Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells
Abstract
:1. Introduction
2. Results
2.1. Effect of LL-37, PG-1, NGF, and TMZ on the Clonogenicity of Human Glioma U251 Cells
2.2. Influence of LL-37, PG-1, NGF, and TMZ on the Respiratory Capacity of Mitochondria in Human Glioma U251 Cells
2.3. Influence of LL-37, PG-1, NGF, and TMZ on Glycolytic Energy Metabolism of Mitochondria in Human Glioma U251 Cells
2.4. Impact of LL-37, PG-1,NGF, and TMZ on the Migration of Human U251 Glioma Cells
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Colony Formation Assay
4.3. Scratch Assay
4.4. Seahorse Mito Stress Test Assay
4.5. Seahorse Glycolysis Stress Test Assay
4.6. Reagents
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- International Agency for Research of Cancer (Globocan) [Electronic Resource]: The World of Health Organization. 2020. Available online: www.globocan.iarc.fr (accessed on 23 December 2021).
- Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 2021, 71, 381–406. [Google Scholar] [CrossRef] [PubMed]
- Skaga, E.; Kulesskiy, E.; Fayzullin, A.; Sandberg, C.J.; Potdar, S.; Kyttälä, A.; Langmoen, I.A.; Laakso, A.; Gaál-Paavola, E.; Perola, M.; et al. Intertumoral heterogeneity in patient-specific drug sensitivities in treatment-naïve glioblastoma. BMC Cancer 2019, 19, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, O.G.; Brzozowski, J.S.; Skelding, K.A. Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets. Front. Oncol. 2019, 9, 963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chernov, A.N.; Alaverdian, D.A.; Galimova, E.S.; Renieri, A.; Frullanti, E.; Meloni, I.; Shamova, O.V. The phenomenon of multidrug resistance in glioblastomas. Hematol. Stem Cell Ther. 2021, in press. [CrossRef]
- Olivier, C.; Oliver, L.; Lalier, L.; Vallette, F.M. Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress. Front. Mol. Biosci. 2021, 7, 620677. [Google Scholar] [CrossRef]
- Marzagalli, M.; Fontana, F.; Raimondi, M.; Limonta, P. Cancer Stem Cells—Key Players in Tumor Relapse. Cancers 2021, 13, 376. [Google Scholar] [CrossRef]
- Bazzoni, R.; Bentivegna, A. Role of Notch Signaling Pathway in Glioblastoma Pathogenesis. Cancers 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Bhuvanalakshmi, G.; Gamit, N.; Patil, M.; Arfuso, F.; Sethi, G.; Dharmarajan, A.; Kumar, A.P.; Warrier, S. Stemness, Pluripotentiality, and Wnt Antagonism: sFRP4, a Wnt antagonist Mediates Pluripotency and Stemness in Glioblastoma. Cancers 2018, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Dymova, M.; Kuligina, E.; Richter, V. Molecular Mechanisms of Drug Resistance in Glioblastoma. Int. J. Mol. Sci. 2021, 22, 6385. [Google Scholar] [CrossRef]
- Diehn, M.; Cho, R.W.; Lobo, N.A.; Kalisky, T.; Dorie, M.J.; Kulp, A.N.; Qian, D.; Lam, J.S.; Ailles, L.E.; Wong, M.; et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009, 458, 780–783. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Cui, G.; Chan, J.Y.-W.; Wang, L.; Li, C.; Shan, L.; Xu, C.; Zhang, Q.; Wang, Y.; et al. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II. Oncotarget 2016, 7, 32054–32064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chang, Y.; Ye, N.; Chen, Y.; Zhang, N.; Sun, Y. Advanced glycation end products-induced mitochondrial energy metabolism dysfunction alters proliferation of human umbilical vein endothelial cells. Mol. Med. Rep. 2017, 15, 2673–2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alterio, C.; Scala, S.; Sozzi, G.; Roz, L.; Bertolini, G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin. Cancer Biol. 2020, 60, 351–361. [Google Scholar] [CrossRef]
- Franco, M.L.; Nadezhdin, K.D.; Light, T.P.; Goncharuk, S.A.; Soler-Lopez, A.; Ahmed, F.; Mineev, K.S.; Hristova, K.; Arseniev, A.S.; Vilar, M. Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. J. Biol. Chem. 2021, 297, 100926. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef] [Green Version]
