Rapid Simultaneous Quantification of 1-Formyl-2,2-Dimethylhydrazine and Dimethylurea Isomers in Environmental Samples by Supercritical Fluid Chromatography–Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mass Spectra of Analytes and Mass Spectrometry Detection
2.2. Screening of SFC Stationary Phases and Optimization of Separation Conditions
2.3. Validation of the Developed Method
2.4. Analyses of Real Samples
3. Materials and Methods
3.1. Analytes, Reagents and Materials
3.2. Real Objects and Sample Preparation
3.3. Supercritical Fluid Chromatography–Tandem Mass Spectrometry
3.4. Method Validation
3.5. In Silico Toxicity Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Buryak, A.K.; Serdyuk, T.M. Chromatography—mass spectrometry in aerospace industry. Russ. Chem. Rev. 2013, 82, 369–392. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, Y.; Zhou, Y.; Liu, Z.-F.; Feng, X.-S. Unsymmetrical dimethylhydrazine and related compounds in the environment: Recent updates on pretreatment, analysis, and removal techniques. J. Hazard. Mater. 2022, 432, 128708. [Google Scholar] [CrossRef] [PubMed]
- Ul’yanovskii, N.V.; Kosyakov, D.S.; Pikovskoi, I.I.; Khabarov, Y.G. Characterisation of oxidation products of 1,1-dimethylhydrazine by high-resolution orbitrap mass spectrometry. Chemosphere 2017, 174, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Pikovskoi, I.I.; Kenessov, B.; Bakaikina, N.V.; Zhubatov Zh Lebedev, A.T. Effects of oxidant and catalyst on the transformation products of rocket fuel 1,1-dimethylhydrazine in water and soil. Chemosphere 2019, 228, 335–344. [Google Scholar] [CrossRef]
- Kenessov, B.; Alimzhanova, M.; Sailaukhanuly, Y.; Baimatova, N.; Abilev, M.; Batyrbekova, S.; Carlsen, L.; Tulegenov, A.; Nauryzbayev, M. Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan. Sci. Total Environ. 2012, 427–428, 78–85. [Google Scholar] [CrossRef]
- Rodin, I.A.; Moskvin, D.N.; Smolenkov, A.D.; Shpigun, O.A. Transformations of asymmetric dimethylhydrazine in soils. Russ. J. Phys. Chem. A 2008, 82, 911–915. [Google Scholar] [CrossRef]
- Milyushkin, A.L.; Birin, K.P.; Matyushin, D.D.; Semeikin, A.V.; Iartsev, S.D.; Karnaeva, A.E.; Uleanov, A.V.; Buryak, A.K. Isomeric derivatives of triazoles as new toxic decomposition products of 1,1-dimethylhydrazine. Chemosphere 2019, 217, 95–99. [Google Scholar] [CrossRef]
- Kenessov, B.N.; Koziel, J.A.; Grotenhuis, T.; Carlsen, L. Screening of transformation products in soils contaminated with unsymmetrical dimethylhydrazine using headspace SPME and GC-MS. Anal. Chim. Acta 2010, 674, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Smolenkov, A.D.; Rodin, I.A.; Shpak, A.V.; Shpigun, O.A. 1-Formyl-2,2-dimethylhydrazine as a new decomposition product of 1,1-dimethylhydrazine. Int. J. Environ. Anal. Chem. 2007, 87, 351–359. [Google Scholar] [CrossRef]
- Yegemova, S.; Bakaikina, N.V.; Kenessov, B.; Koziel, J.A.; Nauryzbayev, M. Determination of 1-methyl-1H-1,2,4-triazole in soils contaminated by rocket fuel using solid-phase microextraction, isotope dilution and gas chromatography-mass spectrometry. Talanta 2015, 143, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Bogolitsyn, K.G.; Shpigun, O.A. Simultaneous determination of 1,1-dimethylhydrazine and products of its oxidative transformations by liquid chromatography–tandem mass spectrometry. Int. J. Environ. Anal. Chem. 2014, 94, 1254–1263. [Google Scholar] [CrossRef]
