Lipoprotein Subclasses Independently Contribute to Subclinical Variance of Microvascular and Macrovascular Health
Abstract
:1. Introduction
2. Results
Associations of Vascular Health and Lipoprotein Subclasses
3. Discussion
3.1. Lipoprotein Subclasses and Microvascular Health
3.2. Lipoprotein Subclasses and Macrovascular Health
3.3. Lipoprotein Subclasses as Suitable Biomarker to Detect Cardiovascular Risk?
3.4. Quantifying HDL and LDL Subclasses in Clinical Practice
3.5. Limitations
4. Materials and Methods
4.1. Sample Preparation and Lipoprotein Quantification by NMR Spectroscopy
4.2. Micro- and Macrovascular Health
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Weber, C.; Noels, H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med. 2011, 17, 1410–1422. [Google Scholar] [CrossRef] [PubMed]
- Soppert, J.; Lehrke, M.; Marx, N.; Jankowski, J.; Noels, H. Lipoproteins and lipids in cardiovascular disease: From mechanistic insights to therapeutic targeting. Adv. Drug Deliv. Rev. 2020, 159, 4–33. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Keech, A.; Kearney, P.M.; Blackwell, L.; Buck, G.; Pollicino, C.; Kirby, A.; Sourjina, T.; Peto, R.; Collins, R.; et al. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Navar-Boggan, A.M.; Peterson, E.D.; D’Agostino, R.B., Sr.; Neely, B.; Sniderman, A.D.; Pencina, M.J. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation 2015, 131, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Duncan, M.S.; Vasan, R.S.; Xanthakis, V. Trajectories of Blood Lipid Concentrations Over the Adult Life Course and Risk of Cardiovascular Disease and All-Cause Mortality: Observations from the Framingham Study Over 35 Years. J. Am. Heart Assoc. 2019, 8, e011433. [Google Scholar] [CrossRef] [Green Version]
- Castelli, W.P.; Garrison, R.J.; Wilson, P.W.; Abbott, R.D.; Kalousdian, S.; Kannel, W.B. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. J. Am. Med. Assoc. 1986, 256, 2835–2838. [Google Scholar] [CrossRef]
- Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Hólm, H.; Ding, E.L.; Johnson, T.; et al. Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study. Lancet 2012, 380, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.P.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.-C.; Waters, D.D.; et al. Effects of Torcetrapib in Patients at High Risk for Coronary Events. N. Engl. J. Med. 2007, 357, 2109–2122. [Google Scholar] [CrossRef] [Green Version]
- AIM-HIGH Investigators; Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 2011, 365, 2255–2267. [Google Scholar] [CrossRef] [Green Version]
- Seidelmann, S.B.; Claggett, B.; Bravo, P.E.; Gupta, A.; Farhad, H.; Klein, B.E.; Klein, R.; Di Carli, M.; Solomon, S.D. Retinal Vessel Calibers in Predicting Long-Term Cardiovascular Outcomes: The Atherosclerosis Risk in Communities Study. Circulation 2016, 134, 1328–1338. [Google Scholar] [CrossRef] [Green Version]
- McGeechan, K.; Liew, G.; Macaskill, P.; Irwig, L.; Klein, R.; Klein, B.E.K.; Wang, J.J.; Mitchell, P.; Vingerling, J.R.; De Jong, P.T.V.M.; et al. Prediction of Incident Stroke Events Based on Retinal Vessel Caliber: A Systematic Review and Individual-Participant Meta-Analysis. Am. J. Epidemiol. 2009, 170, 1323–1332. [Google Scholar] [CrossRef]
