Chemical Composition and Biological Activities of Hedychium coccineum Buch.-Ham. ex Sm. Essential Oils from Kumaun Hills of Uttarakhand
Abstract
:1. Introduction
2. Results
2.1. Chemical Compositions of Essential Oils
2.2. Principal Component Analysis
2.3. Nematicidal Activity
2.3.1. Effect on Mortality of Second Stage Larvae of M. incognita
2.3.2. Effect on Egg Hatchability of M. incognita
2.4. Insecticidal Activity
2.5. Herbicidal Activity
2.5.1. Inhibition of Seed Germination
2.5.2. Inhibition of Root Length
2.5.3. Inhibition of Shoot Length
2.6. Antifungal Activity
2.7. Antibacterial Activity
Determination of Minimum Inhibitory (MIC) Concentration and Minimum Bactericidal Concentration (MBC)
2.8. In Silico PASS Prediction of HCCAO and HCCRO
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oil Isolation
3.3. GC-MS Analysis
3.4. Nematicidal Activity
3.4.1. Nematode Population Collection
In Vitro Mortality Assay on Second Stage Larvae of M. incognita
Effect of Essential Oils on Egg Hatchability Test of M. incognita
3.5. Insecticidal Activity
3.5.1. Test Insect
3.5.2. Collection of Larvae and Maintenance
3.5.3. Bioassay of Insecticidal Activity
3.6. Herbicidal Activity
3.6.1. Evaluation of Herbicidal Activity
3.6.2. Herbicidal Bioassay
- Inhibition of seed germination
- b.
- Inhibition of shoot length
- c.
- Inhibition of root length
3.7. Antifungal Activity
3.8. Antibacterial Activity
3.8.1. Diffusion Agar Antibacterial Assay
3.8.2. Determination of Minimum Inhibitory Concentration
3.9. In Silico PASS Prediction of Biological Activities
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fournet, J.; Sastre, C. Progrès Récents Dans La Connaissance de La Flore de Guadeloupe et de Martinique. Acta Bot. Gall. 2002, 149, 481–500. [Google Scholar] [CrossRef] [Green Version]
- Govaerts, R. World Checklist of Selected Plant Families, 2011 ed.; Royal Botanic Gardens: Londo, UK, 2009. [Google Scholar]
- Wongsuwan, P.; Picheansoonthon, C. Taxonomic Revision of the Genus Hedychium J. Koenig (Zingiberaceae) in India. J. R. Inst. Thail. 2011, III, 126–149. [Google Scholar]
- Jiangyun, G.; Chunling, S.; Shuxia, Y. Adaptive Significance of Mass-Flowering in Hedychium Coccineum (Zingiberaceae). Biodivers. Sci. 2013, 20, 376–385. [Google Scholar] [CrossRef]
- Quattrocchi, U. CRC World Dictionary of Medicinal and Poisonous Plants, 1st ed.; Quattrocchi, U., Ed.; CRC Press: New York, NY, USA, 2016; ISBN 9781482250640. [Google Scholar]
- Tushar, S.; Basak, S.; Sarma, G.C.; Rangan, L. Ethnomedical Uses of Zingiberaceous Plants of Northeast India. J. Ethnopharmacol. 2010, 132, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T. CRC Ethnobotany Desk Reference, 1st ed.; Johnson, T., Ed.; CRC Press: New York, NY, USA, 2019; ISBN 9781351070942. [Google Scholar]
- Basak, S.; Ramesh, A.M.; Kesari, V.; Parida, A.; Mitra, S.; Rangan, L. Genetic Diversity and Relationship of Hedychium from Northeast India as Dissected Using PCA Analysis and Hierarchical Clustering. Meta Gene 2014, 2, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Sakhanokho, H.; Sampson, B.; Tabanca, N.; Wedge, D.; Demirci, B.; Baser, K.; Bernier, U.; Tsikolia, M.; Agramonte, N.; Becnel, J.; et al. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils. Molecules 2013, 18, 4308–4327. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.S. de Essential Oils—Applications and Trends in Food Science and Technology, 1st ed.; Santana de Oliveira, M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-99475-4. [Google Scholar]