- Rodin, I.A.; Anan’eva, I.A.; Smolenkov, A.D.; Shpigun, O.A. Determination of the products of the oxidative transformation of unsymmetrical dimethylhydrazine in soils by liquid chromatography/mass spectrometry. J. Anal. Chem. 2010, 65, 1405–1410. [Google Scholar] [CrossRef]
- Huang, D.; Liu, X.; Wang, X.; Huang, Z.; Xie, Z.; Wang, H. Investigation on the compositions of unsymmetrical dimethylhydrazine treatment with different oxidants using solid-phase micro-extraction-gas chromatography-mass spectrometer. R. Soc. Open Sci. 2019, 6, 190263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirnov, R.S.; Rodin, I.A.; Smolenkov, A.D.; Shpigun, O.A. Determination of the products of the transformation of unsymmetrical dimethylhydrazine in soils using chromatography/mass spectrometry. J. Anal. Chem. 2010, 65, 1266–1272. [Google Scholar] [CrossRef]
- Ul’yanovskii, N.V.; Lakhmanov, D.E.; Pikovskoi, I.I.; Falev, D.I.; Popov, M.S.; Kozhevnikov, A.Y.; Kosyakov, D.S. Migration and transformation of 1,1-dimethylhydrazine in peat bog soil of rocket stage fall site in Russian North. Sci. Total Environ. 2020, 72615, 138483. [Google Scholar] [CrossRef]
- ACD/Labs Percepta software, Advanced Chemistry Development Inc.: Toronto, ON, Canada. Available online: http://www.acdlabs.com/home/ (accessed on 23 July 2022).
- Smolenkov, A.D.; Shpigun, O.A. Direct liquid chromatographic determination of hydrazines: A review. Talanta 2012, 102, 93–100. [Google Scholar] [CrossRef]
- Agrawal, R.; Belemkar, S.; Bonde, C. Orthogonal Separations in Reversed-Phase Chromatography. Chromatographia 2018, 81, 565–573. [Google Scholar] [CrossRef]
- Lee, J.W.; Nagai, T.; Gotoh, N.; Fukusaki, E.; Bamba, T. Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. J. Chromatogr. B 2014, 966, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Regalado, E.L.; Schafer, W.; McClain, R.; Welch, C.J. Chromatographic resolution of closely related species: Separation of warfarin and hydroxylated isomers. J. Chromatogr. A 2013, 1314, 266–275. [Google Scholar] [CrossRef]
- Xhaferaj, M.; Naegele, E.; Parr, M.K. Ion exchange in supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS): Application for polar and ionic drugs and metabolites in forensic and anti-doping analysis. J. Chromatogr. A 2020, 1614, 460726. [Google Scholar] [CrossRef]
- Wolrab, D.; Frühauf, P.; Gerner, C. Direct coupling of supercritical fluid chromatography with tandem mass spectrometry for the analysis of amino acids and related compounds: Comparing electrospray ionization and atmospheric pressure chemical ionization. Anal. Chim. Acta 2017, 981, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Holčapek, M.; Wolrab, D. Ultrahigh-performance supercritical fluid chromatography—mass spectrometry for the qualitative analysis of metabolites covering a large polarity range. J. Chromatogr. A 2022, 1665, 462832. [Google Scholar] [CrossRef] [PubMed]
- Grand-Guillaume Perrenoud, A.; Veuthey, J.-L.; Guillarme, D. Coupling state-of-the-art supercritical fluid chromatography and mass spectrometry: FROM hyphenation interface optimization to high-sensitivity analysis of pharmaceutical compounds. J. Chromatogr. A 2014, 1339, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Akbal, L.; Hopfgartner, G. Hyphenation of packed column supercritical fluid chromatography with mass spectrometry: Where are we and what are the remaining challenges? Anal. Bioanal. Chem. 2020, 412, 6667–6677. [Google Scholar] [CrossRef]
