A Plausible Mechanism for the Iridium-Catalyzed Hydrogenation of a Bulky N-Aryl Imine in the (S)-Metolachlor Process
Abstract
:1. Introduction
2. Results
2.1. Overview
2.2. Heterolytic Splitting of Dihydrogen
2.3. Proton Transfer Equilibrium
2.4. The Enantioselective Step: Hydride Transfer to Iminium-Acetate
2.5. Deactivation
2.6. Revisiting the Considerations
2.7. Off-Cycle Imine Coordination
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cabré, A.; Verdaguer, X.; Riera, A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem. Rev. 2022, 122, 269–339. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines. Chem. Rev. 2011, 111, 1713–1760. [Google Scholar] [CrossRef] [PubMed]
- Hopmann, K.H.; Bayer, A. Enantioselective imine hydrogenation with iridium-catalysts: Reactions, mechanisms and stereocontrol. Coord. Chem. Rev. 2014, 268, 59–82. [Google Scholar] [CrossRef]
- Fleury-Bregeot, N.; de la Fuente, V.; Castillon, S.; Claver, C. Highlights of Transition Metal-Catalyzed Asymmetric Hydrogenation of Imines. ChemCatChem 2010, 2, 1346–1371. [Google Scholar] [CrossRef]
- Blaser, H.-U. Looking Back on 35 Years of Industrial Catalysis. CHIMIA 2015, 69, 393–406. [Google Scholar] [CrossRef]
- Blaser, H.-U.; Spindler, F.; Schneider, H.-D.; Pugin, B.; Jelsch, E.; Jalett, H.-P.; Hanreich, R.; Coers, K.; Buser, H.-P.; Wegmann, A. The Chiral Switch of Metolachlor: The Development of a Large-Scale Enantioselective Catalytic Process. CHIMIA 1999, 53, 275–280. [Google Scholar]
- Blaser, H.-U.; Buser, H.P.; Hausel, R.; Jalett, H.P.; Spindler, F. Tunable ferrocenyl diphosphine ligands for the Ir catalyzed enantioselective hydrogenation of N aryl imines. J. Organomet. Chem. 2001, 621, 34–38. [Google Scholar] [CrossRef]
- Blaser, H.-U.; Brieden, W.; Pugin, B.; Spindler, F.; Studer, M.; Togni, A. Solvias Josiphos ligands: From discovery to technical applications. Top. Catal. 2002, 19, 3–16. [Google Scholar] [CrossRef]
- Blaser, H.-U.; Pugin, B.; Spindler, F. Asymmetric Hydrogenation. Top. Organomet. Chem. 2012, 42, 65–102. [Google Scholar]
- Blaser, H.-U. The chiral switch of (S)-metolachlor: A personal account of an industrial odyssey in asymmetric catalysis. Adv. Synth. Catal. 2002, 344, 17–31. [Google Scholar] [CrossRef]
- Dorta, R.; Broggini, D.; Kissner, R.; Togni, A. Iridium-imine and -amine complexes relevant to the (S)-metolachlor process: Structures, exchange kinetics, and C-H activation by Ir-I causing racemization. Chem. Eur. J. 2004, 10, 4546–4555. [Google Scholar] [CrossRef] [PubMed]
- Dorta, R.; Broggini, D.; Stoop, R.; Ruegger, H.; Spindler, F.; Togni, A. Chiral iridium xyliphos complexes for the catalytic imine hydrogenation leading to the metolachlor herbicide: Isolation of catalyst-substrate adducts. Chem. Eur. J. 2004, 10, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Nagano, T.; Iimuro, A.; Schwenk, R.; Ohshima, T.; Kita, Y.; Togni, A.; Mashima, K. Additive Effects of Amines on Asymmetric Hydrogenation of Catalyzed by Chiral Iridium Complexes. Chem. Eur. J. 2012, 18, 11578–11592. [Google Scholar] [CrossRef] [PubMed]
- Mashima, K.; Higashida, K.; Iimuro, A.; Nagae, H.; Kita, Y. Triply Halide-Bridged Dinuclear Iridium(III) Complexes with Chiral Diphosphine Ligands as New Easy-to-Handle Iridium Catalysts for Asymmetric Hydrogenation of Imines and N-Heteroaromatics. Chem. Rec. 2016, 16, 2585–2598. [Google Scholar] [CrossRef]