- Shifah, F.; Tareq, A.; Sayeed, M.; Islam, M.; Emran, T.; Ullah, M.; Mukit, M.; Ullah, A. Antidiarrheal, Cytotoxic and Thrombolytic Activities of Methanolic Extract of Hedychium Coccineum Leaves. J. Adv. Biotechnol. Exp. Ther. 2020, 3, 77. [Google Scholar] [CrossRef]
- Nishi, S.I.; Barua, N.; Sayeed, M.A.; Tareq, A.M.; Mina, S.B.; Emran, T.B.; Dhama, K. In vivo and in vitro evaluation of pharmacological activities of hedychium coccineum rhizomes extract. J. Exp. Biol. Agric. Sci. 2021, 9, 335–342. [Google Scholar] [CrossRef]
- Rawat, A.; Prakash, O.; Kumar, R.; Arya, S.; Srivastava, R.M. Hedychium Spicatum Sm.: Chemical Composition with Biological Activities of Methanolic and Ethylacetate Oleoresins from Rhizomes. J. Biol. Act. Prod. from Nat. 2021, 11, 269–288. [Google Scholar] [CrossRef]
- Gurib-Fakim, A.; Maudarbaccus, N.; Leach, D.; Doimo, L.; Wohlmuth, H. Essential Oil Composition of Zingiberaceae Species from Mauritius. J. Essent. Oil Res. 2002, 14, 271–273. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry, 4th Edition. Illinois USA Allured Publ. Corp. Carol Stream 2007, 804–806. [Google Scholar]
- Rodrigues, T.L.M.; Castro, G.L.S.; Viana, R.G.; Gurgel, E.S.C.; Silva, S.G.; de Oliveira, M.S.; Andrade, E.H. Physiological Performance and Chemical Compositions of the Eryngium Foetidum L. (Apiaceae) Essential Oil Cultivated with Different Fertilizer Sources. Nat. Prod. Res. 2020, 34, 1–5. [Google Scholar] [CrossRef]
- Mesquita, K.D.S.M.; Feitosa, B.D.S.; Cruz, J.N.; Ferreira, O.O.; Franco, C.D.J.P.; Cascaes, M.M.; Oliveira, M.S.D.; Andrade, E.H.D.A. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia Circinnata Link Var. Circinnata. (Piperaceae) in Artemia Salina Leach. Molecules 2021, 26, 7359. [Google Scholar] [CrossRef]
- Da Silva Júnior, O.S.; Franco, C.D.J.P.; de Moraes, Â.A.B.; Pastore, M.; Cascaes, M.M.; do Nascimento, L.D.; de Oliveira, M.S.; de Aguiar Andrade, E.H. Chemical Variability of Volatile Concentrate from Two Ipomoea L. Species within a Seasonal Gradient. Nat. Prod. Res. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Silva-Aguayo, G.; Aguilar-Marcelino, L.; Cuevas-Padilla, E.; Loyola-Zapata, P.; Rodríguez-Maciel, J.C.; Castañeda-Ramírez, G.; Figueroa-Cares, I. Essential Oil of Peumus Boldus Molina against the Nematode Haemonchus Contortus (L3) and Three Stored Cereal Insect Pests. Chil. J. Agric. Res. 2021, 81, 390–397. [Google Scholar] [CrossRef]
- Kalsi, P.S.; Bajaj, K.L.; Mahajan, R.; Singh, P. Nematicidal Activity of Some Sesquiterpenoids against Rootknot Nematode (Meloidogyne Incognita). Nematologica 1986, 32, 119–123. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Phytochemistry and Nematicidal Activity of the Essential Oils from 8 Greek Lamiaceae Aromatic Plants and 13 Terpene Components. J. Agric. Food Chem. 2010, 58, 7856–7863. [Google Scholar] [CrossRef]
- Lahlou, M. Methods to Study the Phytochemistry and Bioactivity of Essential Oils. Phyther. Res. 2004, 18, 435–448. [Google Scholar] [CrossRef]
- Amzouar, S.; Boughdad, A.; Maatoui, A.; Allam, L. Comparison of the Chemical Composition and the Insecticidal Activity of Essential Oils of Mentha Pulegium L. Collected from Two Different Regions of Morocco, against Bruchus Rufimanus (Bohman) (Coleoptera: Chrysomelidae). Adv. Environ. Biol. 2016, 10, 199–207. [Google Scholar]
- Kumar, R.; Kumar, R.; Prakash, O. Evaluation of In-Vitro Herbicidal Efficacy of Essential Oil and Chloroform Extract of Limnophila Indica. Pharma Innov. 2021, 10, 386–390. [Google Scholar]
- Rawat, A.; Thapa, P.; Prakash, O.; Kumar, R.; Pant, A.K.; Srivastava, R.M.; Rawat, D.S. Chemical Composition, Herbicidal, Antifeedant and Cytotoxic Activity of Hedychium Spicatum Sm.: A Zingiberaceous Herb. Trends Phytochem. Res. 2019, 43, 123–136. [Google Scholar]