- Di Donato, M.; Galasso, G.; Giovannelli, P.; Sinisi, A.A.; Migliaccio, A.; Castoria, G. Targeting the Nerve Growth Factor Signaling Impairs the Proliferative and Migratory Phenotype of Triple-Negative Breast Cancer Cells. Front. Cell Dev. Biol. 2021, 9, 676568. [Google Scholar] [CrossRef]
- Paul, A.B.; Grant, E.S.; Habib, F.K. The expression and localisation of beta-nerve growth factor (beta-NGF) in benign and malignant human prostate tissue: Relationship to neuroendocrine differentiation. Br. J. Cancer 1996, 74, 1990–1996. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Fonseca, J.A.; Najera, O.; Martinez-Jurado, J.; Walker, E.M.; Varela-Ramirez, A.; Khan, A.M.; Miranda, M.; Lamango, N.S.; Roychowdhury, S. Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction. BMC Neurosci. 2014, 15, 132. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, D.; Wu, C.; Ye, L.; Wu, Y.; Yuan, Y.; Yang, S.; Xie, L.; Mao, Y.; Jiang, T.; et al. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 2020, 10, 1649–1677. [Google Scholar] [CrossRef]
- Ye, G.; Wu, H.; Huang, J.; Wang, W.; Ge, K.; Li, G.; Zhong, J.; Huang, Q. LAMP2: A major update of the database linking antimicrobial peptides. Database 2020, 2020, baaa061. [Google Scholar] [CrossRef] [PubMed]
- Büyükkiraz, M.E.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol. 2021, 132, 1573–1596. [Google Scholar] [CrossRef] [PubMed]
- Wnorowska, U.; Fiedoruk, K.; Piktel, E.; Prasad, S.; Sulik, M.; Janion, M.; Daniluk, T.; Savage, P.B.; Bucki, R. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: Current status and potential future applications. J. Nanobiotechnol. 2020, 18, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuroda, K.; Okumura, K.; Isogai, H.; Isogai, E. The Human Cathelicidin Antimicrobial Peptide LL-37 and Mimics are Potential Anticancer Drugs. Front. Oncol. 2015, 5, 144. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.L.; Wang, Y.; Hao, Y.; Wong, J.H.; Chan, W.C.; Wan, D.C.-C.; Ng, T.B. Overexpression of CXCR4 synergizes with LL-37 in the metastasis of breast cancer cells. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 3837–3846. [Google Scholar] [CrossRef] [PubMed]
- Soundrarajan, N.; Park, S.; Le Van Chanh, Q.; Cho, H.-S.; Raghunathan, G.; Ahn, B.; Song, H.; Kim, J.-H.; Park, C. Protegrin-1 cytotoxicity towards mammalian cells positively correlates with the magnitude of conformational changes of the unfolded form upon cell interaction. Sci. Rep. 2019, 9, 11569. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ji, S.; Si, J.; Zhang, X.; Wang, X.; Guo, Y.; Zou, X. Human cathelicidin antimicrobial peptide suppresses proliferation, migration and invasion of oral carcinoma HSC-3 cells via a novel mechanism involving caspase-3 mediated apoptosis. Mol. Med. Rep. 2020, 22, 5243–5250. [Google Scholar] [CrossRef]
- Zhou, X.; Hao, Q.; Liao, P.; Luo, S.; Zhang, M.; Hu, G.; Liu, H.; Zhang, Y.; Cao, B.; Baddoo, M.; et al. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. eLife 2016, 5, e15099. [Google Scholar] [CrossRef] [Green Version]
- Aubert, L.; Guilbert, M.; Corbet, C.; Génot, E.; Adriaenssens, E.; Chassat, T.; Bertucci, F.; Daubon, T.; Magné, N.; Le Bourhis, X.; et al. NGF-induced TrkA/CD44 association is involved in tumor aggressiveness and resistance to lestaurtinib. Oncotarget 2015, 6, 9807–9819. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.L.M.; Lun, X.; Rahn, J.J.; Liacini, A.; Wang, L.; Hamilton, M.G.; Parney, I.; Hempstead, B.L.; Robbins, S.; Forsyth, P.A.; et al. The p75 Neurotrophin Receptor Is a Central Regulator of Glioma Invasion. PLoS Biol. 2007, 5, e212. [Google Scholar] [CrossRef]