- Tutkowski, B.; Kerdphon, S.; Lime, E.; Helquist, P.; Andersson, P.G.; Wiest, O.; Norrby, P.O. Revisiting the Stereodetermining Step in Enantioselective Iridium-Catalyzed Imine Hydrogenation. ACS Catal. 2018, 8, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Hopmann, K.H.; Bayer, A. On the Mechanism of Iridium-Catalyzed Asymmetric Hydrogenation of Imines and Alkenes: A Theoretical Study. Organometallics 2011, 30, 2483–2497. [Google Scholar] [CrossRef]
- Martín, M.; Sola, E.; Tejero, S.; Andrés, J.L.; Oro, L.A. Mechanistic Investigations of Imine Hydrogenation Catalyzed by Cationic Iridium Complexes. Chem. Eur. J. 2006, 12, 4043–4056. [Google Scholar] [CrossRef]
- Salomo, E.; Gallen, A.; Sciortino, G.; Ujaque, G.; Grabulosa, A.; Lledos, A.; Riera, A.; Verdaguer, X. Direct Asymmetric Hydrogenation of N-Methyl and N-Alkyl Imines with an Ir(III)H Catalyst. J. Am. Chem. Soc. 2018, 140, 16967–16970. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.X.; Chen, H.H.; Li, S.J.; Zhang, T.; Qu, L.B.; Lan, Y. Mechanism of Ir-catalyzed hydrogenation: A theoretical view. Coord. Chem. Rev. 2020, 412, 21. [Google Scholar] [CrossRef]
- Dobereiner, G.E.; Nova, A.; Schley, N.D.; Hazari, N.; Miller, S.J.; Eisenstein, O.; Crabtree, R.H. Iridium-Catalyzed Hydrogenation of N-Heterocyclic Compounds under Mild Conditions by an Outer-Sphere Pathway. J. Am. Chem. Soc. 2011, 133, 7547–7562. [Google Scholar] [CrossRef]
- Balakrishna, B.; Bauza, A.; Frontera, A.; Vidal-Ferran, A. Asymmetric Hydrogenation of Seven-Membered C=N-containing Heterocycles and Rationalization of the Enantioselectivity. Chem. Eur. J. 2016, 22, 10607–10613. [Google Scholar] [CrossRef] [PubMed]
- Brookhart, M.; Green Malcolm, L.H.; Parkin, G. Agostic interactions in transition metal compounds. Proc. Natl. Acad. Sci. USA 2007, 104, 6908–6914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crabtree, R.H.; Felkin, H.; Morris, G.E.; King, T.J.; Richards, J.A. Hr2(μ-H)3H2(PPh3)4]+PF6−, A novel iridium complex containing a metal metal triple bond. J. Organomet. Chem. 1976, 113, C7–C9. [Google Scholar] [CrossRef]
- Wang, H.H.; Pignolet, L.H. Cationic polyhydride cluster complexes of iridium with chelating diphosphine ligands. X-ray crystal and molecular structures of [Ir2H5(Ph2P(CH2)3PPh2)2]BF4 and [Ir3H7(Ph2P(CH2)3PPh2)3](BF4)2. Inorg. Chem. 1980, 19, 1470–1480. [Google Scholar] [CrossRef]
- Chadwick, F.M.; Olliff, N.; Weller, A.S. A convenient route to a norbornadiene adduct of iridium with chelating phosphines, [Ir(R2PCH2CH2PR2)(NBD)][BAr4F] and a comparison of reactivity with H2 in solution and the solid–state. J. Organomet. Chem. 2016, 812, 268–271. [Google Scholar] [CrossRef] [Green Version]
- Sofue, Y.; Nomura, K.; Inagaki, A. Synthesis and Photocatalytic Activities of Dinuclear Iridium Polyhydride Complexes Bearing BINAP Ligands. Organometallics 2019, 38, 2408–2411. [Google Scholar] [CrossRef]
- Pugin, B.; Landert, H.; Spindler, F.; Blaser, H.U. More than 100,000 turnovers with immobilized Ir-diphosphine catalysts in an enantioselective imine hydrogenation. Adv. Synth. Catal. 2002, 344, 974–979. [Google Scholar] [CrossRef]
- Moxham, G.L.; Douglas, T.M.; Brayshaw, S.K.; Kociok-Köhn, G.; Lowe, J.P.; Weller, A.S. The role of halogenated carborane monoanions in olefin hydrogenation catalysed by cationic iridium phosphine complexes. Dalton Trans. 2006, 5492–5505. [Google Scholar] [CrossRef]