- Joshi, A.; Prakash, O.; Pant, A.K.; Kumar, R.; Szczepaniak, L.; Kucharska-Ambrożej, K. Methyl Eugenol, 1,8-Cineole and Nerolidol Rich Essential Oils with Their Biological Activities from Three Melaleuca Species Growing in Tarai Region of North India. Brazilian Arch. Biol. Technol. 2021, 64. [Google Scholar] [CrossRef]
- Ray, A.; Jena, S.; Dash, B.; Kar, B.; Halder, T.; Chatterjee, T.; Ghosh, B.; Panda, P.C.; Nayak, S.; Mahapatra, N. Chemical Diversity, Antioxidant and Antimicrobial Activities of the Essential Oils from Indian Populations of Hedychium Coronarium Koen. Ind. Crops Prod. 2018, 112, 353–362. [Google Scholar] [CrossRef]
- Spengler, G.; Gajdács, M.; Donadu, M.G.; Usai, M.; Marchetti, M.; Ferrari, M.; Mazzarello, V.; Zanetti, S.; Nagy, F.; Kovács, R. Evaluation of the Antimicrobial and Antivirulent Potential of Essential Oils Isolated from Juniperus Oxycedrus L. Ssp. Macrocarpa Aerial Parts. Microorganisms 2022, 10, 758. [Google Scholar] [CrossRef]
- Lin, L.; Long, N.; Qiu, M.; Liu, Y.; Sun, F.; Dai, M. The Inhibitory Efficiencies of Geraniol as an Anti-Inflammatory, Antioxidant, and Antibacterial, Natural Agent Against Methicillin-Resistant Staphylococcus Aureus Infection in Vivo. Infect. Drug Resist. 2021, 14, 2991–3000. [Google Scholar] [CrossRef]
- do Vale, J.P.C.; de Freitas Ribeiro, L.H.; de Vasconcelos, M.A.; Sá-Firmino, N.C.; Pereira, A.L.; do Nascimento, M.F.; Rodrigues, T.H.S.; da Silva, P.T.; de Sousa, K.C.; da Silva, R.B.; et al. Chemical Composition, Antioxidant, Antimicrobial and Antibiofilm Activities of Vitex Gardneriana Schauer Leaves’s Essential Oil. Microb. Pathog. 2019, 135, 103608. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus Aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Näsström, E.; Vu Thieu, N.T.; Dongol, S.; Karkey, A.; Voong Vinh, P.; Ha Thanh, T.; Johansson, A.; Arjyal, A.; Thwaites, G.; Dolecek, C.; et al. Salmonella Typhi and Salmonella Paratyphi A Elaborate Distinct Systemic Metabolite Signatures during Enteric Fever. Elife 2014, 3, e03100. [Google Scholar] [CrossRef] [PubMed]
- Mathur, R.; Oh, H.; Zhang, D.; Park, S.-G.; Seo, J.; Koblansky, A.; Hayden, M.S.; Ghosh, S. A Mouse Model of Salmonella Typhi Infection. Cell 2012, 151, 590–602. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial Activity of Some Plant Extracts against Bacterial Strains Causing Food Poisoning Diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef]
- Epand, R.M.; Walker, C.; Epand, R.F.; Magarvey, N.A. Molecular Mechanisms of Membrane Targeting Antibiotics. Biochim. Biophys. Acta-Biomembr. 2016, 1858, 980–987. [Google Scholar] [CrossRef]
- Tao, N.; Liu, Y.; Zhang, M. Chemical Composition and Antimicrobial Activities of Essential Oil from the Peel of Bingtang Sweet Orange ( Citrus Sinensis Osbeck). Int. J. Food Sci. Technol. 2009, 44, 1281–1285. [Google Scholar] [CrossRef]
- Sabulal, B.; George, V.; Dan, M.; Pradeep, N.S. Chemical Composition and Antimicrobial Activities of the Essential Oils from the Rhizomes of Four Hedychium Species from South India. J. Essent. Oil Res. 2007, 19, 93–97. [Google Scholar] [CrossRef]
- Clevenger, J.F. Apparatus for the Determination of Volatile Oil. J. Am. Pharm. Assoc. 1928, 17, 345–349. [Google Scholar] [CrossRef]
- Franco, C.D.J.P.; Ferreira, O.O.; Antônio Barbosa de Moraes, Â.; Varela, E.L.P.; Nascimento, L.D.D.; Percário, S.; de Oliveira, M.S.; Andrade, E.H.D.A. Chemical Composition and Antioxidant Activity of Essential Oils from Eugenia Patrisii Vahl, E. Punicifolia (Kunth) DC., and Myrcia Tomentosa (Aubl.) DC., Leaf of Family Myrtaceae. Molecules 2021, 26, 3292. [Google Scholar] [CrossRef]