- Chandra, A.; Seidelmann, S.B.; Claggett, B.L.; Klein, B.E.; Klein, R.; Shah, A.M.; Solomon, S.D. The association of retinal vessel calibres with heart failure and long-term alterations in cardiac structure and function: The Atherosclerosis Risk in Communities (ARIC) Study. Eur. J. Heart Fail. 2019, 21, 1207–1215. [Google Scholar] [CrossRef]
- Wang, J.J.; Liew, G.; Klein, R.; Rochtchina, E.; Knudtson, M.D.; Klein, B.E.; Wong, T.Y.; Burlutsky, G.; Mitchell, P. Retinal vessel diameter and cardiovascular mortality: Pooled data analysis from two older populations. Eur. Heart J. 2007, 28, 1984–1992. [Google Scholar] [CrossRef]
- Streese, L.; Khan, A.W.; Deiseroth, A.; Hussain, S.; Suades, R.; Tiaden, A.; Kyburz, D.; Hanssen, H.; Cosentino, F. Physical activity may drive healthy microvascular ageing via downregulation of p66Shc. Eur. J. Prev. Cardiol. 2019, 27, 168–176. [Google Scholar] [CrossRef]
- Streese, L.; Guerini, C.; Bühlmayer, L.; Lona, G.; Hauser, C.; Bade, S.; Deiseroth, A.; Hanssen, H. Physical activity and exercise improve retinal microvascular health as a biomarker of cardiovascular risk: A systematic review. Atherosclerosis 2020, 315, 33–42. [Google Scholar] [CrossRef]
- Streese, L.; Lona, G.; Wagner, J.; Knaier, R.; Burri, A.; Nève, G.; Infanger, D.; Vilser, W.; Schmidt-Trucksäss, A.; Hanssen, H. Normative data and standard operating procedures for static and dynamic retinal vessel analysis as biomarker for cardiovascular risk. Sci. Rep. 2021, 11, 14136. [Google Scholar] [CrossRef]
- Hansen, T.W.; Staessen, J.A.; Torp-Pedersen, C.; Rasmussen, S.; Thijs, L.; Ibsen, H.; Jeppesen, J. Prognostic Value of Aortic Pulse Wave Velocity as Index of Arterial Stiffness in the General Population. Circulation 2006, 113, 664–670. [Google Scholar] [CrossRef]
- Mattace-Raso, F.U.; van der Cammen, T.J.; Hofman, A.; van Popele, N.M.; Bos, M.L.; Schalekamp, M.A.; Asmar, R.; Reneman, R.S.; Hoeks, A.P.; Breteler, M.M.; et al. Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study. Circulation 2006, 113, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Sutton-Tyrrell, K.; Najjar, S.S.; Boudreau, R.M.; Venkitachalam, L.; Kupelian, V.; Simonsick, E.M.; Havlik, R.; Lakatta, E.G.; Spurgeon, H.; Kritchevsky, S.; et al. Elevated Aortic Pulse Wave Velocity, a Marker of Arterial Stiffness, Predicts Cardiovascular Events in Well-Functioning Older Adults. Circulation 2005, 111, 3384–3390. [Google Scholar] [CrossRef]
- Laurent, S.; Boutouyrie, P.; Asmar, R.; Gautier, I.; Laloux, B.; Guize, L.; Ducimetiere, P.; Benetos, A. Aortic Stiffness Is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients. Hypertension 2001, 37, 1236–1241. [Google Scholar] [CrossRef] [Green Version]
- Vlachopoulos, C.; Aznaouridis, K.; O’Rourke, M.F.; Safar, M.E.; Baou, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: A systematic review and meta-analysis. Eur. Heart J. 2010, 31, 1865–1871. [Google Scholar] [CrossRef] [Green Version]