- Tong, B.; Pantazopoulou, V.; Johansson, E.; Pietras, A. The p75 neurotrophin receptor enhances HIF-dependent signaling in glioma. Exp. Cell Res. 2018, 371, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-C.; Luo, S.-J.; Lin, C.-L.; Chang, P.-J.; Chen, M.-F. Modulation of p75 neurotrophin receptor under hypoxic conditions induces migration and invasion of C6 glioma cells. Clin. Exp. Metastasis 2015, 32, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zou, X.; Qi, G.; Tang, Y.; Guo, Y.; Si, J.; Liang, L. Roles and Mechanisms of Human Cathelicidin LL-37 in Cancer. Cell. Physiol. Biochem. 2018, 47, 1060–1073. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Zheng, Y.; Wang, W.; Shao, Y.; Li, Z.; Wang, Q.; Wang, Y.; Yan, H. Antimicrobial peptide LL-37 promotes YB-1 expression, and the viability, migration and invasion of malignant melanoma cells. Mol. Med. Rep. 2017, 15, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zheng, Y.; Jia, J.; Li, C.; Duan, Q.; Li, R.; Wang, X.; Shao, Y.; Chen, C.; Yan, H. Antimicrobial peptide LL-37 promotes the viability and invasion of skin squamous cell carcinoma by upregulating YB-1. Exp. Ther. Med. 2017, 14, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Penney, J.; Li, J. Protegrin 1 Enhances Innate Cellular Defense via the Insulin-Like Growth Factor 1 Receptor Pathway. Front. Cell. Infect. Microbiol. 2018, 8, 331. [Google Scholar] [CrossRef]
- Arthurs, A.L.; Keating, D.J.; Stringer, B.W.; Conn, S.J. The Suitability of Glioblastoma Cell Lines as Models for Primary Glioblastoma Cell Metabolism. Cancers 2020, 12, 3722. [Google Scholar] [CrossRef]
- Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Vlashi, E.; Lagadec, C.; Vergnes, L.; Matsutani, T.; Masui, K.; Poulou, M.; Popescu, R.; Della Donna, L.; Evers, P.; Dekmezian, C.; et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc. Natl. Acad. Sci. USA 2011, 108, 16062–16067. [Google Scholar] [CrossRef] [Green Version]
- Di, K.; Lomeli, N.; Bota, D.A.; Das, B.C. Magmas inhibition as a potential treatment strategy in malignant glioma. J. Neuro-Oncol. 2019, 141, 267–276. [Google Scholar] [CrossRef]
- Cvrljevic, A.N.; Akhavan, D.; Wu, M.; Martinello, P.; Furnari, F.B.; Johnston, A.J.; Guo, D.; Pike, L.; Cavenee, W.K.; Scott, A.M.; et al. Activation of Src induces mitochondrial localisation of de2-7EGFR (EGFRvIII) in glioma cells: Implications for glucose metabolism. J. Cell Sci. 2011, 124, 2938–2950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freshney, R.I.; Griffiths, B.; Hay, R.J.; Reid, Y.A.; Carmiol, S.; Kunz-Schugart, L. Animal Cell Culture: A Practical Approach, 3rd ed.; Masters, J.R.W., Ed.; Oxford University Press: London, UK, 2000. [Google Scholar]
- Bozhkova, V.P.; Veprintsev, B.P.; Viktorov, I.V. Guidelines for the Cultivation of Nervous Tissue; Methods Technics, Problems; Veprintsev, B.P., Viktorov, I.V., Ya, B., Eds.; Science: Moscow, Russia, 1988; 317p. [Google Scholar]
- Li, C.; Zhou, C.; Wang, S.; Feng, Y.; Lin, W.; Lin, S.; Wang, Y.; Huang, H.; Liu, P.; Mu, Y.-G.; et al. Sensitization of Glioma Cells to Tamoxifen-Induced Apoptosis by Pl3-Kinase Inhibitor through the GSK-3β/β-Catenin Signaling Pathway. PLoS ONE 2011, 6, e27053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, H.; Mu, L.; Jin, L.; Yang, C.; Chang, Y.; Long, Y.; DeLeon, G.; Deleyrolle, L.; Mitchell, D.A.; Kubilis, P.S.; et al. Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM. Int. J. Cancer 2017, 141, 1434–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Ma, Y.; Liu, Y.; Wan, Q. Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress Test. STAR Protoc. 2020, 2, 100245. [Google Scholar] [CrossRef]
- Little, A.C.; Kovalenko, I.; Goo, L.E.; Hong, H.S.; Kerk, S.A.; Yates, J.A.; Purohit, V.; Lombard, D.B.; Merajver, S.D.; Lyssiotis, C.A. High-content fluorescence imaging with the metabolic flux assay reveals insights into mitochondrial properties and functions. Commun. Biol. 2020, 3, 271. [Google Scholar] [CrossRef] [PubMed]
- Agilent Seahorse XF Glycolysis Stress Test Kit User Guide Kit 103020-100; Agilent Technologies, Inc.: Santa Clara, CA, USA, 2019; 22p.