- Wang, D.-S.; Zhou, J.; Wang, D.-W.; Guo, Y.-L.; Zhou, Y.-G. Inhibiting deactivation of iridium catalysts with bulky substituents on coordination atoms. Tetrahedron Lett. 2010, 51, 525–528. [Google Scholar] [CrossRef]
- Moessner, C.; Bolm, C. Diphenylphosphanylsulfoximines as Ligands in Iridium-Catalyzed Asymmetric Imine Hydrogenations. Angew. Chem. Int. Ed. 2005, 44, 7564–7567. [Google Scholar] [CrossRef]
- Kim, A.N.; Ngamnithiporn, A.; Bartberger, M.D.; Stoltz, B.M. Iridium-catalyzed asymmetric trans-selective hydrogenation of 1,3-disubstituted isoquinolines. Chem. Sci. 2022, 13, 3227–3232. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.Y.; Liu, G.; Wang, R.; Dong, X.Q.; Zhang, X.M. Highly efficient Ir-catalyzed asymmetric hydrogenation of benzoxazinones and derivatives with a Bronsted acid cocatalyst. Chem. Sci. 2019, 10, 4328–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.-L.; Krska, S.W.; Zhou, H.; Reamer, R.A.; Lee, J.; Sun, Y.; Askin, D. Catalytic Asymmetric Synthesis of an HIV Integrase Inhibitor. Catal. Asymmetric Synth. HIV Integr. Inhib. 2009, 11, 369–372. [Google Scholar] [CrossRef]
- Nie, H.; Zhu, Y.; Hu, X.; Wei, Z.; Yao, L.; Zhou, G.; Wang, P.; Jiang, R.; Zhang, S. Josiphos-Type Binaphane Ligands for Iridium-Catalyzed Enantioselective Hydrogenation of 1-Aryl-Substituted Dihydroisoquinolines. Org. Lett. 2019, 21, 8641–8645. [Google Scholar] [CrossRef] [PubMed]
- Drommi, D.; Arena, C.G. Recent Advances on Chiral Catalysts for Asymmetric Hydrogenation of C=C, C=N and C=O Bonds. Curr. Org. Chem. 2016, 20, 2552–2590. [Google Scholar] [CrossRef]
- Zhang, Z.; Butt, N.A.; Zhang, W. Asymmetric Hydrogenation of Nonaromatic Cyclic Substrates. Chem. Rev. 2016, 116, 14769–14827. [Google Scholar] [CrossRef]
- Seo, C.S.G.; Morris, R.H. Catalytic Homogeneous Asymmetric Hydrogenation: Successes and Opportunities. Organometallics 2019, 38, 47–65. [Google Scholar] [CrossRef]
- Granell, J.; Martínez, M. Kinetico-mechanistic studies of cyclometalating C-H bond activation reactions on Pd(II) and Rh(II) centres: The importance of non-innocent acidic solvents in the process. Dalton Trans. 2012, 41, 11243. [Google Scholar] [CrossRef]
- Ackermann, L. Carboxylate-Assisted Transition-Metal-Catalyzed C-H Bond Functionalizations: Mechanism and Scope. Chem. Rev. 2011, 111, 1315–1345. [Google Scholar] [CrossRef]
- Das, A.; Mandal, S.C.; Pathak, B. Mechanistic exploration of CO2 conversion to dimethoxymethane (DMM) using transition metal (Co, Ru) catalysts: An energy span model. Phys. Chem. Chem. Phys. 2022, 24, 8387–8397. [Google Scholar] [CrossRef]
- Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K.M.; Kothe, J.; Stein, T.V.; Englert, U.; Hölscher, M.; Klankermayer, J.; et al. Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-Triphos catalyst: From mechanistic investigations to multiphase catalysis. Chem. Sci. 2015, 6, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.; Xie, C.; Guo, Q.; Zi, G.; Hou, G.; Huang, Y. Nickel-Catalyzed Asymmetric Hydrogenation of γ-Keto Acids, Esters, and Amides to Chiral γ-Lactones and γ-Hydroxy Acid Derivatives. Org. Lett. 2022, 24, 2722–2727. [Google Scholar] [CrossRef] [PubMed]
