Determination of the Phenolic Profile, and Evaluation of Biological Activities of Hydroethanolic Extract from Aerial Parts of Origanum compactum from Morocco
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Screening
2.2. Polyphenols Extractions Yield
2.3. Total Polyphenols and Flavonoids Contents in Origanum compactum Extract
2.4. HPLC-PDA/ESI-MS Analysis
2.5. Antioxidant Activity
2.5.1. Antioxidant Activity of Hydro-Ethanolic Fractions by Frap (Ferric Reducing Power Assay)
2.5.2. Total Antioxidant Capacity by Phosphomolybdate Method
2.6. Antibacterial Activity
3. Materials and Methods
3.1. Plant Material
3.2. Phytochemical Screening
3.3. Extraction of Polyphenols
3.3.1. Determination of Total Polyphenolic Contents in Origanum compactum
3.3.2. Determination of Flavonoids Contents in Origanum compactum
3.4. HPLC-PDA-ESI/MS Analysis
3.4.1. Sample Preparation
3.4.2. HPLC-MS Analysis Condition
3.4.3. Standards Employed
3.5. Antioxidant Activity
3.5.1. Ferric Reducing Power (FRAP) Assay
3.5.2. Phosphomolybdate Method (Total Antioxidant Capacity, TAC)
3.6. Antibacterial Activity
3.6.1. Bacterial Strains and Growth Conditions
3.6.2. Broth Microdilution Method
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Chishti, S.; Kaloo, Z.A.; Sultan, P. Medicinal Importance of Genus Origanum: A Review. J. Pharmacogn. Phytother. 2013, 5, 170–177. [Google Scholar]
- Aboukhalid, K.; Lamiri, A.; Agacka-Mołdoch, M.; Doroszewska, T.; Douaik, A.; Bakha, M.; Casanova, J.; Tomi, F.; Machon, N.; Faiz, C.A. Chemical Polymorphism of Origanum compactum Grown in All Natural Habitats in Morocco. Chem. Biodivers. 2016, 13, 1126–1139. [Google Scholar] [CrossRef]
- Zeroual, A.; Eloutassi, N.; Chaouch, M.; Chaqroune, A. Antimicrobial, Antioxidant Activity, and Chemical Composition of Origanum compactum Benth from Taounate Province, North Morocco. Asian J. Pharm. Clin. Res. 2020, 3, 126–131. [Google Scholar] [CrossRef]
- Bouyahya, A.; Et-Touys, A.; Abrini, J.; Talbaoui, A.; Fellah, H.; Bakri, Y.; Dakka, N. Lavandula Stoechas Essential Oil from Morocco as Novel Source of Antileishmanial, Antibacterial and Antioxidant Activities. Biocatal. Agric. Biotechnol. 2017, 12, 179–184. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Picos-Salas, M.A.; Leyva-López, N.; Criollo-Mendoza, M.S.; Vazquez-Olivo, G.; Heredia, J.B. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits. Plants 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- El Babili, F.; Bouajila, J.; Souchard, J.P.; Bertrand, C.; Bellvert, F.; Fouraste, I.; Moulis, C.; Valentin, A. Oregano: Chemical Analysis and Evaluation of Its Antimalarial, Antioxidant, and Cytotoxic Activities. J. Food Sci. 2011, 76, C512–C518. [Google Scholar] [CrossRef] [PubMed]
- Prathyusha, P.; Subramanian, M.S.; Nisha, M.C.; Santhanakrishnan, R.; Seena, M.S. Pharmacognostical and Phytochemical Studies on Origanum vulgare L. (Laminaceae). Anc. Sci. Life 2009, 29, 17–23. [Google Scholar] [PubMed]
- Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction of Polyphenols From Aromatic and Medicinal Plants: An Overview of the Methods and the Effect of Extraction Parameters. In Polyphenols in Plants, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 243–259. [Google Scholar]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of Extraction Solvents on Concentration and Antioxidant Activity of Black and Black Mate Tea Polyphenols Determined by Ferrous Tartrate and Folin–Ciocalteu Methods. Food Chem. 2006, 99, 835–841. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila Aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Azizi, A.; Janke, S.; Schwarz, M.; Zeller, S.; Honermeier, B. Antioxidant Capacity Variation in the Oregano (Origanum vulgare L.) Collection of the German National Genebank. Ind. Crops Prod. 2016, 92, 19–25. [Google Scholar] [CrossRef]
- Bower, A.M.; Real Hernandez, L.M.; Berhow, M.A.; de Mejia, E.G. Bioactive Compounds from Culinary Herbs Inhibit a Molecular Target for Type 2 Diabetes Management, Dipeptidyl Peptidase IV. J. Agric. Food Chem. 2014, 62, 6147–6158. [Google Scholar] [CrossRef] [PubMed]
- Kogiannou, D.A.A.; Kalogeropoulos, N.; Kefalas, P.; Polissiou, M.G.; Kaliora, A.C. Herbal Infusions; Their Phenolic Profile, Antioxidant and Anti-Inflammatory Effects in HT29 and PC3 Cells. Food Chem. Toxicol. 2013, 61, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of Phenolic Composition in Lamiaceae Spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.; Carle, R.; Kammerer, D.R. Effects of Blanching on Polyphenol Stability of Innovative Paste-like Parsley (Petroselinum crispum (Mill.) Nym Ex A. W. Hill) and Marjoram (Origanum majorana L.) Products. Food Chem. 2013, 138, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Engel, R.; Szabó, K.; Abrankó, L.; Rendes, K.; Füzy, A.; Takács, T. Effect of Arbuscular Mycorrhizal Fungi on the Growth and Polyphenol Profile of Marjoram, Lemon Balm, and Marigold. J. Agric. Food Chem. 2016, 64, 3733–3742. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Dueñas, M.; Dias, M.I.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic Profiles of Cultivated, in Vitro Cultured and Commercial Samples of Melissa officinalis L. Infusions. Food Chem. 2013, 136, 1–8. [Google Scholar] [CrossRef] [PubMed]
- FoodDB. FooDB Version 1.0. 2020. Available online: http://www.foodb.ca (accessed on 17 July 2022).
- Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernández-Gutiérrez, A.; Zarrouk, M.; Segura-Carretero, A. LC-MS-Based Metabolite Profiling of Methanolic Extracts from the Medicinal and Aromatic Species Mentha Pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Cvetanović, A.; Gašić, U.; Dragićević, M.; Stupar, A.; Uysal, A.; Şenkardes, I.; Sinan, K.I.; Picot-Allain, M.C.N.; Ak, G.; et al. UHPLC-LTQ OrbiTrap MS Analysis and Biological Properties of Origanum vulgare subsp. Viridulum Obtained by Different Extraction Methods. Ind. Crops Prod. 2020, 154, 112747. [Google Scholar] [CrossRef]
- Bouymajane, A.; Filali, F.R.; El Majdoub, Y.O.; Ouadik, M.; Abdelilah, R.; Cavò, E.; Miceli, N.; Taviano, M.F.; Mondello, L.; Cacciola, F. Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Aerial Parts of Thymus Zygis Subsp. Gracilis, Mentha Suaveolens and Sideritis Incana from Morocco. Chem. Biodivers. 2022, 19, e202101018. [Google Scholar] [CrossRef] [PubMed]