- Ferreira, O.O.; da Cruz, J.N.; Franco, C.D.J.P.; Silva, S.G.; da Costa, W.A.; de Oliveira, M.S.; Andrade, E.H.D.A. First Report on Yield and Chemical Composition of Essential Oil Extracted from Myrcia Eximia DC (Myrtaceae) from the Brazilian Amazon. Molecules 2020, 25, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenback, J.D. Diagnostic Characters Useful in the Identification of the Four Most Common Species of Root-Knot Nematodes (Meloidogyne Spp.). In An Advanced Treatise on Meloidogyne; Sasser, J.N., Carter, C., Eds.; University Graphics: Raleigh, NC, USA, 1985; pp. 95–112. [Google Scholar]
- Latif, R.; Abbasi, M.W.; Zaki, M.J.; Khan, D. Nemticidal Activity of Bark of Some Tree Species against Root-Knot Nematode Meloidogyne Javanica (Treub) Chitwood. FUUAST J. Biol. 2014, 4, 247–251. [Google Scholar]
- Dawidar, A.E.M.; Mortada, M.M.; Raghib, H.M.; Abdel-Mogib, M. Molluscicidal Activity of Balanites Aegyptiaca against Monacha Cartusiana. Pharm. Biol. 2012, 50, 1326–1329. [Google Scholar] [CrossRef]
- Ferreira Barros, A.; Paulo Campos, V.; Lopes de Paula, L.; Alaís Pedroso, L.; de Jesus Silva, F.; Carlos Pereira da Silva, J.; Ferreira de Oliveira, D.; Humberto Silva, G. The Role of Cinnamomum Zeylanicum Essential Oil, (E)-Cinnamaldehyde and (E)-Cinnamaldehyde Oxime in the Control of Meloidogyne Incognita. J. Phytopathol. 2021, 169, 229–238. [Google Scholar] [CrossRef]
- Tabashnic, T.; Cushing, N.L. Leaf Residue vs. Topical Bioassays for Assessing Insecticide Resistance in the Diamond-Back Moth, Plutella Xylostella L. FAO Plant Prot. Bull. 1987, 35, 12. [Google Scholar]
- Eloff, J. Which Extractant Should Be Used for the Screening and Isolation of Antimicrobial Components from Plants? J. Ethnopharmacol. 1998, 60, 1–8. [Google Scholar] [CrossRef]
- Sahu, A.; Devkota, A. Allelopathic Effects of Aqueous Extract of Leaves of Mikania Micrantha H.B.K. on Seed Germination and Seedling Growht of Oryza Sativa L. and Raphanus Sativus L. Sci. World 2013, 11, 91–93. [Google Scholar] [CrossRef] [Green Version]
- Batista, C.D.C.R.; de Oliveira, M.S.; Araújo, M.E.; Rodrigues, A.M.; Botelho, J.R.S.; da Silva Souza Filho, A.P.; Machado, N.T.; Junior, R.N.C. Supercritical CO2 Extraction of Açaí (Euterpe Oleracea) Berry Oil: Global Yield, Fatty Acids, Allelopathic Activities, and Determination of Phenolic and Anthocyanins Total Compounds in the Residual Pulp. J. Supercrit. Fluids 2015, 107, 364–369. [Google Scholar] [CrossRef]
- de Oliveira, M.S.; da Costa, W.A.; Pereira, D.S.; Botelho, J.R.S.; de Alencar Menezes, T.O.; de Aguiar Andrade, E.H.; da Silva, S.H.M.; da Silva Sousa Filho, A.P.; de Carvalho, R.N. Chemical Composition and Phytotoxic Activity of Clove (Syzygium Aromaticum) Essential Oil Obtained with Supercritical CO2. J. Supercrit. Fluids 2016, 118, 185–193. [Google Scholar] [CrossRef]
- Gurgel, E.S.C.; de Oliveira, M.S.; Souza, M.C.; da Silva, S.G.; de Mendonça, M.S.; da Silva Souza Filho, A.P. Chemical Compositions and Herbicidal (Phytotoxic) Activity of Essential Oils of Three Copaifera Species (Leguminosae-Caesalpinoideae) from Amazon-Brazil. Ind. Crops Prod. 2019, 142. [Google Scholar] [CrossRef]
- Goswami, S.; Kanyal, J.; Prakash, O.; Kumar, R.; Rawat, D.S.; Srivastava, R.M.; Pant, A.K. Chemical Composition, Antioxidant, Antifungal and Antifeedant Activity of the Salvia Reflexa Hornem. Essential Oil. Asian J. Appl. Sci. 2019, 12, 185–191. [Google Scholar] [CrossRef]
- (CLSI) Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Seventh Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006; Volume 2, ISBN 1-56238-587-9. [Google Scholar]
