Partnered Excited-State Intermolecular Proton Transfer Fluorescence (P-ESIPT) Signaling for Nitrate Sensing and High-Resolution Cell-Imaging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Absorption and Fluorescence Spectra of ESIPT-F
2.2. Electrochemical Response of ESIPT-P to NO2−
2.3. Theoretical Evaluation of the Recognition of ESIPT-F to Proteins
2.4. Selectivity Assays for Nitrite Detection
2.5. Detection of NO2− in Real Samples Using ESTIP-F
2.6. Cellular Imaging
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Synthesis of ESIPT-F
3.3. Analytical Procedure
3.4. Preparation of Real Samples
3.5. MTT Assays
3.6. Protein Staining and Cell-Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jackson, J.; Patterson, A.J.; MacDonald-Wicks, L.; McEvoy, M. The role of inorganic nitrate and nitrite in CVD. Nutr. Res. Rev. 2017, 30, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Kononiuk, A. Nitrates/nitrites in food-risk for nitrosative stress and benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Goddard, A.D.; Bali, S.; Mavridou, D.A.I.; Luque-Almagro, V.M.; Gates, A.J.; Roldan, M.D.; Newstead, S.; Richardson, D.J.; Ferguson, S.J. The Paracoccus denitrificans NarK-like nitrate and nitrite transporters-probing nitrate uptake and nitrate/nitrite exchange mechanisms. Mol. Microbiol. 2017, 103, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, A.; Blackwell, J.R.; L’Heureux, J.E.; Williams, D.W.; Smith, A.; van der Giezen, M.; Winyard, P.G.; Kelly, J.; Jones, A.M. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radical. Biol. Med. 2018, 124, 21–30. [Google Scholar] [CrossRef]
- Li, J.; Jia, W.; Zhao, Q. Excessive nitrite affects zebrafish valvulogenesis through yielding too much NO signaling. PLoS ONE 2014, 9, e92728. [Google Scholar] [CrossRef]
- della Betta, F.; Vitali, L.; Fett, R.; Costa, A.C.O. Development and validation of a sub-minute capillary zone electrophoresis method for determination of nitrate and nitrite in baby foods. Talanta 2014, 122, 23–29. [Google Scholar] [CrossRef]
- Samuni, A.; Maimon, E.; Goldstein, S. Nitroxides catalytically inhibit nitrite oxidation and heme inactivation induced by H2O2, nitrite and metmyoglobin or methemoglobin. Free Radical. Biol. Med. 2016, 101, 491–499. [Google Scholar] [CrossRef]
- Suzuki, H.; Iijima, K.; Moriya, A.; McElroy, K.; Scobie, G.; Fyfe, V.; McColl, K.E.L. Conditions for acid catalysed luminal nitrosation are maximal at the gastric cardia. Gut 2003, 52, 1095–1101. [Google Scholar] [CrossRef]
- Kikura-Hanajiri, R.; Martin, R.S.; Lunte, S.M. Indirect measurement of nitric oxide production by monitoring nitrate and nitrite using microchip electrophoresis with electrochemical detection. Anal. Chem. 2002, 74, 6370–6377. [Google Scholar] [CrossRef] [PubMed]
- Manassaram, D.M.; Backer, L.C.; Moll, D.M. A review of nitrates in drinking water: Maternal exposure and adverse reproductive and developmental outcomes, Environmental health perspectives. Environ. Health Perspect. 2006, 114, 320–327. [Google Scholar] [CrossRef]
- Buldt, A.; Karst, U. Determination of nitrite in waters by microplate fluorescence spectroscopy and HPLC with fluorescence detection. Anal. Chem. 1999, 71, 3003–3007. [Google Scholar] [CrossRef] [PubMed]
- Erol, O.O.; Erdogan, B.Y.; Onar, A.N. Nitrate and nitrite determination in gunshot residue samples by capillary electrophoresis in acidic run buffer. J. Forensic. Sci. 2017, 62, 423–427. [Google Scholar] [CrossRef]
- Xiao, Q.; Feng, M.; Liu, Y.; Lu, S.; He, Y.; Huang, S. The graphene/polypyrrole/chitosan-modified glassy carbon electrode for electrochemical nitrite detection. Ionics 2018, 24, 845–859. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Lin, Y.; Zheng, Y.; Lin, J.-M. Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on microfluidic chip. Talanta 2016, 154, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Kasani, S.; Shi, X.; Boryczka, A.E.; Yang, F.; Tang, H.; Li, M.; Zheng, W.; Elswick, D.E.; Wu, N. Detection of nitrite with a surface-enhanced Raman scattering sensor based on silver nanopyramid array. Anal. Chim. Acta 2018, 1040, 158–165. [Google Scholar] [CrossRef]
