Synthesis and Biological Evaluation of Novel Allobetulon/Allobetulin–Nucleoside Conjugates as AntitumorAgents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Antiproliferative Activities and Structure-Activity Relationship
2.2.2. Effects of Compound 10d on Apoptosis, Autophagy, and Cell Cycle Study of SMMC-7721 Human Cancer Cells
3. Materials and Methods
3.1. General Information
3.2. Procedure for the Synthesis of 2α-Propargyl Substituted Analogs
3.2.1. Synthesis of Allobetulin (5)
3.2.2. Synthesis of Allobetulon (6)
3.2.3. Synthesis of 2α-Propargyl-Allobetulon (7)
3.2.4. Synthesis of 2α-Propargyl-Allobetulin (8)
3.3. General Procedure for Click Reactions
3.3.1. Method A
3.3.2. Method B
3.3.3. Method C
3.4. Procedure for the Preparation of Compounds 9a–10i
3.4.1. 2α-{1N[1-(2-deoxy-2β-fluoro-β-d-arabinopentafuranosyl)cytosine-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulon (9a)
3.4.2. 2α-{1N[1-(2-deoxy-2β-fluoro-β-d-arabinopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulon (9b)
3.4.3. 2α-{1N[1-(2-deoxy-2α-fluoro-β-d-ribopentafuranosyl)cytosine-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulon (9c)
3.4.4. 2α-{1N[1-(2-deoxy-2α-fluoro-β-d-ribopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulon (9d)
3.4.5. 2α-{1N[1-(β-d-ribopentafuranosyl)cytosine-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulon (9e)
3.4.6. 2α-{1N[1-(β-d-ribopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulon (9f)
3.4.7. 2α-{1N[1-(2-deoxy-β-d-ribopentafuranosyl)cytosine-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulon (9g)
3.4.8. 2α-{1N[1-(2-deoxy-β-d-ribopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulon (9h)
3.4.9. 2α-{1N[1-(2,3-dideoxy-β-d-ribopentafuranosyl)thymine-3-yl]-1H-1,2,3-triazole-4-yl}-allobetulon (9i)
3.4.10. 2α-{1N[1-(2-deoxy-2β-fluoro-β-d-arabinopentafuranosyl)cytosine-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulin (10a)
3.4.11. 2α-{1N[1-(2-deoxy-2β-fluoro-β-d-arabinopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulin (10b)
3.4.12. 2α-{1N[1-(2-deoxy-2α-fluoro-β-d-ribopentafuranosyl)cytosine-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulin (10c)
3.4.13. 2α-{1N[1-(2-deoxy-2α-fluoro-β-d-ribopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulin (10d)
3.4.14. 2α-{1N[1-(β-d-ribopentafuranosyl)cytosine-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulin (10e)
3.4.15. 2α-{1N[1-(β-d-ribopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulin (10f)
3.4.16. 2α-{1N[1-(2-deoxy-β-d-ribopentafuranosyl)cytosine-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulin (10g)
3.4.17. 2α-{1N[1-(2-deoxy-β-d-ribopentafuranosyl)uracil-4-yl]-1H-1,2,3-triazole-4-yl}-allobetulin (10h)
3.4.18. 2α-{1N[1-(2,3-dideoxy-β-d-ribopentafuranosyl)thymine-3-yl]-1H-1,2,3-triazole-4-yl}-allobetulin (10i)
3.5. X-ray Structure of Compound 9c
3.6. Cell Culture
3.7. Cell Viability Assay
3.8. Flow Cytometry Assay
3.9. Western Blot Analysis
