | 0.87 | 0.53 |
1452 | 1458 | α-Humulene | 1.85 | 2.35 | 4.73 |
1458 | 1459 | allo-Aromadendrene | 0.66 | 0.24 | |
1464 | 1465 | 9-epi-(E)-Caryophyllene | 1.17 | 0.12 | |
1471 | 1473 | 4,5-di-epi-aristolochene | 0.11 | ||
1475 | 1478 | trans-Cadina-1(6),4-diene | 3.83 | ||
1478 | 1480 | γ-Muurolene | 1.33 | ||
1471 | 1483 | Dauca-5,8-diene | 1.82 | 0.58 | |
1483 | 1484 | α-Amorphene | 0.4 | 0.22 | |
1484 | 1486 | Germacrene D | 0.64 | 6.34 | |
1492 | 1488 | cis-β-Guaiene | 0.6 | 0.23 | |
1489 | 1491 | β-Selinene | 3.21 | 2.48 | |
1492 | 1494 | δ-Selinene | 1.99 | ||
1493 | 1496 | trans-Muurola-4(14),5-diene | 0.62 | ||
1498 | 1500 | α-Selinene | 2.89 | ||
1500 | 1504 | α-Muurolene | 0.89 | 2.91 | 2.11 |
1503 | 1505 | β-Dihydro agarofuran | 0.93 | ||
1496 | 1506 | Viridiflorene | 1.7 | 6.7 | |
1501 | 1509 | Epizonarene | 0.75 | ||
1513 | 1518 | γ-Cadinene | 1.07 | 1.01 | 0.65 |
1511 | 1518 | δ- Amorphene | 2.31 | 1.13 | |
1514 | 1521 | β-Curcumene | 0.12 | ||
1520 | 1522 | 7-epi-α-Selinene | 0.15 | 0.49 | |
1521 | 1528 | trans-Calamenene | 0.63 | ||
1522 | 1531 | δ-Cadinene | 5.69 | 5.78 | 8.01 |
1528 | 1533 | Zonarene | 2.73 | 1.35 | |
1533 | 1538 | trans-Cadina-1,4-diene | 0.81 | 1.77 | 0.51 |
1532 | 1539 | γ-Cuprene | 0.17 | ||
1537 | 1542 | α-Cadinene | 0.47 | 0.53 | |
1540 | 1546 | Selina-4(15),7(11)-diene | 2.01 | ||
1544 | 1547 | α-Calacorene | 0.49 | 1.05 | 0.1 |
1548 | 1551 | α-Agarofuran | 0.04 | ||
1448 | 1552 | Elemol | 0.38 | ||
1545 | 1552 | Selina-3,7(11)-diene | 1 | 0.24 | |
1447 | 1556 | Italicene epoxide | 0.02 | ||
1562 | 1559 | epi-Longipinanol | 0.07 | ||
1559 | 1563 | Germacrene B | 0.11 | 1.26 | |
1561 | 1568 | (E)-Nerolidol | 1.93 | 1.23 | |
1567 | 1575 | Palustrol | 4.97 | 1.09 | |
1577 | 1581 | Spathulenol | 1.34 | ||
1570 | 1581 | Dendrolasin | 0.13 | ||
1582 | 1585 | Caryophyllene oxide | 0.08 | ||
1586 | 1589 | Gleenol | 2.46 | ||
1586 | 1595 | Thujopsan-2-α–ol | 0.52 | ||
1590 | 1598 | Globulol | 0.43 | 4.02 | |
1592 | 1598 | Viridiflorol | 0.36 | 2.58 | 3.68 |
1600 | 1606 | Rosifoliol | 0.91 | ||
1602 | 1611 | Ledol | 0.58 | 3.6 | |
1608 | 1613 | Humulene epoxide II | 0.2 | ||
1607 | 1620 | 5-epi-7-epi-α-Eudesmol | 0.16 | ||
1618 | 1623 | Junenol | 0.94 | ||
1618 | 1626 | 1,10-di-epi-Cubenol | 0.41 | ||
1622 | 1628 | 10-epi-γ-Eudesmol | 4.81 | ||
1629 | 1630 | Eremoligenol | 0.41 | 2.57 | |
1630 | 1633 | γ-Eudesmol | 13.87 | 3.33 | 1.56 |
1630 | 1633 | Muurola-4,10(14)-dien-1-β-ol | 5.31 | ||
1627 | 1637 | 1-epi-Cubenol | 3.3 | ||
1640 | 1639 | Hinesol | 0.94 | 2.16 | |
1640 | 1647 | epi-α-Muurolol | 5.69 | ||
1645 | 1650 | Cubenol | 1.81 | 4.03 | |
1644 | 1655 | α-Muurolol | 1.63 | 1.62 | |
