Analysis of VOCs in Urine Samples Directed towards of Bladder Cancer Detection
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Apparatus
4.3. Data Processing and Identification
4.4. Sample Preparation
4.5. Human Subjects
4.6. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cumberbatch, M.G.K.; Jubber, I.; Black, P.C.; Esperto, F.; Figueroa, J.D.; Kamat, A.M.; Kiemeney, L.; Lotan, Y.; Pang, K.; Silverman, D.T.; et al. Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018. Eur. Urol. 2018, 74, 784–795. [Google Scholar] [CrossRef] [Green Version]
- Xylinas, E.; Kluth, L.A.; Rieken, M.; Karakiewicz, P.I.; Lotan, Y.; Shariat, S.F. Urine markers for detection and surveillance of bladder cancer. Urol. Oncol. Semin. Orig. 2014, 32, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Malentacchi, F.; Vinci, S.; Melina, A.D.; Kuncova, J.; Villari, D.; Giannarini, G.; Nesi, G.; Selli, C.; Orlando, C. Splicing variants of carbonic anhydrase IX in bladder cancer and urine sediments. Urol. Oncol. Semin. Orig. 2012, 30, 278–284. [Google Scholar] [CrossRef] [PubMed]
- De Martino, M.; Lucca, I.; Mbeutcha, A.; Wiener, H.G.; Haitel, A.; Susani, M.; Shariat, S.F.; Klatte, T. Carbonic anhydrase ix as a diagnostic urinary marker for urothelial bladder cancer. Eur. Urol. 2015, 68, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Wichert, M.; Krall, N. Targeting carbonic anhydrase IX with small organic ligands. Curr. Opin. Chem. Biol. 2015, 26, 48–54. [Google Scholar] [CrossRef]
- Klatte, T.; Seligson, D.B.; Rao, J.Y.; Yu, H.; de Martino, M.; Kawaoka, K.; Wong, S.G.; Belldegrun, S.; Pantuck, A.J. Carbonic anhydrase IX in bladder cancer. Cancer 2009, 115, 1448–1458. [Google Scholar] [CrossRef]
- Buljubasic, F.; Buchbauer, G. The scent of human diseases: A review on specific volatile organic compounds as diagnostic biomarkers. FlavourFragr. J. 2015, 30, 5–25. [Google Scholar] [CrossRef]
- Cornu, J.N.; Cancel-Tassin, G.; Ondet, V.; Girardet, C.; Cussenot, O. Olfactory detection of prostate cancer by dogs sniffing urine: A step forward in early diagnosis. Eur. Urol. 2011, 59, 197–201. [Google Scholar] [CrossRef]
- Antón, A.P.; Ramos, Á.G.; del Nogal Sánchez, M.; Pavón, J.L.P.; Cordero, B.M.; Pozas, Á.P.C. Headspace-programmed temperature vaporization-mass spectrometry for the rapid determination of possible volatile biomarkers of lung cancer in urine. Anal. Bioanal. Chem. 2016, 408, 5239–5246. [Google Scholar] [CrossRef]
- Silva, C.L.; Passos, M.; Camara, J.S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Brit. J. Cancer 2011, 105, 1894–1904. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.L.; Passos, M.; Câmara, J.S. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers—A powerful strategy for breast cancer diagnosis. Talanta 2012, 89, 360–368. [Google Scholar] [CrossRef]
- Monteiro, M.; Carvalho, M.; Henrique, R.; Jerónimo, C.; Moreira, N.; de Lourdes Bastos, M.; Guedes de Pinho, P. Analysis of volatile human urinary metabolome by solid-phase microextraction in combination with gas chromatography–mass spectrometry for biomarker discovery: Application in a pilot study to discriminate patients with renal cell carcinoma. Eur. J. Cancer 2014, 50, 1993–2002. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.; Moreira, N.; Pinto, J.; Pires-LuısRHenrique, A.S.; Jerónimo, C.; de Lourdes Bastos, M.; Gil, A.M.; Carvalho, M.; GuedesndePinho, P. GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients. J. Cell. Mol. Med. 2017, 21, 2092–2105. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.R.; Pinto, J.; Azevedo, A.I.; Barros-Silva, D.; Jerónimo, C.; Henrique, R.; de Lourdes Bastos, M.; Guedes de Pinho, P.; Carvalho, M. Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine. Br. J. Cancer 2019, 121, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Spanel, P.; Smith, D.; Holland, T.A.; Al Singary, W.; Elder, J.B. Analysis of formaldehyde in the headspace of urine from bladder and prostate cancer patients using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 1999, 13, 1354–1359. [Google Scholar] [CrossRef]
- Jobu, K.; Sun, C.; Yoshioka, S.; Yokota, J.; Onogawa, M.; Kawada, C.; Inoue, K.; Shuin, T.; Sendo, T.; Miyamura, M. Metabolomics study on the biochemical profiles of odor elements in urine of human with bladder cancer. Biol. Pharm. Bull. 2012, 35, 639–642. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.; Carapito, Â.; Amaro, F.; Lima, A.R.; Carvalho-Maia, C.; Martins, M.C.; Jerónimo, C.; Henrique, R.; de Lourdes Bastos, M.; Guedes de Pinho, P. Discovery of volatile biomarkers for bladder cancer detection and staging through urine metabolomics. Metabolites 2021, 11, 199. [Google Scholar] [CrossRef]
- Cauchi, M.; Weber, C.M.; Bolt, B.J.; Spratt, P.B.; Bessant, C.; Turner, D.C.; Willis, C.M.; Britton, L.E.; Turner, C.; Morgan, G. Evaluation of gas chromatography mass spectrometry and pattern recognition for the identification of bladder cancer from urine headspace. Anal. Methods 2016, 8, 4037. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Corsetti, S.; Wang, Q.; Li, C.; Huang, Z.; Nabi, G. Optical sensory arrays for the detection of urinary bladder cancer-related volatile organic compounds. J. Biophotonics 2019, 12, e201800165. [Google Scholar] [CrossRef] [Green Version]
- Heers, H.; Gut, J.M.; Hegele, A.; Hofmann, R.; Boeselt, T.; Hattesohl, A.; Koczulla, A.R. Non-invasive detection of bladder tumors through volatile organic compounds: A pilot study with an electronic nose. Anticancer Res. 2018, 38, 833–837. [Google Scholar] [CrossRef]
- Rodrigues, D.; Pinto, J.; Araújo, A.M.; Jerónimo, C.; Henrique, R.; de Lourdes Bastos, M.; Guedes de Pinho, P.; Carvalho, M. GC-MS metabolomics reveals distinct profiles of low- and high-grade bladder cancer cultured cells. Metabolites 2019, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, D.; Pinto, J.; Araújo, A.M.; Monteiro Reis, S.; Jerónimo, C.; Henrique, R.; de Lourdes Bastos, M.; Guedes de Pinho, P.; Carvalho, M. Volatile metabolomic signature of bladder cancer cell lines based on gas chromatography–mass spectrometry. Metabolomics 2018, 14, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y.; Juo, B.R.; Yeh, Y.H.; Fu, S.H.; Chen, Y.T.; Chen, C.L.; Wu, K.P. Putative markers for the detection of early-stage bladder cancer selected by urine metabolomics. BMC Bioinform. 2021, 22, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Pasikanti, K.K.; Esuvaranathan, K.; Hong, Y.; Ho, P.C.; Mahendran, R.; Mani, L.R.N.; Chiong, E.; Chan, E.C.Y. Urinary metabotyping of bladder cancer using two-dimensional gas chromatography time-of-flight mass spectrometry. J. Proteome Res. 2013, 12, 3865–3873. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Song, R.; Ma, C.; Zhou, L.; Liu, X.; Yin, P.; Zhang, Z.; Sun, Y.; Xu, C.; Lu, X.; et al. Discovery and validation of potential urinary biomarkers for bladder cancer diagnosis using a pseudotargeted GC-MS metabolomics method. Oncotarget 2017, 8, 20719–20728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacyna, J.; Wawrzyniak, R.; Balayssac, S.; Gilard, V.; Malet-Martino, M.; Sawicka, A.; Kordalewska, M.; Nowicki, Ł.; Kurek, E.; Bulska, E.; et al. Urinary metabolomic signature of muscle-invasive bladder cancer: A multiplatform approach. Talanta 2019, 202, 572–579. [Google Scholar] [CrossRef]