- Mazuela, J.; Antonsson, T.; Knerr, L.; Marsden, S.P.; Munday, R.H.; Johansson, M.J. Asymmetric Hydrogenation of N-Alkyl α-Aryl Furan-Containing Imines: An Efficient Route to Unnatural N-Alkyl Arylalanines and Related Derivatives. Adv. Synth. Catal. 2019, 361, 578–584. [Google Scholar] [CrossRef] [Green Version]
- Tani, K.; Onouchi, J.-I.; Yamagata, T.; Kataoka, Y. Iridium(I)-Catalyzed Asymmetric Hydrogenation of Prochiral Imines; Protic Amines as Catalyst Improvers. Chem. Lett. 1995, 24, 955–956. [Google Scholar] [CrossRef]
- Tanaka, R.; Yamashita, M.; Chung, L.W.; Morokuma, K.; Nozaki, K. Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex. Organometallics 2011, 30, 6742–6750. [Google Scholar] [CrossRef]
- Xie, J.-B.; Xie, J.-H.; Liu, X.-Y.; Zhang, Q.-Q.; Zhou, Q.-L. Chiral Iridium Spiro Aminophosphine Complexes: Asymmetric Hydrogenation of Simple Ketones, Structure, and Plausible Mechanism. Chem.-Asian J. 2011, 6, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Osadchuk, I.; Tamm, T.; Ahlquist, M.S.G. Theoretical Investigation of a Parallel Catalytic Cycle in CO2 Hydrogenation by (PNP)IrH3. Organometallics 2015, 34, 4932–4940. [Google Scholar] [CrossRef]
- Takaoka, S.; Eizawa, A.; Kusumoto, S.; Nakajima, K.; Nishibayashi, Y.; Nozaki, K. Hydrogenation of Carbon Dioxide with Organic Base by PCIIP-Ir Catalysts. Organometallics 2018, 37, 3001–3009. [Google Scholar] [CrossRef]
- Ramaraj, A.; Nethaji, M.; Jagirdar, B.R. Hydrogenation of CO2, carbonyl and imine substrates catalyzed by [IrH3(PhPNHP)] complex. J. Organomet. Chem. 2019, 883, 25–34. [Google Scholar] [CrossRef]
- Li, C.; Lu, X.; Wang, M.; Zhang, L.; Jiang, J.; Yan, S.; Yang, Y.; Zhao, Y.; Zhang, L. A simple and efficient asymmetric hydrogenation of heteroaromatic ketones with iridium catalyst composed of chiral diamines and achiral phosphines. Tetrahedron Lett. 2020, 61, 152356. [Google Scholar] [CrossRef]
- Murayama, H.; Heike, Y.; Higashida, K.; Shimizu, Y.; Yodsin, N.; Wongnongwa, Y.; Jungsuttiwong, S.; Mori, S.; Sawamura, M. Iridium-Catalyzed Enantioselective Transfer Hydrogenation of Ketones Controlled by Alcohol Hydrogen-Bonding and sp3-C-H Noncovalent Interactions. Adv. Synth. Catal. 2020, 362, 4655–4661. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Chen, Q.; Li, L.; Jiang, J.; Sun, H.; Zhao, C.; Yang, Y.; Li, C. Cinchona-Alkaloid-Derived NNP Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones. Org. Lett. 2022, 24, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Lough, A.J.; Park, S.; Ramachandran, R.; Morris, R.H. Switching On and Off a New Intramolecular Hydrogen-Hydrogen Interaction and the Heterolytic Splitting of Dihydrogen. Crystal and Molecular Structure of [Ir{H(eta1-SC5H4NH)}2(PCy3)2]BF4.2.7CH2Cl2. J. Am. Chem. Soc. 1994, 116, 8356–8357. [Google Scholar] [CrossRef]
- Lee, J.C.; Rheingold, A.L.; Muller, B.; Pregosin, P.S.; Crabtree, R.H. Complexation of an amide to iridium via an iminol tautomer and evidence Ir-H ⋯ H-O hydrogen bond. J. Chem. Soc. Chem. Commun. 1994, 1021–1022. [Google Scholar] [CrossRef]
- Belkova, N.V.; Epstein, L.M.; Filippov, O.A.; Shubina, E.S. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chem. Rev. 2016, 116, 8545–8587. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Crabtree, R.H.; Holt, E.M.; Lavin, M.; Morehouse, S.M. Inter- vs. intramolecular carbon-hydrogen activation: A carbon-hydrogen-iridium bridge in [IrH2(mq)L2]BF4 and a C-H + M -> C-M-H reaction trajectory. Inorg. Chem. 1985, 24, 1986–1992. [Google Scholar] [CrossRef]