1652 | 1659 | α-Eudesmol | 2.79 | ||
1652 | 1660 | α-Cadinol | 9.03 | ||
1656 | 1663 | Valerianol | 3 | 3.98 | |
1658 | 1664 | Selin-11-en-4-α-ol | 0.19 | 0.54 | |
1662 | 1667 | 7-epi-α-Eudesmol | 0.64 | ||
1658 | 1667 | neo-Intermedeol | 0.12 | ||
1649 | 1667 | β-Eudesmol | 22.83 | ||
1670 | 1669 | Bulnesol | 8.09 | ||
1665 | 1670 | Intermedeol | 0.16 | ||
1679 | 1673 | Khusinol | 0.28 | ||
1675 | 1679 | Cadalene | 0.12 | ||
1685 | 1687 | α-Bisabolol | 0.52 | ||
1700 | 1708 | Eudesm-7(11)-en-4-ol | 0.73 | 0.6 | |
1702 | 1715 | 10-nor-Calamenen-10-one | 0.03 | ||
Hydrocarbon monoterpenes | 1.01 | ||||
Oxygenated Monoterpenes | 0.77 | 11.78 | |||
Hydrocarbons sesquiterpenes | 43.16 | 43.38 | 60.17 | ||
Oxygenated Sesquiterpenes | 56.07 | 43.83 | 39.83 | ||
Total | 100 | 100 | 100 |
Molecule | MolDock Score | Rerank Score |
---|---|---|
1,8-Cineole | −37.63 | −33.03 |
(E)-Caryophyllene | −81.15 | −63.10 |
β-Eudesmol | −73.23 | −55.07 |
γ-Eudesmol | −72.77 | −63.24 |
δ-Cadinene | −63.73 | −53.31 |
Bulnesol | −85.15 | −68.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, C.d.J.P.; Ferreira, O.O.; Cruz, J.N.; Varela, E.L.P.; de Moraes, Â.A.B.; Nascimento, L.D.d.; Cascaes, M.M.; Souza Filho, A.P.d.S.; Lima, R.R.; Percário, S.; et al. Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goetheanus (Myrtaceae) Specimens, and in Silico Study. Molecules 2022, 27, 4678. https://doi.org/10.3390/molecules27154678
Franco CdJP, Ferreira OO, Cruz JN, Varela ELP, de Moraes ÂAB, Nascimento LDd, Cascaes MM, Souza Filho APdS, Lima RR, Percário S, et al. Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goetheanus (Myrtaceae) Specimens, and in Silico Study. Molecules. 2022; 27(15):4678. https://doi.org/10.3390/molecules27154678
Chicago/Turabian StyleFranco, Celeste de Jesus Pereira, Oberdan Oliveira Ferreira, Jorddy Neves Cruz, Everton Luiz Pompeu Varela, Ângelo Antônio Barbosa de Moraes, Lidiane Diniz do Nascimento, Márcia Moraes Cascaes, Antônio Pedro da Silva Souza Filho, Rafael Rodrigues Lima, Sandro Percário, and et al. 2022. "Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goetheanus (Myrtaceae) Specimens, and in Silico Study" Molecules 27, no. 15: 4678. https://doi.org/10.3390/molecules27154678
APA StyleFranco, C. d. J. P., Ferreira, O. O., Cruz, J. N., Varela, E. L. P., de Moraes, Â. A. B., Nascimento, L. D. d., Cascaes, M. M., Souza Filho, A. P. d. S., Lima, R. R., Percário, S., Oliveira, M. S. d., & Andrade, E. H. d. A. (2022). Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goetheanus (Myrtaceae) Specimens, and in Silico Study. Molecules, 27(15), 4678. https://doi.org/10.3390/molecules27154678