- Ferreira, O.O.; da Silva, S.H.M.; de Oliveira, M.S.; de Andrade, E.H.A. Chemical Composition and Antifungal Activity of Myrcia Multiflora and Eugenia Florida Essential Oils. Molecules 2021, 26, 7259. [Google Scholar] [CrossRef]
- Mesomo, M.C.; Corazza, M.L.; Ndiaye, P.M.; Dalla Santa, O.R.; Cardozo, L.; Scheer, A.D.P. Supercritical CO2 extracts and Essential Oil of Ginger (Zingiber Officinale R.): Chemical Composition and Antibacterial Activity. J. Supercrit. Fluids 2013, 80, 44–49. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Concato, J.; Hartigan, J.A. P Values: From Suggestion to Superstition. J. Investig. Med. 2016, 64, 1166–1171. [Google Scholar] [CrossRef] [Green Version]
S.N. | Compound Identified | RIc | RIL | Composition % in Present Study (Kausani, Kumaun Region, Uttarakhand, India) | % Composition of Rhizome Essential Oils in Reported Studies | ||
---|---|---|---|---|---|---|---|
HCCAO | HCCRO | Sakhanokho et al. [9] (Mississippi, U.S.) | Gurib-Fakim et al. [14]. (Pamplemousses, Mauritius) | ||||
1. | Artemisia alcohol | 939 | 935 | 3.7 | - | - | - |
2. | α-pinene | 948 | 939 | 10.9 | 2.1 | 13.5 | 2.4 |
3. | Camphene | 953 | 954 | 0.1 | 0.1 | 2.3 | - |
4. | Sulcatone | 968 | 965 | 0.7 | - | - | - |
5. | Sabinene | 972 | 975 | 1.9 | - | - | - |
6. | β-pinene | 978 | 979 | 6.8 | 6.8 | 7.5 | 1.8 |
7. | Myrcene | 991 | 990 | 1.2 | - | - | - |
8. | p-cymene | 1024 | 1024 | - | 0.2 | 0.5 | - |
9. | Limonene | 1030 | 1029 | 1.5 | - | 1.1 | 0.2 |
10. | 1,8-cineol | 1032 | 1031 | 1.1 | 8.5 | 0.1 | - |
11. | β-ocimene | 1046 | 1050 | 0.4 | - | - | - |
12. | γ-terpinene | 1058 | 1059 | t | 0.3 | - | - |
13. | Cis-sabinene hydrate | 1069 | 1070 | t | - | - | - |
14. | Cis-linalool oxide (Furanoid) | 1082 | 1072 | - | - | 2.0 | - |
15. | Trans-linalool oxide (Furanoid) | 1088 | 1086 | - | - | 1.8 | - |
16. | Linalool | 1092 | 1096 | 1.9 | 0.4 | 26.7 | - |
17. | Thujol | 1098 | 1095 | 0.3 | - | - | - |
18. | Trans-pinocarveol | 1139 | 1139 | - | - | 1.5 | - |
19. | Trans- verbenol | 1143 | 1144 | - | - | 0.9 | - |
20. | Camphor | 1149 | 1146 | 0.5 | 0.6 | 0.2 | - |
21. | Isoborneol | 1165 | 1160 | 0.5 | - | - | - |
22. | Borneol | 1169 | 1169 | - | 6.1 | 1.0 | - |
23. | Terpinen-4-ol | 1177 | 1178 | 0.3 | 2.6 | 0.1 | - |
24. | α-terpineol | 1183 | 1188 | - | 0.4 | 0.6 | 0.6 |
25. | Naphthalene | 1189 | 1181 | t | - | - | - |
26. | Myrtenol | 1194 | 1195 | - | - | 1.2 | - |
27. | Trans-carveol | 1217 | 1216 | - | - | 0.3 | - |
28. | α-fenchyl acetate | 1223 | 1220 | - | - | - | 0.2 |
29. | Bornyl acetate | 1285 | 1285 | 0.3 | 13.9 | 8.4 | 0.8 |
30. | β-elemene | 1390 | 1390 | 0.3 | - | - | - |
31. | β-cubebene | 1392 | 1389 | t | - | - | - |
32. | β-bourbonene | 1393 | 1388 | 0.1 | - | - | - |
33. | α-cis-bergamotene | 1416 | 1412 | 0.8 | 0.6 | - | - |
34. | (E)-caryophyllene | 1424 | 1419 | 0.9 | 0.7 | 1.5 | - |
35. | γ-elemene | 1432 | 1436 | 0.8 | - | - | - |
36. | α-himachalene | 1449 | 1451 | - | 0.9 | - | - |
37. | α-humulene | 1461 | 1454 | 0.9 | - | - | - |
38. | 9-epi-(E)-caryophyllene | 1464 | 1466 | 0.2 | - | - | - |
39. | β-acoradiene | 1471 | 1470 | - | 0.3 | - | - |
40. | α-curcumene | 1479 | 1480 | 2.4 | 2.2 | 4.1 | - |
41. | α-neocallitropsene | 1480 | 1476 | 0.2 | - | - | - |
42. | Germacrene D | 1480 | 1481 | 3.0 | - | - | - |
43. | β-vetispirene | 1494 | 1493 | 0.4 | - | - | - |
44. | Bicyclogermacrene | 1497 | 1500 | 3.8 | - | - | - |
45. | α-farnesene | 1502 | 1505 | 11.1 | - | - | 1.9 |
46. | β-dihydroagarofuran | 1509 | 1503 | 1.0 | 1.1 | - | - |
47. | δ-cadinene | 1518 | 1523 | 0.5 | 0.2 | - | - |
48. | Kessane | 1533 | 1530 | 0.3 | 0.7 | - | - |