- Skoula, M.; Grayer, R.J.; Kite, G.C.; Veitch, N.C. Exudate Flavones and Flavanones in Origanum Species and Their Interspecific Variation. Biochem. Syst. Ecol. 2008, 36, 646–654. [Google Scholar] [CrossRef]
- Koukoulitsa, C.; Karioti, A.; Bergonzi, M.C.; Pescitelli, G.; Di Bari, L.; Skaltsa, H. Polar Constituents from the Aerial Parts of Origanum vulgare L. Ssp. Hirtum Growing Wild in Greece. J. Agric. Food Chem. 2006, 54, 5388–5392. [Google Scholar] [CrossRef] [PubMed]
- Grevsen, K.; Fretté, X.C.; Christensen, L.P. Content and Composition of Volatile Terpenes, Flavonoids and Phenolic Acids in Greek Oregano (Origanum vulgare L. Ssp. Hirtum) at Different Development Stages during Cultivation in Cool Tem-Perate Climate. Eur. J. Hortic. Sci. 2009, 74, 193–203. [Google Scholar]
- Koukoulitsa, C.; Zika, C.; Geromichalos, G.D.; Demopoulos, V.J.; Skaltsa, H. Evaluation of Aldose Reductase Inhibition and Docking Studies of Some Secondary Metabolites, Isolated from Origanum vulgare L. ssp. Hirtum. Bioorg. Med. Chem. 2006, 14, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Koukoulitsa, C.; Hadjipavlou–Litina, D.; Geromichalos, G.D.; Skaltsa, H. Inhibitory Effect on Soybean Lipoxygenase and Docking Studies of Some Secondary Metabolites, Isolated from Origanum vulgare L. ssp. Hirtum. J. Enzym. Inhib. Med. Chem. 2007, 22, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Baranauskaite, J.; Kopustinskiene, D.M.; Masteikova, R.; Gajdziok, J.; Baranauskas, A.; Bernatoniene, J. Effect of Liquid Vehicles on the Enhancement of Rosmarinic Acid and Carvacrol Release from Oregano Extract Liquisolid Compacts. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 280–290. [Google Scholar] [CrossRef]
- Desam, N.R.; Al-Rajab, A.J.; Sharma, M.; Mylabathula, M.M.; Gowkanapalli, R.R.; Albratty, M. Chemical Constituents, in Vitro Antibacterial and Antifungal Activity of Mentha×Piperita L. (Peppermint) Essential Oils. J. King Saud Univ. Sci. 2019, 31, 528–533. [Google Scholar] [CrossRef]
- Boutahiri, S.; Eto, B.; Bouhrim, M.; Mechchate, H.; Saleh, A.; Al kamaly, O.; Drioiche, A.; Remok, F.; Samaillie, J.; Neut, C.; et al. Lavandula Pedunculata (Mill.) Cav. Aqueous Extract Antibacterial Activity Improved by the Addition of Salvia Rosmarinus Spenn., Salvia Lavandulifolia Vahl and Origanum compactum Benth. Life 2022, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-D.; Park, Y.S.; Jin, Y.-H.; Park, C.-S. Production and Applications of Rosmarinic Acid and Structurally Related Compounds. Appl. Microbiol. Biotechnol. 2015, 99, 2083–2092. [Google Scholar] [CrossRef]
- Moghadam, S.E.; Ebrahimi, S.N.; Gafner, F.; Ochola, J.B.; Marubu, R.M.; Lwande, W.; Frei Haller, B.; Salehi, P.; Hamburger, M. Metabolite Profiling for Caffeic Acid Oligomers in Satureja Biflora. Ind. Crops Prod. 2015, 76, 892–899. [Google Scholar] [CrossRef]
- Isao, A.; Hijiri, K.; Tsutomu, H.; Sansei, N.; Takuo, O. Melitric Acids A and B, New Trimeric Caffeic Acid Derivatives from Melissa officinalis. Chem. Pharm. Bull. 1993, 41, 1608–1611. [Google Scholar]