- Streese, L.; Springer, A.M.; Deiseroth, A.; Carrard, J.; Infanger, D.; Schmaderer, C.; Schmidt-Trucksäss, A.; Madl, T.; Hanssen, H. Metabolic profiling links cardiovascular risk and vascular end organ damage. Atherosclerosis 2021, 331, 45–53. [Google Scholar] [CrossRef]
- Albers, J.J.; Slee, A.; Fleg, J.L.; O’Brien, K.D.; Marcovina, S.M. Relationship of baseline HDL subclasses, small dense LDL and LDL triglyceride to cardiovascular events in the AIM-HIGH clinical trial. Atherosclerosis 2016, 251, 454–459. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, R.; Kinderytė, M.; Chaudhary, R.; Sukhi, A.; Bliden, K.; Tantry, U.; Gurbel, P. HDL3-C is a Marker of Coronary Artery Disease Severity and Inflammation in Patients on Statin Therapy. Cardiovasc. Revascularization Med. 2019, 20, 1001–1006. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Gaubatz, J.W.; Sun, W.; Dodge, R.C.; Crosby, J.R.; Jiang, J.; Couper, D.; Virani, S.S.; Kathiresan, S.; Boerwinkle, E.; et al. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Rosenson, R.S.; Brewer, H.B., Jr.; Chapman, M.J.; Fazio, S.; Hussain, M.M.; Kontush, A.; Krauss, R.M.; Otvos, J.D.; Remaley, A.T.; Schaefer, E.J. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin. Chem. 2011, 57, 392–410. [Google Scholar] [CrossRef] [Green Version]
- Lona, G.; Endes, K.; Köchli, S.; Infanger, D.; Zahner, L.; Hanssen, H. Retinal Vessel Diameters and Blood Pressure Progression in Children. Hypertension 2020, 76, 450–457. [Google Scholar] [CrossRef]
- Wong, T.Y.; Islam, F.M.A.; Klein, R.; Klein, B.E.K.; Cotch, M.F.; Castro, C.; Sharrett, A.R.; Shahar, E. Retinal Vascular Caliber, Cardiovascular Risk Factors, and Inflammation: The Multi-Ethnic Study of Atherosclerosis (MESA). Investig. Opthalmol. Vis. Sci. 2006, 47, 2341–2350. [Google Scholar] [CrossRef]
- Ikram, M.K.; Witteman, J.C.; Vingerling, J.R.; Breteler, M.M.; Hofman, A.; de Jong, P.T. Retinal vessel diameters and risk of hypertension: The Rotterdam Study. Hypertension 2006, 47, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.J.; Taylor, B.; Wong, T.Y.; Chua, B.; Rochtchina, E.; Klein, R.; Mitchell, P. Retinal vessel diameters and obesity: A population-based study in older persons. Obesity (Silver Spring) 2006, 14, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boillot, A.; Zoungas, S.; Mitchell, P.; Klein, R.; Klein, B.; Ikram, M.K.; Klaver, C.; Wang, J.J.; Gopinath, B.; Tai, E.S.; et al. Obesity and the Microvasculature: A Systematic Review and Meta-Analysis. PLoS ONE 2013, 8, e52708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beazer, J.D.; Patanapirunhakit, P.; Gill, J.M.R.; Graham, D.; Karlsson, H.; Ljunggren, S.; Mulder, M.T.; Freeman, D.J. High-density lipoprotein’s vascular protective functions in metabolic and cardiovascular disease-could extracellular vesicles be at play? Clin. Sci. 2020, 134, 2977–2986. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, H.; Nickel, T.; Drexel, V.; Hertel, G.; Emslander, I.; Sisic, Z.; Lorang, D.; Schuster, T.; Kotliar, K.E.; Pressler, A.; et al. Exercise-induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity. Atherosclerosis 2011, 216, 433–439. [Google Scholar] [CrossRef]