- Van de Velde, B.; Guillarme, D.; Kohler, I. Supercritical fluid chromatography–Mass spectrometry in metabolomics: Past, present, and future perspectives. J. Chromatogr. B 2020, 1161, 122444. [Google Scholar] [CrossRef]
- Ovchinnikov, D.V.; Ul’yanovskii, N.V.; Falev, D.I.; Kosyakov, D.S. Supercritical Fluid Chromatography–Mass-Spectrometry of Nitrogen-Containing Compounds: Atmospheric Pressure Ionization. J. Anal. Chem. 2021, 76, 1624–1634. [Google Scholar] [CrossRef]
- Gohres, J.L.; Marin, A.T.; Jie, L.; Liotta, C.L.; Eckert, C.A. Spectroscopic investigation of alkylcarbonic acid formation and dissociation in CO 2-Expanded alcohols. Ind. Eng. Chem. Res. 2009, 48, 1302–1306. [Google Scholar] [CrossRef]
- Lin, H.-W.; Yen, C.H.; Hsu, H.; Tan, C.-S. CO2 promoted hydrogenolysis of benzylic compounds in methanol and water. RSC Adv. 2013, 3, 17222–17227. [Google Scholar] [CrossRef]
- Falev, D.I.; Ovchinnikov, D.V.; Voronov, I.S.; Faleva, A.V.; Ul’yanovskii, N.V.; Kosyakov, D.S. Supercritical Fluid Chromatography—Tandem Mass Spectrometry for Rapid Quantification of Pentacyclic Triterpenoids in Plant Extracts. Pharmaceuticals 2022, 15, 629. [Google Scholar] [CrossRef]
- West, C.; Lemasson, E.; Nagai, K.; Nagai, K.; Shibata, T.; Franco, P.; Hennig, P.; Lesellier, E. Characterization of Novel Polymer-Based Pyridine Stationary Phases for Supercritical Fluid Chromatography. Chromatographia 2019, 82, 143–152. [Google Scholar] [CrossRef]
- Cazenave-Gassiot, A.; Boughtflower, R.; Caldwell, J.; Hitzel, L.; Holyoak, C.; Lane, S.; Oakley, P.; Pullen, F.; Richardson, S.; Langley, G.J. Effect of increasing concentration of ammonium acetate as an additive in supercritical fluid chromatography using CO2-methanol mobile phase. J. Chromatogr. A 2009, 1216, 6441–6450. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, D.V.; Pokrovskiy, O.I.; Kosyakov, D.S.; Bogolitsyn, K.G.; Ul’yanovskii, N.V.; Falev, D.I. Evaluation of temperature and pressure effects on retention in supercritical fluid chromatography on polar stationary phases. J. Chromatogr. A 2020, 1610, 460600. [Google Scholar] [CrossRef] [PubMed]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Pokryshkin, S.A.; Lakhmanov, D.E.; Shpigun, O.A. Rapid determination of 1,1-dimethylhydrazine transformation products in soil by accelerated solvent extraction coupled with gas chromatography–tandem mass spectrometry. Int. J. Environ. Anal. Chem. 2015, 95, 1321–1337. [Google Scholar] [CrossRef]
- Ul’yanovskii, N.V.; Kosyakov, D.S.; Popov, M.S.; Shavrina, I.S.; Ivakhnov, A.D.; Kenessov, B.; Lebedev, A.T. Rapid quantification and screening of nitrogen-containing rocket fuel transformation products by vortex assisted liquid-liquid microextraction and gas chromatography—high-resolution Orbitrap mass spectrometry. Microchem. J. 2021, 171, 106821. [Google Scholar] [CrossRef]
- U.S. EPA MRID 41514401. Determination of 1,3-Dimethylurea in Soil by Gas Chromatography. US Environmental Protection Agency. 1989. Available online: https://www.epa.gov/sites/default/files/2015-01/documents/415144-01-s.pdf (accessed on 23 July 2022).