49. | Elemol | 1551 | 1549 | 0.5 | - | - | - |
50. | (E)-nerolidol | 1564 | 1563 | 5.3 | 15.9 | 4.6 | 44.4 |
51. | Davanone B | 1567 | 1566 | 5.8 | 10.9 | - | - |
52. | Spathulenol | 1576 | 1578 | 7.7 | 8.9 | 3.1 | 0.4 |
53. | 7-hydroxyfarnesen | 1579 | 1581 | 15.5 | - | - | - |
54. | Trans-sesquisabinene hydrate | 1580 | 1579 | - | - | - | 24.2 |
55. | γ-turmerol | 1581 | 1582 | - | - | 0.2 | - |
56. | Caryophyllene oxide | 1582 | 1583 | - | - | 1.5 | - |
57. | Globulol | 1589 | 1590 | - | 0.4 | 0.8 | - |
58. | Viridiflorol | 1592 | 1592 | - | 0.3 | 0.5 | - |
59. | Salvial-4(14)-en-1-one | 1596 | 1594 | t | - | - | - |
60. | Rosifoliol | 1598 | 1601 | 1.0 | - | - | - |
61. | Ledol | 1600 | 1602 | t | - | - | - |
62. | Guaiol | 1603 | 1600 | 0.5 | 0.9 | - | - |
63. | γ-eudesmol | 1632 | 1632 | - | 5.2 | - | - |
64. | T-muurolol | 1645 | 1646 | 0.1 | 0.9 | 0.1 | - |
65. | α-cadinol | 1648 | 1654 | - | 0.4 | 0.4 | - |
66. | Cadin-4-en-10-ol | 1649 | 1647 | 0.3 | - | - | - |
67. | Agarospirol | 1649 | 1648 | - | 0.4 | - | - |
68. | β-eudesmol | 1652 | 1650 | - | 3.4 | - | - |
69. | Bulnesol | 1673 | 1671 | - | 1.9 | - | 0.4 |
70. | α-bisabolol | 1686 | 1685 | - | - | - | 0.3 |
71. | α-(Z)-bergamotol | 1688 | 1690 | 0.2 | - | - | - |
72. | Iso-longifolol | 1725 | 1729 | t | - | - | - |
73. | (E)-isovalencenol | 1796 | 1793 | 0.5 | - | - | - |
Class composition | % Composition | ||||||
Monoterpene hydrocarbons | 22.8 | 9.5 | 25.2 | 4.4 | |||
Oxygenated monoterpenes | 9.3 | 32.5 | 44.5 | 1.6 | |||
Sesquiterpenes hydrocarbons | 25.0 | 4.9 | 5.6 | 1.9 | |||
Oxygenated sesquiterpenes | 39.1 | 51.3 | 9.0 | 69.7 | |||
Total (%) | 96.2 | 98.2 | 84.3 | 77.6 |
Treatment (T) | Concentration. (µL/mL) | Percent Mortality and Exposure Time (h.) | |||
---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | ||
HCCAO | 0.25 | 17.66 ± 0.57 no | 21.00 ± 1.00 mn | 26.66 ± 1.52 ijk | 29.66 ± 1.52 hij |
0.5 | 24.33 ± 0.57 lm | 24.66 ± 0.57 lm | 28.66 ± 1.15 jkl | 30.66 ± 1.15 hi | |
1 | 25.66 ± 0.57 kl | 27.33 ± 1.15 ijkl | 33.33 ± 1.52 gh | 41.33 ± 1.15 e | |
HCCRO | 0.25 | 21.00 ± 1.00 hi | 30.66 ± 1.15 hi | 34.66 ± 0.57 g | 46.66 ± 1.52 d |
0.5 | 30.66 ± 1.15 mn | 40.00 ± 1.00 ef | 49.00 ± 1.00 cd | 52.66 ± 1.15 bc | |
1 | 36.33 ± 1.52 fg | 46.33 ± 1.52 d | 55.00 ± 1.00 b | 61.66 ± 1.52 a | |
Control | water | 1.66 ± 2.08 rs | 3.33 ± 1.52 rs | 6.33 ± 1.52 qrs | 14.33 ± 2.08 op |
Sample | H. | *LC50 (%) | Regression Equation. |
---|---|---|---|
HCCAO | 24 | 0.26 | y = 0.007x + 4.06 |
48 | 0.13 | y = 0.006x + 4.39 | |
72 | 0.06 | y = 0.008x + 4.49 | |
96 | 0.03 | y = 0.005x + 4.79 | |
HCCRO | 24 | 2.34 | y = 0.004x + 4.01 |
48 | 6.92 | y = 0.003x + 4.14 | |
72 | 2.33 | y = 0.003x + 4.29 | |
96 | 0.23 | y = 0.004x + 4.40 |
Treatment (T) | Concentration (µL/mL) | Percent Egg Hatching of Nematodes and Exposure Time (h) | |||
---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | ||
HCCAO | 0.25 | 32.33 ± 0.57 j | 43.33 ± 1.52 hi | 45.00 ± 1.73 gh | 55.00 ± 3.00 f |
0.5 | 25.00 ± 2.64 klm | 30.00 ± 1.00 jk | 30.00 ± 2.64 jk | 38.33 ± 0.57 i | |
1 | 6.66 ± 2.30 t | 14.00 ± 1.73 qrs | 14.00 ± 2.00 qrs | 17.66 ± 2.51 opq | |
HCCRO | 0.25 | 18.33 ± 0.57 nopq | 23.66 ± 1.52 lmn | 26.66 ± 0.57 kl | 22.66 ± 1.52 lmno |
0.5 | 9.00 ± 1.00 st | 18.00 ± 1.00 opq | 19.66 ± 0.57 mnop | 15.33 ± 5.70 opq | |
1 | 6.66 ± 1.52 t | 11.13 ± 1.48 rst | 15.97 ± 1.13 pqr | 11.33 ± 0.57 rst | |
Control | Water | 56.33 ± 4.04 def | 66.33 ± 2.08 cde | 74.33 ± 2.08 b | 92.33 ± 3.21 a |
Sample | Time (h) | IC50 (µL/mL) |
---|---|---|
HCCAO | 24 | 2.18 |
48 | 2.38 | |
72 | 2.48 | |
96 | 2.72 | |
HCCRO | 24 | 1.92 |