- Lee, W.-C.; Chen, J.-B.; Moi, S.-H.; Yang, C.-H. Association of proportion of the HDL-cholesterol subclasses HDL-2b and HDL-3 and macrovascular events among patients undergoing hemodialysis. Sci. Rep. 2021, 11, 1871. [Google Scholar] [CrossRef]
- Tian, L.; Li, C.; Liu, Y.; Chen, Y.; Fu, M. The Value and Distribution of High-Density Lipoprotein Subclass in Patients with Acute Coronary Syndrome. PLoS ONE 2014, 9, e85114. [Google Scholar] [CrossRef] [Green Version]
- Asztalos, B.F.; Cupples, L.A.; Demissie, S.; Horvath, K.V.; Cox, C.E.; Batista, M.C.; Schaefer, E.J. High-Density Lipoprotein Subpopulation Profile and Coronary Heart Disease Prevalence in Male Participants of the Framingham Offspring Study. Arter. Thromb. Vasc. Biol. 2004, 24, 2181–2187. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Hu, M.-J.; Cui, Y.-J.; Liang, L.; Zhou, M.-M.; Yang, Y.-W.; Huang, F. Carotid–Femoral Pulse Wave Velocity in the Prediction of Cardiovascular Events and Mortality: An Updated Systematic Review and Meta-Analysis. Angiology 2018, 69, 617–629. [Google Scholar] [CrossRef]
- Pokharel, Y.; Tang, Y.; Bhardwaj, B.; Patel, K.K.; Qintar, M.; O’Keefe, J.H., Jr.; Kulkarni, K.R.; Jones, P.H.; Martin, S.S.; Virani, S.S.; et al. Association of low-density lipoprotein pattern with mortality after myocardial infarction: Insights from the TRIUMPH study. J. Clin. Lipidol. 2017, 11, 1458–1470.e4. [Google Scholar] [CrossRef]
- Lamarche, B.; Tchernof, A.; Moorjani, S.; Cantin, B.; Dagenais, G.R.; Lupien, P.J.; Despres, J.P. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men-Prospective results from the Quebec Cardiovascular Study. Circulation 1997, 95, 69–75. [Google Scholar] [CrossRef] [Green Version]
- El Harchaoui, K.; van der Steeg, W.A.; Stroes, E.S.G.; Kuivenhoven, J.A.; Otvos, J.D.; Wareham, N.J.; Hutten, B.A.; Kastelein, J.J.P.; Khaw, K.-T.; Boekholdt, S.M. Value of Low-Density Lipoprotein Particle Number and Size as Predictors of Coronary Artery Disease in Apparently Healthy Men and Women: The EPIC-Norfolk Prospective Population Study. J. Am. Coll. Cardiol. 2007, 49, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Zeljkovic, A.; Vekic, J.; Spasojevic-Kalimanovska, V.; Jelic-Ivanovic, Z.; Bogavac-Stanojevic, N.; Gulan, B.; Spasic, S. LDL and HDL subclasses in acute ischemic stroke: Prediction of risk and short-term mortality. Atherosclerosis 2010, 210, 548–554. [Google Scholar] [CrossRef]
- Mora, S.; Otvos, J.D.; Rosenson, R.S.; Pradhan, A.; Buring, J.E.; Ridker, P.M. Lipoprotein Particle Size and Concentration by Nuclear Magnetic Resonance and Incident Type 2 Diabetes in Women. Diabetes 2010, 59, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Berneis, K.K.; Krauss, R.M. Metabolic origins and clinical significance of LDL heterogeneity. J. Lipid Res. 2002, 43, 1363–1379. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.; Blair, S.N.; Arena, R.; Church, T.S.; Despres, J.P.; Franklin, B.A.; Haskell, W.L.; Kaminsky, L.A.; Levine, B.D.; Lavie, C.J.; et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e653–e699. [Google Scholar] [CrossRef]
- Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partington, S.; Atwood, J.E. Exercise Capacity and Mortality among Men Referred for Exercise Testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Lavie, C.J.; Marín, J.; Perez-Quilis, C.; Eijsvogels, T.M.H.; O’Keefe, J.H.; Perez, M.V.; Blair, S.N. Exercise effects on cardiovascular disease: From basic aspects to clinical evidence. Cardiovasc. Res. 2021, cvab272. [Google Scholar] [CrossRef]
- Kanonidou, C. Small dense low-density lipoprotein: Analytical review. Clin. Chim. Acta 2021, 520, 172–178. [Google Scholar] [CrossRef]
- Streese, L.; Deiseroth, A.; Schäfer, J.; Schmidt-Trucksäss, A.; Hanssen, H. Exercise, Arterial Crosstalk-Modulation, and Inflammation in an Aging Population: The ExAMIN AGE Study. Front. Physiol. 2018, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Reisinger, A.C.; Posch, F.; Hackl, G.; Marsche, G.; Sourij, H.; Bourgeois, B.; Eller, K.; Madl, T.; Eller, P. Branched-Chain Amino Acids Can Predict Mortality in ICU Sepsis Patients. Nutrients 2021, 13, 3106. [Google Scholar] [CrossRef]
- Carr, H.Y.; Purcell, E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. (Series I) 1954, 94, 630–638. [Google Scholar] [CrossRef]
- Meiboom, S.; Gill, D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 1958, 29, 688–691. [Google Scholar] [CrossRef] [Green Version]
- Nagayama, K.; Wüthrich, K.; Bachmann, P.; Ernst, R.R. Two-dimensional J-resolved 1H n.m.r. spectroscopy for studies of biological macromolecules. Biochem. Biophys. Res. Commun. 1977, 78, 99–105. [Google Scholar] [CrossRef]
- Ludwig, C.; Viant, M.R. Two-dimensional J -resolved NMR spectroscopy: Review of a key methodology in the metabolomics toolbox. Phytochem. Anal. PCA 2010, 21, 22–32. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, S.; Zhang, Z.; Chen, Z. High-Resolution Two-Dimensional J-Resolved NMR Spectroscopy for Biological Systems. Biophys. J. 2014, 106, 2061–2070. [Google Scholar] [CrossRef] [Green Version]
- Lounila, J.; Ala-Korpela, M.; Jokisaari, J.; Savolainen, M.J.; Kesäniemi, Y.A. Effects of orientational order and particle size on the NMR line positions of lipoproteins. Phys. Rev. Lett. 1994, 72, 4049–4052. [Google Scholar] [CrossRef]
- Ala-Korpela, M.; Korhonen, A.; Keisala, J.; Hörkkö, S.; Korpi, P.; Ingman, L.P.; Jokisaari, J.; Savolainen, M.J.; Kesäniemi, Y.A. 1H NMR-based absolute quantitation of human lipoproteins and their lipid contents directly from plasma. J. Lipid Res. 1994, 35, 2292–2304. [Google Scholar] [CrossRef]
- Jeyarajah, E.J.; Cromwell, W.C.; Otvos, J.D. Lipoprotein Particle Analysis by Nuclear Magnetic Resonance Spectroscopy. Clin. Lab. Med. 2006, 26, 847–870. [Google Scholar] [CrossRef]
- Ala-Korpela, M. Critical evaluation of 1H NMR metabonomics of serum as a methodology for disease risk assessment and diagnostics. Clin. Chem. Lab. Med. (CCLM) 2008, 46, 27–42. [Google Scholar] [CrossRef]