- El hani, O.; Karrat, A.; Digua, K.; Amine, A. Development of a simplified spectrophotometric method for nitrite determination in water samples. Spectrochim. Acta Part A 2022, 267, 120574. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.X.; Zhang, Q.F.; Shangguang, X.; Zhen, G. Spectrofluorimetric determination of trace nitrite with o-phenylenediamine enhanced by hydroxypropyl-β-cyclodextrin. Spectrochim. Acta Part A 2013, 101, 257–280. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, C.; Liu, F.; Liu, B.; Han, M.; Zou, W.; Yang, L.; Zhang, Z. Upconversion nanoparticles for ratiometric fluorescence detection of nitrite. Analyst 2014, 139, 3032–3038. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhu, X.; Jiao, Z.; Liu, X.; Zhang, H. Sensitive naked eye detection and quantification assay for nitrite by a fluorescence probe in various water resources. Spectrochim. Acta Part A 2018, 200, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Jiang, H.; Li, Z.; Zhong, C.; Zhang, W.; Liu, Z. An N-nitrosation reactivity-based two-photon fluorescent probe for the specific in situ detection of nitric oxide. Chem. Sci. 2017, 8, 4533–4538. [Google Scholar] [CrossRef] [PubMed]
- Han, E.; Zhang, M.; Pan, Y.; Cai, J.; Zheng, P.; Kasani, S.; Shi, X.; Boryczka, A.E.; Yang, F.; Tang, H.; et al. Electrochemical self-assembled gold nanoparticle SERS substrate coupled with diazotization for sensitive detection of nitrite. Materials 2022, 15, 2809. [Google Scholar] [CrossRef]
- Maria, S.; Stefano, M.; Valerio, B.; Claudio, P. Iron and manganese pyridoxal-based complexes as fluorescent probes for nitrite and nitrate anions in aqueous solution. Inorg. Chem. 2013, 52, 11778–11786. [Google Scholar]
- Adarsh, N.; Shanmugasundaram, M.; Ramaiah, D. Efficient reaction based colorimetric probe for sensitive detection, guantification, and on-site analysis of nitrite Ions in natural water resources. Anal. Chem. 2013, 85, 10008–10012. [Google Scholar] [CrossRef]
- Kumar, V.; Banerjee, M.; Chatterjee, A. A reaction based turn-on type fluorogenic and chromogenic probe for the detection of trace amount of nitrite in water. Talanta 2012, 99, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D.; Gutzki, F.; Rossa, S. Measurement of nitrite and nitrate in biological fluids by gas chromatography-mass spectrometry and by the Griess Assay: Problems with the Griess assay-solutions by gas Chromatography–mass spectrometry. Anal. Biochem. 1997, 244, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Adarsh, N.; Krishnan, M.S.; Ramaiah, D. Sensitive naked eye detection of hydrogen sulfide and nitric oxide by aza-BODIPY dyes in aqueous medium. Anal. Chem. 2014, 86, 9335–9342. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, Q.; Qian, X.; Yang, Y. Practical assay for nitrite and nitrosothiol as an alternative to the Griess assay or the 2,3-diaminonaphthalene assay. Anal. Chem. 2015, 87, 1274–1280. [Google Scholar] [CrossRef]
- Wegen, S.; Nowka, B.; Spieck, E.; Liu, S.-J. Low temperature and neutral pH define “Candidatus Nitrotoga sp.” as a competitive nitrite oxidizer in coculture with Nitrospira defluvii. Appl. Environ. Microbiol. 2019, 85, e02569-18. [Google Scholar] [CrossRef]
- Xue, Z.; Wu, Z.; Han, S. A selective fluorogenic sensor for visual detection of nitrite. Anal. Methods 2012, 4, 2021–2026. [Google Scholar] [CrossRef]
- Li, Z.; Li, M.; Wang, C.; Zhou, X.; Li, J.; Li, D. Highly sensitive and selective method for detection of trace amounts of nitrite in aquaculture water by SERRS coupled with diazo reaction. Sens. Actuators B 2019, 297, 126757. [Google Scholar] [CrossRef]