48 | 2.06 | |
72 | 2.19 | |
96 | 2.07 |
Essential Oil | Concentration (µL/mL) | No. of Insects Used | No. of Insects Dead | % of Average Mortality | ||||
---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |||
HCCAO | 10 | 5 | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 | 0.00 | 0.00 |
25 | 5 | 1.00 ± 0.00 cd | 1.66 ± 0.57 bc | 2.00 ± 1.00 bc | 20.00 | 33.33 | 40.00 | |
50 | 5 | 1.66 ± 0.57 bc | 2.33 ± 1.57 abc | 3.00 ± 0.00 ab | 33.33 | 46.66 | 60.00 | |
100 | 5 | 2.33 ± 0.57 abc | 2.66 ± 0.57 ab | 3.66 ± 0.57 a | 46.66 | 53.33 | 73.33 | |
HCCRO | 10 | 5 | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 | 0.00 | 0.00 |
25 | 5 | 0.66 ± 0.57 cd | 1.33 ± 0.57 bcd | 1.66 ± 0.57 abc | 13.33 | 26.66 | 33.33 | |
50 | 5 | 1.66 ± 0.57 bcd | 2.00 ± 1.00 abcd | 3.00 ± 1.00 ab | 33.33 | 40.00 | 60.00 | |
100 | 5 | 2.00 ± 1.00 abcd | 2.66 ± 0.57 abc | 4.00 ± 0.00 a | 40.00 | 53.33 | 80.00 | |
Control | water | 5 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 | 0.00 | 0.00 |
Sample | Time (h) | LC30 (%) | LC50 (%) | LC90 (%) | Chi-Squared | Regression Equation |
---|---|---|---|---|---|---|
HCCAO | 24 | 0.005 | 0.007 | 0.01 | 0.80 | y = 0.06x + 0.38 |
48 | 0.004 | 0.006 | 0.01 | 0.83 | y = 0.06x + 0.51 | |
72 | 0.004 | 0.005 | 0.009 | 0.88 | y = 0.06x + 0.43 | |
HCCRO | 24 | 0.006 | 0.007 | 0.01 | 0.82 | y = 0.005x + 0.30 |
48 | 0.005 | 0.006 | 0.01 | 0.74 | y = 0.062x + 0.42 | |
72 | 0.004 | 0.005 | 0.008 | 0.80 | y = 0.07x + 0.27 |
S. No. | Sample Name | % Inhibition of Seed Germination | |||
---|---|---|---|---|---|
Essential Oil | 50 µL/mL | 100 µL/mL | 150 µL/mL | 200 µL/mL | |
1. | HCCAO | 36.00 ± 2.00 ab | 51.66 ± 0.57 c | 78.66 ± 1.52 fg | 92.00 ± 2.00 h |
2. | HCCRO | 47.66 ± 2.51 b | 61 ± 1.00 d | 73.33 ± 2.08 ef | 96.33 ± 1.52 h |
3. | Pendimethalin * | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 |
S. No. | Sample Name | IC50 Values (µL/mL) in Triplicates | Mean IC50 Values (µL/mL) ± SD | ||
---|---|---|---|---|---|
Essential Oil | I | II | III | ||
1 | HCCAO | 90.54 | 84.18 | 89.55 | 88.09 ± 3.42 |
2 | HCCRO | 57.29 | 62.10 | 68.96 | 62.78 ± 5.86 |
S. No. | Sample Name | % Inhibition of Root Length | |||
---|---|---|---|---|---|
Essential Oil | 50 µL/mL | 100 µL/mL | 150 µL/mL | 200 µL/mL | |
1. | HCCAO | 27.03 ± 0.64 a | 56.29 ± 0.64 d | 73.33 ± 1.11 f | 90.37 ± 0.64 h |
2. | HCCRO | 34.44 ± 1.11 a | 53.33 ± 1.11 d | 67.77 ± 1.11 e | 84.07 ± 0.64 g |
3. | Pendimethalin * | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ±0.00 |
S. No. | Sample Name | IC50 Values (µL/mL) in Triplicates | Mean IC50 Values (µL/mL) ± SD | ||
---|---|---|---|---|---|
Essential Oil | I | II | III | ||
1 | HCCAO | 96.69 | 96.57 | 97.29 | 96.85 ± 0.38 |
2 | HCCRO | 93.1 | 97.85 | 93.1 | 94.68 ± 2.74 |
S. No. | Sample Name | % Inhibition of Shoot Length | |||
---|---|---|---|---|---|
Essential Oil | 50 µL/mL | 100 µL/mL | 150 µL/mL | 200 µL/mL | |
1. | HCCAO | 34.44 ± 1.11 b | 52.22 ± 4.00 d | 66.66 ± 2.22 e | 81.11 ± 2.93 g |
2. | HCCRO | 40.00 ± 1.11 b | 47.77 ± 1.92 c | 74.44 ± 1.11 f | 99.62 ± 0.64 h |
3. | Pendimethalin * | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 | 100 ± 0.00 |
S. No. | Sample Name | IC50 Values (µL/mL) in Triplicates | Mean IC50 Values (µL/mL) ± SD | ||
---|---|---|---|---|---|
Essential Oil | I | II | III | ||
1. | HCCAO | 133.76 | 149.93 | 115.5 | 133.06 ± 17.22 |
2. | HCCRO | 86.2 | 90.85 | 85.27 | 87.44 ± 2.98 |
Percent Mycelial Growth Inhibition | ||||
---|---|---|---|---|
Concentration (µL/mL) | Fusariumoxysporum | Curvularia lunata | ||
HCCAO | HCCRO | HCCAO | HCCRO | |
50 | 15.9 ± 0.64 a | 38.1 ± 0.64 c | 27.0 ± 0.64 b | 18.5 ± 0.67 a |