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Chen, H.-D.; Yu, Y.-W.; Li, N.; Chen, W.-Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Somarelli, J.A.; Boddy, A.M.; Gardner, H.L.; Dewitt, S.B.; Tuohy, J.; Megquier, K.; Sheth, M.U.; Hsu, S.D.; Thorne, J.L.; London, C.A.; et al. Improving cancer drug discovery by studying cancer across the tree of life. Mol. Biol. Evol. 2019, 37, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.T.; Zhang, Q.Q.; Li, X.; Ma, Y.H.; Liu, Y.H.; Hu, S.J.; Zhou, Z.K.; Zhang, R.T.; Du, K.J.; Syed, A.; et al. IPM712, a vanillin derivative as potential antitumor agents, displays better antitumor activity in colorectal cancers cell lines. Eur. J. Pharm. Sci. 2020, 152, 105464. [Google Scholar] [CrossRef] [PubMed]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef]
- Hodan, J.; Borkova, L.; Pokorny, J.; Kazakova, A.; Urban, M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur. J. Med. Chem. 2019, 182, 111653. [Google Scholar] [CrossRef] [PubMed]
- Jonnalagadda, S.C.; Suman, P.; Morgan, D.C.; Seay, J.N. Chapter 2—Recent developments on the synthesis and applications of betulin and betulinic acid derivatives as therapeutic agents. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 53, pp. 45–84. [Google Scholar] [CrossRef]
- Zhu, M.; Du, X.-N.; Li, Y.-G.; Zhang, G.-N.; Wang, J.-X.; Wang, Y.-C. Design, synthesis and biological evaluation of novel HIV-1 protease inhibitors with pentacyclic triterpenoids as P2-ligands. Bioorg. Med. Chem. Lett. 2019, 29, 357–361. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, C.-H.; Morris-Natschke, S.L.; Lee, K.-H. Design, synthesis, and structure-activity relationship analysis of new betulinic acid derivatives as potent HIV inhibitors. Eur. J. Med. Chem. 2021, 215, 113287. [Google Scholar] [CrossRef]
- Hsu, T.-I.; Chen, Y.-J.; Hung, C.-Y.; Wang, Y.C.; Lin, S.-J.; Su, W.-C.; Lai, M.-D.; Kim, S.-Y.; Wang, Q.; Qian, K.D.; et al. A novel derivative of betulinic acid, SYK023, suppresses lung cancer growth and malignancy. Oncotarget 2015, 6, 13671–13687. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Huang, K.-Y.; Ling, Y.; Goto, M.; Duan, H.-Q.; Tong, X.-H.; Liu, Y.-L.; Cheng, Y.-Y.; Morris-Natschke, S.L.; Yang, P.-C.; et al. Discovery of an oleanolic acid/hederagenin-nitric oxide donor hybrid as an EGFR tyrosine kinase inhibitor for non-small-cell lung cancer. J. Nat. Prod. 2019, 82, 3065–3073. [Google Scholar] [CrossRef]
- Sycz, Z.; Tichaczek-Goska, D.; Wojnicz, D. Anti-planktonic and anti-biofilm properties of pentacyclic triterpenes-asiatic acid and ursolic acid as promising antibacterial future pharmaceuticals. Biomolecules 2022, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Oboh, M.; Govender, L.; Siwela, M.; Mkhwanazi, B.N. Antidiabetic potential of plant-based pentacyclic triterpene derivatives: Progress made to improve efficacy and bioavailability. Molecules 2021, 26, 7243. [Google Scholar] [CrossRef] [PubMed]
- Jeong, G.-S.; Bae, J.-S. Anti-inflammatory effects of triterpenoids; naturally occurring and synthetic agents. Mini-Rev. Org. Chem. 2014, 11, 316–329. [Google Scholar] [CrossRef]