- Gould, O.; Drabińska, N.; Ratcliffe, N.; de Lacy Costello, B. Hyphenated mass spectrometry versus real-time mass spectrometry techniques for the detection of volatile compounds from the human body. Molecules 2021, 26, 7185. [Google Scholar] [CrossRef]
- Amann, A.; de Lacy Costello, B.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014, 8, 34001. [Google Scholar] [CrossRef]
- Drabińska, N.; Flynn, C.; Ratcliffe, N.; Belluomo, I.; Myridakis, A.; Gould, O.; Fois, M.; Smart, A.; Devine, T.; Costello, B.D.L. A literature survey of all volatiles from healthy human breath and bodily fluids: The human volatilome. J. Breath Res. 2021, 15, 34001. [Google Scholar] [CrossRef]
- Drabińska, N.; Młynarz, P.; de Lacy Costello, B.; Jones, P.; Mielko, K.; Mielnik, J.; Persad, R.; Ratcliffe, N.M. An optimization of liquid–liquid extraction of urinary volatile and semi-volatile compounds and its application for gas chromatography–mass spectrometry and proton nuclear magnetic resonance spectroscopy. Molecules 2020, 25, 3651. [Google Scholar] [CrossRef]
- Ratcliffe, N.; Wieczorek, T.; Drabińska, N.; Gould, O.; Osborne, A.; De Lacy Costello, B. A mechanistic study and review of volatile products from peroxidation of unsaturated fatty acids: An aid to understanding the origins of volatile organic compounds from the human body. J. Breath Res. 2020, 14, 34001. [Google Scholar] [CrossRef] [PubMed]
- Ligor, T.; Zawadzka, J.; Strączyński, G.; González Paredes, R.M.; Wenda-Piesik, A.; Ratiu, I.A.; Muszytowski, M. Searching for potential markers of glomerulopathy in urine by HS-SPME-GC×GC TOFMS. Molecules 2021, 26, 1817. [Google Scholar] [CrossRef] [PubMed]
Compound | Origin * | Presence in BC Group | % of Occurrence in BC Group |
---|---|---|---|
Pyridine | exogenous, food | 22 | 55 |
4-Propylbenzaldehyde | - | 19 | 47.5 |
2,3-Heptanedione | exogenous, food | 18 | 45 |
Heptanal | endogenous/exogenous, food | 18 | 45 |
4-Methyl-3-pentenoic acid | - | 14 | 35 |
1-Heptanol | exogenous, food | 13 | 32.5 |
1-Octen-3-one | exogenous, food, esp. mushrooms | 12 | 30 |
2,6-Dimethyaniline | exogenous, lidocaine metabolism | 11 | 27.5 |
11-Hexadecen-1-ol | - | 10 | 25 |
4,6-Dimethyl-2-heptanone | - | 9 | 22.5 |
2-Butyl-1-octanol | - | 8 | 20 |
2,3,5-Trimethylfuran | exogenous, food | 8 | 20 |
Compound | p-Value | Mean Peak Area for Healthy Group | Mean Peak Area for BC Group | Fold Change | Valid Healthy (n = 57) | Valid BC (n = 40) |
---|---|---|---|---|---|---|
Butyrolactone | p < 0.001 | 136,261 | 974,481 | 7.2 ↑ | 22 | 26 |
4-Heptanone | p < 0.001 | 554,774 | 431,521 | 0.8 ↓ | 39 | 28 |
2-Methoxyphenol | p < 0.001 | 29,899 | 826,976 | 27.7 ↑ | 9 | 27 |
6,10-Dimethyl-5,9-undecadien-2-one | p < 0.001 | 35,908 | 793,666 | 22.1 ↑ | 31 | 18 |
1-(2,6,6-Trimethylcyclohexa-1,3-dien-1-yl)-2-buten-1-one | p < 0.001 | 12,923 | 134,868 | 10.4 ↑ | 13 | 22 |