100 | 32.9 ± 0.64 b | 52.6 ± 0.61 d | 32.9 ± 0.64 c | 32.4 ± 0.29 c |
250 | 54.0 ± 1.69 d | 66.7 ± 0.12 e | 57.0 ± 0.64 d | 42.9 ± 1.69 e |
500 | 69.9 ± 0.57 e | 72.7 ± 0.55 e | 72.2 ± 1.05 f | 58.5 ± 0.57 e |
750 | 83.3 ± 1.11 f | 88.1 ±1.28 f | 84.1 ± 0.57 h | 74.8 ± 0.64 g |
Carbendazim * | 100 ± 00 | 100 ± 00 | 100 ± 00 | 100 ± 00 |
Concentration (μL/100 μL) | Staphylococcus aureus (log10CFU/mL ± SD) | Salmonella enterica serovar Typhi (log10CFU/mL ± SD) | ||
---|---|---|---|---|
HCCAO | HCCRO | HCCAO | HCCRO | |
5 | 1 ± 0 g | 1 ± 0 h | 6.97 ± 0.41 f | 6.34 ± 0.22 h |
2.5 | 2.67 ± 0.11 e | 2.079 ± 0.12 f | 7.17 ± 0.33 e | 6.97 ± 0.37 g |
1.25 | 5.38 ± 0.22 d | 5.16 ± 0.34 e | 8.00 ± 0.48 d | 7.83 ± 0.55 e |
0.625 | 7.38 ± 0.33 c | 6.28 ± 0.2 5 c | 9.15 ± 0.36 c | 9.12 ± 0.39 c |
Untreated cells | 8.57 ± 0.31 a | 8.57 ± 0.31 b | 9.16 ± 0.58 a | 9.16 ± 0.58 b |
Pass (Pa > Pi) | ||||
---|---|---|---|---|
S.No. | Compounds Name | Antibacterial | Antifungal | Nematicidal |
1 | β-pinene | 0.23 > 0.09 | 0.22 > 0.12 | 0.24 > 0.16 |
2 | 1,8-cineol | 0.29 > 0.06 | 0.24 > 0.12 | 0.28 > 0.12 |
3 | borneol | 0.26 > 0.07 | 0.34 > 0.06 | 0.26 > 0.05 |
4 | (E)-nerolidol | 0.43 > 0.02 | 0.61 > 0.01 | 0.36 > 0.02 |
5 | (E)-caryophyllene | 0.44 > 0.02 | 0.58 > 0.02 | 0.48 > 0.01 |
6 | linalool | 0.38 > 0.03 | 0.59 > 0.01 | 0.37 > 0.02 |
7 | α- pinene | 0.32 >0.05 | 0.43 > 0.04 | 0.35 > 0.06 |
8 | α-farnesene | 0.41 > 0.02 | 0.60 > 0.01 | 0.45 > 0.01 |
9 | limonene | 0.40 > 0.02 | 0.58 > 0.02 | 0.59 > 0.00 |
10 | terpinen-4-ol | 0.32 > 0.05 | 0.46 > 0.03 | 0.46 > 0.02 |
11 | spathulenol | 0.40 > 0.02 | 0.51 > 0.02 | - |
12 | davanone B | 0.45 > 0.02 | 0.59 > 0.01 | 0.45 > 0.01 |
13 | γ-eudesmol | 0.26 > 0.07 | 0.28 > 0.08 | 0.26 > 0.15 |
14 | bulnesol | 0.32 > 0.05 | 0.19 > 0.03 | 0.21 > 0.19 |
15 | β–eudesmol | 0.30 > 0.05 | 0.40 > 0.04 | 0.22 > 0.06 |
16 | α-curcumene | 0.29 > 0.06 | 0.44 > 0.04 | 0.41 > 0.01 |
17 | germacrene D | 0.42 > 0.02 | 0.57 > 0.02 | 0.45 > 0.00 |
18 | bicyclogermacrene | 0.42 > 0.02 | 0.53 > 0.02 | 0.63> 0.00 |
19 | 7-hydroxyfarnesen | 0.44 > 0.02 | 0.62 > 0.01 | 0.34 > 0.02 |
20 | β dihydroagarofuran | 0.21 > 0.10 | 0.17 > 0.05 | 0.32 > 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arya, S.; Kumar, R.; Prakash, O.; Kumar, S.; Mahawer, S.K.; Chamoli, S.; Kumar, P.; Srivastava, R.M.; de Oliveira, M.S. Chemical Composition and Biological Activities of Hedychium coccineum Buch.-Ham. ex Sm. Essential Oils from Kumaun Hills of Uttarakhand. Molecules 2022, 27, 4833. https://doi.org/10.3390/molecules27154833
Arya S, Kumar R, Prakash O, Kumar S, Mahawer SK, Chamoli S, Kumar P, Srivastava RM, de Oliveira MS. Chemical Composition and Biological Activities of Hedychium coccineum Buch.-Ham. ex Sm. Essential Oils from Kumaun Hills of Uttarakhand. Molecules. 2022; 27(15):4833. https://doi.org/10.3390/molecules27154833
Chicago/Turabian StyleArya, Sushila, Ravendra Kumar, Om Prakash, Satya Kumar, Sonu Kumar Mahawer, Shivangi Chamoli, Piyush Kumar, Ravi Mohan Srivastava, and Mozaniel Santana de Oliveira. 2022. "Chemical Composition and Biological Activities of Hedychium coccineum Buch.-Ham. ex Sm. Essential Oils from Kumaun Hills of Uttarakhand" Molecules 27, no. 15: 4833. https://doi.org/10.3390/molecules27154833
APA StyleArya, S., Kumar, R., Prakash, O., Kumar, S., Mahawer, S. K., Chamoli, S., Kumar, P., Srivastava, R. M., & de Oliveira, M. S. (2022). Chemical Composition and Biological Activities of Hedychium coccineum Buch.-Ham. ex Sm. Essential Oils from Kumaun Hills of Uttarakhand. Molecules, 27(15), 4833. https://doi.org/10.3390/molecules27154833