- Sureda, A.; Monserrat-Mesquida, M.; Pinya, S.; Ferriol, P.; Tejada, S. Hypotensive effects of the triterpene oleanolic acid for cardiovascular prevention. Curr. Mol. Pharmacol. 2021, 14, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, G.; Hondoň, J.; Kazakova, A.; D’Acunto, C.W.; Kaňovský, P.; Urban, M.; Strnad, M. Novel pentacyclic triterpenes exhibiting strong neuroprotective activity in SH-SY5Y cells in salsolinol- and glutamate-induced neurodegeneration models. Eur. J. Med. Chem. 2021, 213, 113168. [Google Scholar] [CrossRef]
- Ghante, M.H.; Jamkhande, P.G. Role of pentacyclic triterpenoid in chemoprevention and anticancer treatment: An overview on targets and underling mechanisms. J. Pharmacopunct. 2019, 22, 55–67. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, J.; Chen, Y. Betulinic acid and the pharmacological effects of tumor suppression. Mol. Med. Rep. 2016, 14, 4489–4495. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Li, X.; Dong, S.; Zhou, W. Betulinic acid in the treatment of tumor diseases: Application and research progress. Biomed. Pharmacother. 2021, 142, 111990. [Google Scholar] [CrossRef]
- Thibeault, D.; Gauthier, C.; Legault, J.; Bouchard, J.; Dufour, P.; Pichette, A. Synthesis and structure-activity relationship study of cytotoxic germanicane- and lupane-type 3β-O-monodesmosidic saponins starting from betulin. Bioorg. Med. Chem. 2007, 15, 6144–6157. [Google Scholar] [CrossRef]
- Levdanskii, A.V.; Korasenko, A.A.; Levdanskii, V.A.; Kuznetsov, B.N. New synthesis of allobetulin 3-O-acylates. Chem. Nat. Compd. 2018, 54, 806–807. [Google Scholar] [CrossRef] [Green Version]
- Salvad, J.A.R.; Pinto, R.M.A.; Santos, R.C.; Roux, C.L.; Beja, A.M.; Paixão, J.A. Bismuth triflate-catalyzed Wagner-Meerwein rearrangement in terpenes. Application to the synthesis of the 18α-oleanane core and A-neo-18α-oleanene compounds from lupanes. Org. Biomol. Chem. 2009, 7, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Hao, J.; Liu, J.; Zhang, L.Y.; Sun, H.B. Efficient synthesis of morolic acid and related triterpenes starting from betulin. Tetrahedron 2009, 65, 4304–4309. [Google Scholar] [CrossRef]
- Heller, L.; Schwarz, S.; Obernauer, A.; Csuk, R. Allobetulin derived seco-oleananedicarboxylates act as inhibitors of acetylcholinesterase. Bioorg. Med. Chem. Lett. 2015, 25, 2654–2656. [Google Scholar] [CrossRef] [PubMed]
- Carlson, R.M.; Duluth, M.N. Therapeutic Method to Treat Herpes Virus Infection. U.S. Pantent 6369101, 9 April 2002. [Google Scholar]
- Dehaen, W.; Mashentseva, A.A.; Seitembetov, T.S. Allobetulinand its derivatives: Synthesis and biological activity. Molecules 2011, 16, 2443–2466. [Google Scholar] [CrossRef]
- Urban, M.; Vlk, M.; Dzubak, P.; Haiduch, M.; Sarek, J. Cytotoxic heterocyclic triterpenoids derived from betulin and betulinic acid. Bioorg. Med. Chem. 2012, 20, 3666–3674. [Google Scholar] [CrossRef]
- Kazakova, O.B.; Smirnova, I.E.; Khusnutdinova, E.F.; Zhukova, O.S.; Fetisova, L.V.; Apryshko, G.N.; Medvedeva, N.I.; Yamansarov, E.Y.; Baikova, I.P.; Nguyen, T.T.; et al. Synthesis and cytotoxicity of allobetulin derivatives. Russ. J. Bioorg. Chem. 2014, 40, 558–567. [Google Scholar] [CrossRef]