- Tian, L.; Long, S.; Li, C.; Liu, Y.; Chen, Y.; Zeng, Z.; Fu, M. High-density lipoprotein subclass and particle size in coronary heart disease patients with or without diabetes. Lipids Health Dis. 2012, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Soininen, P.; Kangas, A.J.; Würtz, P.; Suna, T.; Ala-Korpela, M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Cardiovascular Epidemiology and Genetics. Circ. Cardiovasc. Genet. 2015, 8, 192–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, B.; Holmes, E.; Heude, C.; Tolson, R.F.; Harvey, N.; Lodge, S.L.; Chetwynd, A.J.; Cannet, C.; Fang, F.; Pearce, J.T.M.; et al. Quantitative Lipoprotein Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and Plasma by 1H NMR Spectroscopy in a Multilaboratory Trial. Anal. Chem. 2018, 90, 11962–11971. [Google Scholar] [CrossRef] [PubMed]
- Aru, V.; Lam, C.; Khakimov, B.; Hoefsloot, H.C.J.; Zwanenburg, G.; Lind, M.V.; Schäfer, H.; van Duynhoven, J.; Jacobs, D.M.; Smilde, A.K.; et al. Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis. TrAC Trends Anal. Chem. 2017, 94, 210–219. [Google Scholar] [CrossRef]
- Deiseroth, A.; Streese, L.; Köchli, S.; Wüst, R.S.; Infanger, D.; Schmidt-Trucksäss, A.; Hanssen, H. Exercise and Arterial Stiffness in the Elderly: A Combined Cross-Sectional and Randomized Controlled Trial (EXAMIN AGE). Front. Physiol. 2019, 10, 1119. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
Patients’ Characteristics | Mean ± SD |
---|---|
Age (years) | 59 ± 7 |
Height (cm) | 169 ± 8 |
Body mass (kg) | 81.8 ± 18.1 |
Body mass index (kg/m2) | 28.6 ± 6.0 |
Waist circumference (cm) | 99 ± 16 |
Fat mass (%) | 28.5 ± 13.2 |
Muscle mass (kg) | 29.6 ± 6.4 |
24 h systolic BP (mmHg) | 125 ± 10 |
24 h diastolic BP (mmHg) | 79 ± 7 |
Fasting glucose (mmol/L) | 5.3 ± 1.5 |
Triglycerides (mmol/L) | 1.4 ± 0.9 |
HDL-C (mmol/L) | 1.6 ± 0.5 |
LDL-C (mmol/L) | 3.1 ± 0.8 |
Hs-CRP (mg/L) | 2.6 ± 3.5 |
PROCAM score | 36 ± 10 |
PROCAM 10 years risk (%) | 6.5 ± 6.4 |
(mL/min/kg) | 31 ± 9 |
CRAE (μm) | 174 ± 14 |
CRVE (μm) | 213 ± 17 |
AVR | 0.82 ± 0.06 |
PWV (m/s) | 7.8 ± 1.7 |
Parameter | Microvascular Parameter | R | Corrected p-Value | Molecular Class | Lipoprotein (Sub)Classes |
---|---|---|---|---|---|
HDL | |||||
HDCH | AVR | 0.324 | 0.006 | Cholesterol | total HDL |
HDFC | AVR | 0.379 | <0.001 | Free cholesterol | total HDL |
HDFC | CRVE | −0.305 | 0.016 | Free cholesterol | total HDL |
H1A1 | AVR | 0.385 | <0.001 | Apolipoprotein-A1 | HDL-1 |
H1A1 | CRVE | −0.306 | 0.015 | Apolipoprotein-A1 | HDL-1 |
H1A2 | AVR | 0.341 | 0.002 | Apolipoprotein-A2 | HDL-1 |
H1A2 | CRVE | −0.295 | 0.026 | Apolipoprotein-A2 | HDL-1 |
H1CH | AVR | 0.383 | <0.001 | Cholesterol | HDL-1 |
H1FC | AVR | 0.404 | <0.001 | Free cholesterol | HDL-1 |
H1FC | CRVE | −0.323 | 0.006 | Free cholesterol | HDL-1 |
H1PL | AVR | 0.376 | <0.001 | Phospholipids | HDL-1 |
H1PL | CRVE | −0.287 | 0.040 | Phospholipids | HDL-1 |
H3TG | AVR | −0.286 | 0.041 | Triglycerides | HDL-3 |
LDL | |||||
LDTG | AVR | −0.304 | 0.017 | Triglycerides | total LDL |
L4TG | AVR | −0.301 | 0.020 | Triglycerides | LDL-4 |
L5AB | AVR | −0.291 | 0.032 | Apoliprotein B-100 | LDL-5 |
L5TG | AVR | −0.299 | 0.021 | Triglycerides | LDL-5 |
IDL | |||||
IDAB | AVR | −0.313 | 0.010 | Apoliprotein B-100 | IDL |
IDFC | AVR | −0.287 | 0.040 | Free cholesterol | IDL |
VLDL | |||||
VLAB | AVR | -0.285 | 0.044 | Apoliprotein B-100 | total VLDL |
V1FC | AVR | −0.284 | 0.047 | Free cholesterol | VLDL-1 |