- van Belle, G.; Fisher, L.D.; Heagerty, P.J.; Lumley, T. Biostatistics: A Methodology for the Health Sciences; Fisher, L.D., van Belle, G., Eds.; Jonh Wiley and Sons Inc.: Toronto, ON, Canada, 2004. [Google Scholar]
Day | Parameter | Control | LL-37 | PG-1 | NGF | TMZ |
---|---|---|---|---|---|---|
1 day | The percentage of cells in the clone to the total number | 73.8 ± 18.1 | 29.3 ± 18.9 *° (p = 0.05) | 77.2 ± 15.5 | 25.0 ± 9.3 *° (p = 0.0152) | 13.8 ± 2.9 **° (p = 0.001) |
The percentage of inhibition of the cell growth | - | 60.3 ± 5.1 * (p = 0.05) | 66.2 ± 3.7 * (p = 0.0152) | 81.3± 5.5 *׆ (p = 0.001) | ||
Average number of cells per field of view | 17.0 ± 11.0 | 6.0 ± 2.0 | 12.0 ± 4.0 | 5.0 ± 3.0 * (p = 0.05) | 29.5 ± 6.4 *׆ (p = 0.010) | |
Number/percentage of single cells | 3.0 ± 2.0/17.6 | 4.0 ± 2.0/66.7 * | 3.0 ± 2 /25.0 | 3.0 ± 1.0 */ 60.0 * | 100 *×°† | |
2 days | The percentage of cells in the clone to the total number | 96.1 ± 6.1 | 53.9 ± 23.5 *** (p = 0.0001) | 68.7 ± 28.6 | 75.6 ± 8.8 *## (p = 0.05) | 10.0 ± 2.2 **×׆ (p = 0.001) |
The percentage of inhibition of the cell growth | - | 43.9 ± 4.3 *** (p = 0.0001) | 28.5 | 21.4 | 73.5± 3.9 **†×° (p = 0.001) | |
Average number of cells per field of view | 23.0±15.0 | 17.0 ± 5.0 | 11 ± 7 | 10.0 ± 6.0 | 25.5 ± 10.0 * (p = 0.010) | |
Number/percentage of single cells | 2.0 ± 1.0/ 8.6 | 6.0 ± 3.0 */35.3 *# (p = 0.0364) | 3.0 ± 2.0 / 27.3 *# | 2.0 ± 1.0 */ 20.0 *# | 100 *°×† | |
3 days | The percentage of cells in the clone to the total number | 91.0 ± 15.7 | 83.8 ± 11.4 ## | 87.1 ± 15.3 ## | 90.4 ± 8.3 ## | 8.7 ± 1.8 **††××°° (p = 0.001) |
The percentage of inhibition of the cell growth | - | 7.9 | 4.3 | 0.7 | 74.2 ± 4.6 **×°† (p = 0.001) | |
Average number of cells per field of view | 59.0 ± 10.0 | 42.0 ± 12.0 | 43.0 ± 25 | 25.0 ± 13.0 | 23.5 ± 4.9 * (p = 0.01) | |
Number/percentage of single cells | 4.0 ± 2.0/ 6.8 | 6.0 ± 3.0/ 14.3 ## | 4.0 ± 2/9.3 ## | 2.0 ± 0.6/ 8.0 ## | 100 ± 0.0 *†°× | |
6 days | The percentage of cells in the clone to the total number | 99.0 ± 0.9 | 89.8 ± 4.4 | 88.0 ± 13.8 | 95.9 ± 4.2 | - |
The percentage of inhibition of the cell growth | - | 9.3 | 11.2% | 3.2 | - | |
Average number of cells per field of view | 105.0 ± 44.0 | 65.0 ± 20.0 * (p = 0.0444) | 110.0 ± 69.0 | 50.0 ± 10.0 * (p = 0.0238) | - | |
Number/percentage of single cells | 2.0 ± 0/1.9 | 6.0 ± 3.0 */9.2 (p = 0.0285) | 5 ± 3 * /4.5 (p = 0.0160) | 2.0 ± 1.0/4.0 | - | |
7 days | The percentage of cells in the clone to the total number | 97.4 ± 1.8 | 91.7 ± 6.1 | 98.8 ± 1.0 | 95.7 ± 1.7 | - |
The percentage of inhibition of the cell growth | - | 5.9 | - | 1.7 | - | |