- Borkova, L.; Jasikova, L.; Rehulka, J.; Frisonsova, K.; Urban, M.; Frydrych, I.; Popa, I.; Hajduch, M.; Dickinson, N.J.; Vlk, M.; et al. Synthesis of cytotoxic 2,2-difluoroderivatives of dihydrobetulinic acid and allobetulin and study of their impact on cancer cells. Eur. J. Med. Chem. 2015, 96, 482–490. [Google Scholar] [CrossRef]
- Borkova, L.; Gurska, S.; Dzubak, P.; Burianova, R.; Hajduch, M.; Sarek, J.; Popa, I.; Urban, M. Lupane and 18α-oleanane derivatives substituted in the position 2, their cytotoxicity and influence on cancer cells. Euro. J. Med. Chem. 2016, 121, 120–131. [Google Scholar] [CrossRef]
- Borkova, L.; Adamek, R.; Kalina, P.; Drašar, P.; Dzubak, P.; Gurska, S.; Rehulka, J.; Hajduch, M.; Urban, M.; Sarek, J. Synthesis and cytotoxic activity of triterpenoid thiazoles derived from allobetulin, methyl betulonate, methyl oleanonate, and oleanonic acid. ChemMedChem 2017, 12, 390–398. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Dehaen, W. Antiproliferative effect of mitochondria-targeting allobetulin 1,2,3-triazolium salt derivatives and their mechanism of inducing apoptosis of cancer cells. Eur. J. Med. Chem. 2020, 207, 112737. [Google Scholar] [CrossRef]
- Flekhter, O.B.; Medvedeva, N.I.; Karachurina, L.T.; Baltina, L.A.; Galin, F.Z.; Zarudii, F.S.; Tolstikov, G.A. Synthesis and pharmacological activity of betulin, betulinic acid, and allobetulin esters. Pharm. Chem. J. 2005, 39, 401–404. [Google Scholar] [CrossRef]
- Salin, O.; Alakurtti, S.; Pohjala, L.; Siiskonen, A.; Maass, V.; Maass, M.; Yli-Kauhaluoma, J.; Vuorela, P. Inhibitory effect of the natural product betulin and its derivatives against the intracellular bacterium Chlamydia pneumoniae. Biochem. Pharmacol. 2010, 80, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Arrous, S.; Boudebouz, I.; Parunov, I.; Plotnikov, E.; Voronova, O. New synthetic method and antioxidant activity of betulindiformate and allobetulinformate. Chem. Nat. Compd. 2019, 55, 1094–1097. [Google Scholar] [CrossRef]
- Arrous, S.; Boudebouz, I.; Voronova, O.; Plotnikov, E.; Bakibaev, A. Synthesis and antioxidant evaluation of some new allobetulin esters. Rasayan J. Chem. 2019, 12, 1032–1037. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.J.; Zheng, L.Y.; Huang, X.W.; Wang, Y.L.; Chen, C.-H.; Cheng, Y.-Y.; Morris-Natschke, S.L.; Lee, K.-H. Novel betulinic acid-nucleoside hybrids with potent anti-HIV activity. ACS Med. Chem. Lett. 2020, 11, 2290–2293. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organization Model List of Essential Medicines: 21st List 2019. 2019. Available online: https://apps.who.int/iris/handle/10665/325771 (accessed on 8 July 2019).
Compd. | IC50 (μM) | |||||
---|---|---|---|---|---|---|
SMMC-7721 | HepG2 | MNK-45 | SW620 | MCF-7 | A549 | |
7 | >100 | >100 | >100 | >100 | >100 | >100 |
9a | 20.95 ± 0.89 | 20.04 ± 0.40 | 42.91 ± 6.30 | 65.90 ± 9.09 | 26.75 ± 1.42 | 22.86 ± 0.59 |
9b | 10.73 ± 0.80 | 10.33 ± 1.10 | 11.77 ± 1.61 | 25.08 ± 6.16 | 9.57 ± 1.26 | 12.42 ± 0.32 |
9c | 11.96 ± 1.08 | 12.49 ± 0.97 | 13.67 ± 3.15 | 49.23 ± 0.37 | 13.17 ± 0.84 | 12.45 ± 1.12 |