- Yilmaz, M.D. A novel ratiometric and colorimetric probe for rapid and ultrasensitive detection of nitrite in water based on an acenaphtho[1,2-d] imidazole derivative. Anal. Chim. Acta 2021, 1166, 338597. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, M.; Xu, J.; Wen, S.; Zhang, Y.; Zhang, J. Synthesis of fluorescent terbium-based metal-organic framework for quantitative detection of nitrite and ferric ions in water samples. Spectrochim. Acta Part A 2021, 253, 119553. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, H.; Liu, Y.; Zhang, Y.; Shang, M.; Wang, L.; Zhuang, Y.; Lv, X. A colorimetric and fluorescent dual-readout probe based on red emission carbon dots for nitrite detection in meat products. Food Chem. 2022, 374, 131768. [Google Scholar] [CrossRef]
- Ge, W.; Zhang, X.R.; Liu, M.; Lei, Z.W.; Knize, R.J.; Lu, Y. Distance dependence of gold-enhanced upconversion luminescence in Au/SiO2/Y2O3:Yb3+, Er3+ nanoparticles. Theranostics 2013, 3, 282–288. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, Q.; Wu, T.; Liu, L.; Ding, Y.; Yu, B. Fluorescence enhancement of cadmium selenide quantum dots assembled on silver nanoparticles and its application to glucose detection. Langmuir 2014, 30, 6324–6330. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Guan, L.Y.; Zhang, H.L.; Chen, J.; Lin, S.; Ma, Z.Y.; Zhao, Y.D. Distance-dependent metal-enhanced quantum dots fluorescence analysis in solution by capillary electrophoresis and its application to DNA detection. Anal. Chem. 2011, 83, 4103–4109. [Google Scholar] [CrossRef]
- Xu, W.; Zeng, Z.; Jiang, J.-H.; Chang, Y.-T.; Yuan, L. Discerning the chemistry in individual organelles with small-molecule fluorescent probes. Angew. Chem. Int. Ed. 2016, 55, 13658–13699. [Google Scholar] [CrossRef]
- Klymchenko, S.A. Solvatochromic and fluorogenic dyes as environment-sensitive probes: Design and biological applications. Acc. Chem. Res. 2017, 50, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, Z.; Turhan, O.; Yaman, M.; Bütün, V.V. An effective fluorescent optical sensor: Thiazolo-thiazole based dye exhibiting anion/cation sensitivities and acidochromism. J. Photochem. Photobio. A Chem. 2021, 419, 113456. [Google Scholar] [CrossRef]
- Nuri, K.A.; Mustafa, O.; Ersin, G. A Novel Fluorescent Chemosensor for cu (II) Ion: Click Synthesis of Dual-Bodipy Including the Triazole Groups and Bioimaging of Yeast Cells. J. Fluor. 2019, 29, 1321–1329. [Google Scholar]
- Nawaz, M.; Hisaindee, S.; Graham, J.P.; Rauf, M.A.; Saleh, N. Synthesis and spectroscopic properties of pyridones-experimental and theoretical insight. J. Mol. Liq. 2014, 193, 51–59. [Google Scholar] [CrossRef]
Samples a | NO2− Added (mg/kg) | NO2− Found b (mg/kg) | Recovery (%) | R.S.D (%) |
---|---|---|---|---|
River water | 0 | 0.013 | - | 1.68 |
0.125 | 0.136 | 98.6 | 1.93 | |
0.250 | 0.368 | 101.4 | 2.05 | |
Tap water | 0 | 0.008 | - | 2.33 |
0.125 | 0.137 | 103 | 2.47 | |
0.250 | 0.254 | 98.4 | 1.96 | |
Soil | 0 | 0.016 | - | 3.02 |
0.250 | 0.270 | 101.5 | 1.89 | |
0.500 | 0.514 | 99.6 | 2.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Gong, F.; Zhu, H.; Qian, Y.; He, L.; Xia, J.; Cao, Z. Partnered Excited-State Intermolecular Proton Transfer Fluorescence (P-ESIPT) Signaling for Nitrate Sensing and High-Resolution Cell-Imaging. Molecules 2022, 27, 5164. https://doi.org/10.3390/molecules27165164
Ma P, Gong F, Zhu H, Qian Y, He L, Xia J, Cao Z. Partnered Excited-State Intermolecular Proton Transfer Fluorescence (P-ESIPT) Signaling for Nitrate Sensing and High-Resolution Cell-Imaging. Molecules. 2022; 27(16):5164. https://doi.org/10.3390/molecules27165164
Chicago/Turabian StyleMa, Pan, Fuchun Gong, Hanming Zhu, You Qian, Lingzhi He, Jiaoyun Xia, and Zhong Cao. 2022. "Partnered Excited-State Intermolecular Proton Transfer Fluorescence (P-ESIPT) Signaling for Nitrate Sensing and High-Resolution Cell-Imaging" Molecules 27, no. 16: 5164. https://doi.org/10.3390/molecules27165164
APA StyleMa, P., Gong, F., Zhu, H., Qian, Y., He, L., Xia, J., & Cao, Z. (2022). Partnered Excited-State Intermolecular Proton Transfer Fluorescence (P-ESIPT) Signaling for Nitrate Sensing and High-Resolution Cell-Imaging. Molecules, 27(16), 5164. https://doi.org/10.3390/molecules27165164