Average number of cells per field of view | 148.0 ± 61.0 | 118.0 ± 46.0 | 200.0 ± 59.0 | 63.0 ± 18.0 * (p = 0.0191) | - | |
Number/percentage of single cells | 6.0 ± 1.0/4.0 | 8.0 ± 5.0/6.8 | 2.0 ± 1.0 */1.0 (p = 0.0286) | 1.0 ± 0.7 */1.6 (p = 0.0286) | - |
Day | The Wound Healing Rate,% The Average Number of Cells, Peptides, Growth Factor, Dose, μM | ||||
---|---|---|---|---|---|
Control | LL-37 (4.0) | PG-1 (16.0) | NGF (7.55 × 10−3) | TMZ (155.0) | |
0 day | 3.9 ± 1.3 (43 ± 25) | 6.8 ± 1.9 (44 ± 13) | 1.4 ± 0.5 *×# (9 ± 3) p = 0.05 | 4.1 ± 1.9 (36 ± 24) | 5.4 ± 0.7 (86 ± 31) |
1 day | 6.1 ± 3.6 (42 ± 27) | 16.8 ± 1.9 **×# (87 ± 44) p = 0.0024 | 8.7 ± 4.1 (50 ± 29) | 7.6 ± 2.9 (62 ± 27) | 7.8 ± 3.3 (62 ± 14) |
2 days | 8.2 ± 5.4 (79 ± 34) | 5.9 ± 0.4 (59 ± 25) | 19.8 ± 10.2 *×#† (141 ± 44) p = 0.0317 | 7.6 ± 0.4 (59 ± 7) | 6.6 ± 1.7 (55 ± 21) |
3 days | 26.4 ± 12.6 (97 ± 9) | 6.9 ± 1.1 **°# (77 ± 21) p = 0.0065 | 31.7 ± 18.5 † (113 ± 33) | 11.4 ± 3.5 * (87 ± 25) p = 0.0159 | 8.9 ± 1.9 * (70 ± 19) p = 0.0102 |
4 days | 19.1 ± 3.5 (61 ± 7) | 6.0 ± 3.0 *°× (48 ± 22) p = 0.0286 | 48.6 ± 14.6 ** (144 ± 37) p = 0.0061 | 11.4 ± 1.8 *†° (84 ± 27) p = 0.0159 | 9.7 ± 2.8 (92 ± 23) |
6 days | 13.8 ± 1.3 (101 ± 13) | 16.8 ± 7.2 (47 ± 19) | 51.7 ± 7.1 *† (94 ± 8) p = 0.0286 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernov, A.N.; Filatenkova, T.A.; Glushakov, R.I.; Buntovskaya, A.S.; Alaverdian, D.A.; Tsapieva, A.N.; Kim, A.V.; Fedorov, E.V.; Skliar, S.S.; Matsko, M.V.; et al. Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells. Molecules 2022, 27, 4988. https://doi.org/10.3390/molecules27154988
Chernov AN, Filatenkova TA, Glushakov RI, Buntovskaya AS, Alaverdian DA, Tsapieva AN, Kim AV, Fedorov EV, Skliar SS, Matsko MV, et al. Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells. Molecules. 2022; 27(15):4988. https://doi.org/10.3390/molecules27154988
Chicago/Turabian StyleChernov, Alexandr N., Tatiana A. Filatenkova, Ruslan I. Glushakov, Alexandra S. Buntovskaya, Diana A. Alaverdian, Anna N. Tsapieva, Alexandr V. Kim, Evgeniy V. Fedorov, Sofia S. Skliar, Marina V. Matsko, and et al. 2022. "Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells" Molecules 27, no. 15: 4988. https://doi.org/10.3390/molecules27154988
APA StyleChernov, A. N., Filatenkova, T. A., Glushakov, R. I., Buntovskaya, A. S., Alaverdian, D. A., Tsapieva, A. N., Kim, A. V., Fedorov, E. V., Skliar, S. S., Matsko, M. V., Galimova, E. S., & Shamova, O. V. (2022). Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells. Molecules, 27(15), 4988. https://doi.org/10.3390/molecules27154988