- Beltrami, R.T.; Bissell, E.R. Some Methylhydrazonium Salts; An Improved Synthesis of Tetramethylhydrazine. J. Am. Chem. Soc. 1956, 78, 2467–2468. [Google Scholar] [CrossRef]
- Technological regulations. Detoxification of Soils Contaminated with Asymmetric Dimethylhydrazine and Products of its Chemical Transformation by a Combined Method; National Space Agency of the Republic of Kazakhstan: Almaty, Kazakhstan, 2012; p. 16. (In Russian)
Analyte | CAS Number | Structural Formula | Molecular Weight, Da | pKa * | LogP |
---|---|---|---|---|---|
1-formyl-2,2-dimethylhydrazine (FADMH) | 3298-49-5 | 88.1 | 3.5 ± 0.7 ** | −0.81 ± 0.53 ** | |
N,N-dimethylurea (UDMU) | 598-94-7 | 88.1 | −0.2 ± 0.7 ** | −1.28 ± 0.54 ** | |
N,N′-dimethylurea (SDMU) | 96-31-1 | 88.1 | −0.6 ± 0.7 ** | −1.02 ± 0.30 ** |
Analyte | Precursor Ion, m/z | Product Ion, m/z | Declustering Potential, V | Collision Energy, eV |
---|---|---|---|---|
FADMH | 89 | 45 (71 *) | 20 | 20 |
UDMU | 89 | 72 (46 *) | 30 | 20 |
SDMU | 89 | 58 (44 *) | 30 | 30 |
Analyte | a | R2 | Linear Range, µg L−1 | LOD, µg L−1 | LOQ, µg L−1 |
---|---|---|---|---|---|
FADMH | 170 | 0.9998 | LOQ-6250 | 3.0 | 10 |
UDMU | 1200 | 0.9995 | LOQ-1000 | 0.4 | 1.3 |
SDMU | 360 | 0.9995 | LOQ-1000 | 0.5 | 1.7 |
Analyte | Spiked, µg L−1 | Found, µg L−1 | Accuracy, % | ||
---|---|---|---|---|---|
Sample 1 | Sample 2 | Sample 1 | Sample 2 | ||
FADMH | 12.5 | 12.6 ± 1.3 | 14.3 ± 2.4 | 101 ± 11 | 114 ± 17 |
310 | 314 ± 6 | 320 ± 24 | 100 ± 3 | 102 ± 8 | |
2500 | 2560 ± 60 | 2420 ± 70 | 102 ± 2 | 97 ± 3 | |
UDMU | 2.0 | 2.2 ± 0.3 | 2.3 ± 0.3 | 110 ± 16 | 115 ± 13 |
50 | 51 ± 2 | 56 ± 3 | 102 ± 4 | 112 ± 5 | |
400 | 407 ± 20 | 410 ± 30 | 102 ± 5 | 103 ± 7 | |
SDMU | 2.0 | 2.0 ± 0.2 | 1.8 ± 0.3 | 100 ± 10 | 90 ± 17 |
50 | 49 ± 3 | 48 ± 4 | 98 ± 6 | 96 ± 8 | |
400 | 390 ± 15 | 375 ± 40 | 98 ± 4 | 94 ± 11 |
Sample | FADMH | UDMU | SDMU |
---|---|---|---|
Content, mg kg−1 | |||
3 | 190 ± 15 | 99 ± 3 | 1.2 ± 0.1 |
4 | 4.2 ± 0.6 | 0.95 ± 0.09 | 0.27 ± 0.03 |
Concentration, mg L−1 | |||
5 | 200 ± 6 | 0.11 ± 0.04 | 0.53 ± 0.07 |
6 | 105 ± 6 | 0.36 ± 0.05 | <LOQ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovchinnikov, D.V.; Vakhrameev, S.A.; Falev, D.I.; Ul’yanovskii, N.V.; Kosyakov, D.S. Rapid Simultaneous Quantification of 1-Formyl-2,2-Dimethylhydrazine and Dimethylurea Isomers in Environmental Samples by Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Molecules 2022, 27, 5025. https://doi.org/10.3390/molecules27155025
Ovchinnikov DV, Vakhrameev SA, Falev DI, Ul’yanovskii NV, Kosyakov DS. Rapid Simultaneous Quantification of 1-Formyl-2,2-Dimethylhydrazine and Dimethylurea Isomers in Environmental Samples by Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Molecules. 2022; 27(15):5025. https://doi.org/10.3390/molecules27155025
Chicago/Turabian StyleOvchinnikov, Denis V., Sergey A. Vakhrameev, Danil I. Falev, Nikolay V. Ul’yanovskii, and Dmitry S. Kosyakov. 2022. "Rapid Simultaneous Quantification of 1-Formyl-2,2-Dimethylhydrazine and Dimethylurea Isomers in Environmental Samples by Supercritical Fluid Chromatography–Tandem Mass Spectrometry" Molecules 27, no. 15: 5025. https://doi.org/10.3390/molecules27155025
APA StyleOvchinnikov, D. V., Vakhrameev, S. A., Falev, D. I., Ul’yanovskii, N. V., & Kosyakov, D. S. (2022). Rapid Simultaneous Quantification of 1-Formyl-2,2-Dimethylhydrazine and Dimethylurea Isomers in Environmental Samples by Supercritical Fluid Chromatography–Tandem Mass Spectrometry. Molecules, 27(15), 5025. https://doi.org/10.3390/molecules27155025