V1PL | AVR | −0.287 | 0.040 | Phospholipids | VLDL-1 |
TP | |||||
ABA1 | AVR | −0.337 | 0.003 | Apo-B100/Apo-A1 | Particle number ratio |
LDHD | AVR | −0.290 | 0.034 | LDL/HDL | Particle number ratio |
Parameter | Macrovascular Parameter | R | Corrected p-Value | Molecular Class | Lipoprotein (Sub)Classes |
---|---|---|---|---|---|
HDL | |||||
HDCH | PWV | −0.281 | 0.046 | Cholesterol | total HDL |
HDFC | PWV | −0.288 | 0.032 | Free cholesterol | total HDL |
H1FC | PWV | −0.306 | 0.013 | Free cholesterol | HDL-1 |
H2FC | PWV | −0.297 | 0.021 | Free cholesterol | HDL-2 |
LDL | |||||
L2AB | PWV | −0.286 | 0.035 | Apoliprotein B-100 | LDL-2 |
L2CH | PWV | −0.292 | 0.027 | Cholesterol | LDL-2 |
L2FC | PWV | −0.309 | 0.011 | Free Cholesterol | LDL-2 |
L2PL | PWV | −0.299 | 0.018 | Phospholipids | LDL-2 |
L3FC | PWV | −0.302 | 0.016 | Free Cholesterol | LDL-3 |
Dependent Variable | Predictor | F-Statistic (df1, df2, F-Value) | p-Value | Adjusted R2 |
---|---|---|---|---|
AVR | 25 lipoprotein subclasses * | 29,121 = 2.80 | <0.001 | 0.26 |
HDL-C, LDL-C and triglycerides | 3143 = 8.42 | <0.001 | 0.13 | |
classic CV risk factors ¥ | 4146 = 23.6 | <0.001 | 0.38 | |
£ | 3147 = 19.36 | <0.001 | 0.27 | |
CRVE | 25 lipoprotein subclasses * | 29,121 = 2.08 | 0.003 | 0.17 |
HDL-C, LDL-C and triglycerides | 3143 = 3.44 | 0.048 | 0.05 | |
classic CV risk factors ¥ | 4146 = 5.68 | <0.001 | 0.11 | |
£ | 3147 = 6.43 | <0.001 | 0.10 | |
CRAE | 25 lipoprotein subclasses * | 29,121 = 1.08 | 0.375 | 0.02 |
HDL-C, LDL-C and triglycerides | 3143 = 0.65 | 0.582 | 0.01 | |
classic CV risk factors ¥ | 4146 = 1.43 | 0.227 | 0.01 | |
£ | 3147 = 0.05 | 0.421 | 0.00 | |
PWV | 25 lipoprotein subclasses * | 29,124 = 1.70 | 0.025 | 0.12 |
HDL-C, LDL-C and triglycerides | 3145 = 5.46 | 0.001 | 0.08 | |
classic CV risk factors ¥ | 4149 = 7.46 | <0.001 | 0.14 | |
£ | 3150 = 29.28 | <0.001 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streese, L.; Habisch, H.; Deiseroth, A.; Carrard, J.; Infanger, D.; Schmidt-Trucksäss, A.; Madl, T.; Hanssen, H. Lipoprotein Subclasses Independently Contribute to Subclinical Variance of Microvascular and Macrovascular Health. Molecules 2022, 27, 4760. https://doi.org/10.3390/molecules27154760
Streese L, Habisch H, Deiseroth A, Carrard J, Infanger D, Schmidt-Trucksäss A, Madl T, Hanssen H. Lipoprotein Subclasses Independently Contribute to Subclinical Variance of Microvascular and Macrovascular Health. Molecules. 2022; 27(15):4760. https://doi.org/10.3390/molecules27154760
Chicago/Turabian StyleStreese, Lukas, Hansjörg Habisch, Arne Deiseroth, Justin Carrard, Denis Infanger, Arno Schmidt-Trucksäss, Tobias Madl, and Henner Hanssen. 2022. "Lipoprotein Subclasses Independently Contribute to Subclinical Variance of Microvascular and Macrovascular Health" Molecules 27, no. 15: 4760. https://doi.org/10.3390/molecules27154760
APA StyleStreese, L., Habisch, H., Deiseroth, A., Carrard, J., Infanger, D., Schmidt-Trucksäss, A., Madl, T., & Hanssen, H. (2022). Lipoprotein Subclasses Independently Contribute to Subclinical Variance of Microvascular and Macrovascular Health. Molecules, 27(15), 4760. https://doi.org/10.3390/molecules27154760