9d | 15.14 ± 2.67 | 13.63 ± 1.98 | 13.39 ± 2.61 | 47.67 ± 0.53 | 48.89 ± 1.15 | 13.14 ± 1.65 |
9e | 9.48 ± 2.39 | 14.90 ± 2.66 | 6.46 ± 1.10 | 11.80 ± 0.09 | 27.14 ± 0.26 | 8.54 ± 0.72 |
9f | 18.93 ± 0.55 | 15.71 ± 2.86 | 21.19 ± 2.73 | 51.96 ± 5.99 | 84.17 ± 3.50 | 19.49 ± 1.33 |
9g | 12.08 ± 2.32 | 12.58 ± 2.48 | 13.29 ± 2.60 | >100 | 50.52 ± 2.10 | 8.74 ± 0.63 |
9h | 9.10 ± 2.20 | 12.56 ± 0.81 | 8.50 ± 1.75 | 48.75 ± 2.23 | 15.57 ± 4.10 | 25.32 ± 3.30 |
9i | 9.47 ± 1.86 | 12.07 ± 1.72 | 11.54 ± 1.27 | 49.23 ± 1.97 | 20.58 ± 3.05 | 13.16 ± 2.62 |
8 | 64.96 ± 6.76 | 87.73 ± 2.96 | >100 | >100 | >100 | 62.96 ± 3.68 |
10a | 13.97 ± 2.43 | 12.05 ± 1.13 | 8.01 ± 1.75 | 7.06 ± 0.47 | 21.99 ± 0.32 | 9.95 ± 1.46 |
10b | 11.82 ± 1.46 | 25.84 ± 4.17 | 29.09 ± 1.95 | 24.73 ± 3.84 | 20.46 ± 1.40 | 11.18 ± 1.61 |
10c | 22.26 ± 1.60 | 52.32 ± 6.20 | 22.48 ± 0.89 | 31.85 ± 1.53 | >100 | 39.86 ± 1.54 |
10d | 5.57 ± 0.78 | 7.49 ± 0.71 | 6.31 ± 1.64 | 6.00 ± 1.70 | 12.32 ± 1.88 | 5.79 ± 1.00 |
10e | 15.35 ± 1.61 | 20.48 ± 1.19 | 25.79 ± 1.27 | 15.32 ± 1.55 | 45.79 ± 5.10 | 17.96 ± 1.32 |
10f | 26.24 ± 1.88 | 14.40 ± 1.47 | 12.06 ± 3.97 | 27.28 ± 0.40 | 17.58 ± 2.98 | 11.80 ± 0.65 |
10g | 54.74 ± 3.39 | 40.95 ± 2.13 | 14.63 ± 5.02 | 66.62 ± 4.63 | >100 | 17.75 ± 4.75 |
10h | 38.43 ± 4.88 | 39.36 ± 3.93 | 29.36 ± 1.82 | 79.63 ± 2.67 | 61.24 ± 6.47 | 67.81 ± 2.66 |
10i | 10.07 ± 2.34 | 11.33 ± 1.45 | 12.50 ± 2.75 | 39.66 ± 5.11 | 43.07 ± 6.20 | 11.18 ± 2.57 |
betulin | 82.9 ± 7.08 | >100 | 55.50 ± 7.50 | 83.70 ± 9.05 | 30.6 ± 2.70 | 87.39 ± 10.75 |
Zidovudine | >100 | >100 | >100 | >100 | >100 | >100 |
cisplatin | 10.96 ± 1.35 | 16.56 ± 1.71 | 19.59 ± 1.85 | 40.60 ± 5.68 | 27.63 ± 2.30 | 14.21 ± 2.80 |
oxaliplatin | >100 | 18.30 ± 1.65 | 17.58 ± 1.29 | 22.67 ± 1.71 | 7.41 ± 3.87 | 45.89 ± 2.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Huang, X.; Zhang, X.; Wang, J.; Li, K.; Liu, G.; Lu, K.; Zhang, X.; Xie, C.; Zheng, T.; et al. Synthesis and Biological Evaluation of Novel Allobetulon/Allobetulin–Nucleoside Conjugates as AntitumorAgents. Molecules 2022, 27, 4738. https://doi.org/10.3390/molecules27154738
Wang Y, Huang X, Zhang X, Wang J, Li K, Liu G, Lu K, Zhang X, Xie C, Zheng T, et al. Synthesis and Biological Evaluation of Novel Allobetulon/Allobetulin–Nucleoside Conjugates as AntitumorAgents. Molecules. 2022; 27(15):4738. https://doi.org/10.3390/molecules27154738
Chicago/Turabian StyleWang, Yanli, Xiaowan Huang, Xiao Zhang, Jingchen Wang, Keyan Li, Guotao Liu, Kexin Lu, Xiang Zhang, Chengping Xie, Teresa Zheng, and et al. 2022. "Synthesis and Biological Evaluation of Novel Allobetulon/Allobetulin–Nucleoside Conjugates as AntitumorAgents" Molecules 27, no. 15: 4738. https://doi.org/10.3390/molecules27154738
APA StyleWang, Y., Huang, X., Zhang, X., Wang, J., Li, K., Liu, G., Lu, K., Zhang, X., Xie, C., Zheng, T., Cheng, Y. -Y., & Wang, Q. (2022). Synthesis and Biological Evaluation of Novel Allobetulon/Allobetulin–Nucleoside Conjugates as AntitumorAgents. Molecules, 27(15), 4738. https://doi.org/10.3390/molecules27154738