1-(2,6,6-Trimethyl-1-cyclohexenyl)-2-buten-1-one | p < 0.001 | 8235 | 48,021 | 5.8 ↑ | 15 | 20 |
3-Methoxy-5-methylphenol | p < 0.001 | 11,505 | 106,669 | 9.3 ↑ | 14 | 26 |
Nerolidol | p < 0.001 | 9752 | 45,975 | 4.7 ↑ | 14 | 22 |
Nootkatone | p < 0.001 | 10,112 | 78,722 | 7.8 ↑ | 13 | 22 |
Tetrahydro-4-methyl-2-(2-methyl-1-propenyl)pyran | p < 0.001 | 13,604 | 53,870 | 4.0 ↑ | 12 | 15 |
Dimethyldisulfide | p < 0.005 | 222,020 | 36,063 | 0.2 ↓ | 41 | 24 |
Decanal | p < 0.005 | 208,545 | 193,279 | 0.9 ↓ | 42 | 32 |
3-Octen-2-one | p< 0.005 | 28,212 | 234,471 | 8.3 ↑ | 16 | 10 |
4-Ethylphenol | p < 0.005 | 15,607 | 76,793 | 4.9 ↑ | 13 | 16 |
4-Methylanisole | p < 0.005 | 7566 | 3,223,318 | 426.0 ↑ | 10 | 15 |
2-Ethyl-3-methoxypyrazine | p < 0.005 | 4986 | 42,007 | 8.4 ↑ | 9 | 9 |
2,6,6-Trimethylcyclohexa-1,3-diene-1-carbaldehyde | p < 0.01 | 20,175 | 36,846 | 1.8 ↑ | 13 | 21 |
gamma-Dodecalactone | p < 0.01 | 14,092 | 71,939 | 5.1 ↑ | 12 | 12 |
Benzyl acetate | p < 0.025 | 30,275 | 185,006 | 6.1 ↑ | 8 | 9 |
Benzyl alcohol | p < 0.025 | 35,203 | 135,474 | 3.8 ↑ | 22 | 23 |
2,5-Dimethylbenzaldehyde | p < 0.025 | 3539 | 107,940 | 30.5 ↑ | 3 | 22 |
2,4-Dimethylbenzaldehyde | p < 0.025 | 7563 | 1,902,422 | 251.5 ↑ | 3 | 16 |
4-Ketoisophorone | p < 0.025 | 38,371 | 115,927 | 3.0 ↑ | 16 | 6 |
2-Methoxy-4-vinylphenol | p < 0.025 | 379,425 | 64,421 | 0.2 ↓ | 28 | 25 |
2-Pentanone | p < 0.025 | 12,236,224 | 28,715,105 | 2.3 ↑ | 41 | 25 |
Cyclohexanone | p < 0.05 | 121,526 | 2,480,962 | 20.4 ↑ | 22 | 19 |
Indole | p< 0.05 | 45,452 | 127,509 | 2.8 ↑ | 40 | 29 |
Diphenylmethanone | p < 0.05 | 31,987 | 77,544 | 2.4 ↑ | 21 | 13 |
4-(2,6,6-trimethyl-1-cyclohexenyl)-2-butanone | p < 0.05 | 21,009 | 83,966 | 4.0 ↑ | 15 | 24 |
Phenylpropylpyridine | p < 0.05 | 15,226 | 37,591 | 2.5 ↑ | 10 | 20 |
4-Methyl-2-pentanone | - | 24,972 | 595,665 | 23.9 ↑ | 1 | 17 |
3-(Methylthio)propionaldedyde | - | 14,300 | 32,921 | 2.3 ↑ | 1 | 9 |
Patients | Controls | |
---|---|---|
Number of persons | 40 | 57 |
Female | 10 | 18 |
Male | 30 | 39 |
Number of smokers | 24 | 27 |
Ex-smokers | 6 | 5 |
Non-smokers | 10 | 25 |
Average age | 59.9 | 55.8 |
Median age | 58.5 | 50.2 |
SD | 10.6 | 12.74 |
Comorbidities | hypertension (4) heart failure (2) arrhythmia (1) | hypertension (5) |
Medications | bis (3), carv (1) ind/per (2), aml (1) met + ami (1) | bis (2), car (1), per (1) aml (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligor, T.; Adamczyk, P.; Kowalkowski, T.; Ratiu, I.A.; Wenda-Piesik, A.; Buszewski, B. Analysis of VOCs in Urine Samples Directed towards of Bladder Cancer Detection. Molecules 2022, 27, 5023. https://doi.org/10.3390/molecules27155023
Ligor T, Adamczyk P, Kowalkowski T, Ratiu IA, Wenda-Piesik A, Buszewski B. Analysis of VOCs in Urine Samples Directed towards of Bladder Cancer Detection. Molecules. 2022; 27(15):5023. https://doi.org/10.3390/molecules27155023
Chicago/Turabian StyleLigor, Tomasz, Przemysław Adamczyk, Tomasz Kowalkowski, Ileana Andreea Ratiu, Anna Wenda-Piesik, and Bogusław Buszewski. 2022. "Analysis of VOCs in Urine Samples Directed towards of Bladder Cancer Detection" Molecules 27, no. 15: 5023. https://doi.org/10.3390/molecules27155023
APA StyleLigor, T., Adamczyk, P., Kowalkowski, T., Ratiu, I. A., Wenda-Piesik, A., & Buszewski, B. (2022). Analysis of VOCs in Urine Samples Directed towards of Bladder Cancer Detection. Molecules, 27(15), 5023. https://doi.org/10.3390/molecules27155023