- Walter, M.D.; White, P.S.; Schauer, C.K.; Brookhart, M. Stability and Dynamic Processes in 16VE Iridium(III) Ethyl Hydride and Rhodium(I) σ-Ethane Complexes: Experimental and Computational Studies. J. Am. Chem. Soc. 2013, 135, 15933–15947. [Google Scholar] [CrossRef] [PubMed]
- Weller, A.S.; Chadwick, F.M.; McKay, A.I. Chapter Five—Transition Metal Alkane-Sigma Complexes: Synthesis, Characterization, and Reactivity. In Advances in Organometallic Chemistry; Pérez, P.J., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 66, pp. 223–276. [Google Scholar]
- Crabtree, R.H.; Mellea, M.F.; Mihelcic, J.M.; Quirk, J.M. Alkane dehydrogenation by iridium complexes. J. Am. Chem. Soc. 1982, 104, 107–113. [Google Scholar] [CrossRef]
- Hoyano, J.K.; McMaster, A.D.; Graham, W.A.G. Activation of methane by iridium complexes. J. Am. Chem. Soc. 1983, 105, 7190–7191. [Google Scholar] [CrossRef]
- Dorta, R.; Togni, A. Iridium-Assisted, Enantiospecific Aliphatic C-H Activation/Iodination. Organometallics 1998, 17, 5441–5444. [Google Scholar] [CrossRef]
- Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. A meta-selective C-H borylation directed by a secondary interaction between ligand and substrate. Nat. Chem. 2015, 7, 712–717. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Legault, C.Y. CYLview20; Version 1.0; Université de Sherbrooke, 2020; Available online: http://www.cylview.org (accessed on 8 August 2022).
- Chemcraft—Graphical Software for Visualization of Quantum Chemistry Computations. Available online: https://www.chemcraftprog.com (accessed on 8 August 2022).
- Frisch, G.W.T.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; et al. Gaussian 09; Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Harvey, J.N.; Himo, F.; Maseras, F.; Perrin, L. Scope and Challenge of Computational Methods for Studying Mechanism and Reactivity in Homogeneous Catalysis. ACS Catal. 2019, 9, 6803–6813. [Google Scholar] [CrossRef]
Solvent | Structure | d(Ir-H−) (Å) | d(C-H−) (Å) | d(Ir-Hxyl) (Å) | ∠(C-Hxyl-Ir) (°) | ΔG‡ (kcal mol−1) |
---|---|---|---|---|---|---|
HOAc | TS2 (S) | 1.67 | 1.76 | 2.56 | 150.5 | 22.7 |
HOAc | TS2 (R) | 1.67 | 1.79 | 2.47 | 136.6 | 24.0 |
THF | TS2 (S) | 1.69 | 1.64 | 2.55 | 158.9 | 22.8 |
THF | TS2 (R) | 1.70 | 1.68 | 2.47 | 138.3 | 25.5 |
HOAc | TS2 (S’) | 1.68 | 1.64 | 2.51 | 124.1 | 22.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwan, A.L.; Morris, R.H. A Plausible Mechanism for the Iridium-Catalyzed Hydrogenation of a Bulky N-Aryl Imine in the (S)-Metolachlor Process. Molecules 2022, 27, 5106. https://doi.org/10.3390/molecules27165106
Kwan AL, Morris RH. A Plausible Mechanism for the Iridium-Catalyzed Hydrogenation of a Bulky N-Aryl Imine in the (S)-Metolachlor Process. Molecules. 2022; 27(16):5106. https://doi.org/10.3390/molecules27165106
Chicago/Turabian StyleKwan, Amanda L., and Robert H. Morris. 2022. "A Plausible Mechanism for the Iridium-Catalyzed Hydrogenation of a Bulky N-Aryl Imine in the (S)-Metolachlor Process" Molecules 27, no. 16: 5106. https://doi.org/10.3390/molecules27165106
APA StyleKwan, A. L., & Morris, R. H. (2022). A Plausible Mechanism for the Iridium-Catalyzed Hydrogenation of a Bulky N-Aryl Imine in the (S)-Metolachlor Process. Molecules, 27(16), 5106. https://doi.org/10.3390/molecules27165106