- Leyva-López, N.; Nair, V.; Bang, W.Y.; Cisneros-Zevallos, L.; Heredia, J.B. Protective Role of Terpenes and Polyphenols from Three Species of Oregano (Lippia Graveolens, Lippia Palmeri and Hedeoma Patens) on the Suppression of Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophage Cells. J. Ethnopharmacol. 2016, 187, 302–312. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; La Bella, S.; Licata, M.; Virga, G.; Leto, C.; Saija, A.; Trombetta, D.; Tomaino, A.; Speciale, A.; Napoli, E.M.; et al. Biomolecular Characterization of Wild Sicilian Oregano: Phytochemical Screening of Essential Oils and Extracts, and Evaluation of Their Antioxidant Activities. Chem. Biodivers. 2013, 10, 411–433. [Google Scholar] [CrossRef]
- Radušienė, J.; Ivanauskas, L.; Janulis, V.; Jakštas, V. Composition and Variability of Phenolic Compounds in Origanum vulgare from Lithuania. Biologija 2008, 54, 45–49. [Google Scholar] [CrossRef]
- Hawas, U.W.; El-Desoky, S.K.; Kawashty, S.A.; Sharaf, M. Two New Flavonoids from Origanum vulgare. Nat. Prod. Res. 2008, 22, 1540–1543. [Google Scholar] [CrossRef]
- Hammoud, L.; Seghiri, R.; Benayache, S.; Mosset, P.; Lobstein, A.; Chaabi, M.; León, F.; Brouard, I.; Bermejo, J.; Benayache, F. A New Flavonoid and Other Constituents from Centaurea nicaeensis All. Var. Walliana M. Nat. Prod. Res. 2012, 26, 203–208. [Google Scholar] [CrossRef]
- Ha, G.-J.; Lee, D.S.; Seung, T.W.; Park, C.H.; Park, S.K.; Jin, D.E.; Kim, N.-K.; Shin, H.-Y.; Heo, H.J. Anti-amnesic and Neuroprotective Effects of Artemisia argyi H. (Seomae mugwort) Extracts. Korean J. Food Sci. Technol. 2015, 47, 380–387. [Google Scholar] [CrossRef]
- Lagouri, V.; Alexandri, G. Antioxidant Properties of Greek O. Dictamnus and R. Officinalis Methanol and Aqueous Extracts-HPLC Determination of Phenolic Acids. Int. J. Food Prop. 2013, 16, 549–562. [Google Scholar] [CrossRef]
- Gonçalves, S.; Moreira, E.; Grosso, C.; Andrade, P.B.; Valentão, P.; Romano, A. Phenolic Profile, Antioxidant Activity and Enzyme Inhibitory Activities of Extracts from Aromatic Plants Used in Mediterranean Diet. J. Food Sci. Technol. 2017, 54, 219–227. [Google Scholar] [CrossRef]
- Hossain, M.B.; Camphuis, G.; Aguiló-Aguayo, I.; Gangopadhyay, N.; Rai, D.K. Antioxidant Activity Guided Separation of Major Polyphenols of Marjoram (Origanum majorana L.) Using Flash Chromatography and Their Identification by Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry†. J. Sep. Sci. 2014, 37, 3205–3213. [Google Scholar] [CrossRef]
- Bhatt, P.; Joseph, G.S.; Negi, P.S.; Varadaraj, M.C. Chemical Composition and Nutraceutical Potential of Indian Borage (Plectranthus amboinicus) Stem Extract. J. Chem. 2013, 2013, e320329. [Google Scholar] [CrossRef]
- Koldaş, S.; Demirtas, I.; Ozen, T.; Demirci, M.A.; Behçet, L. Phytochemical Screening, Anticancer and Antioxidant Activities of Origanum vulgare L. ssp. Viride (Boiss.) Hayek, a Plant of Traditional Usage: Phytochemical, Anticancer and Antioxidant Studies of Origanum vulgare ssp. Viride. J. Sci. Food Agric. 2015, 95, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Anticancer Potential of Rosmarinic Acid and Its Improved Production through Biotechnological Interventions and Functional Genomics. Appl. Microbiol. Biotechnol. 2018, 102, 7775–7793. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Fons, L.; GarzÓn, M.T.; Micol, V. Relationship between the Antioxidant Capacity and Effect of Rosemary (Rosmarinus officinalis L.) Polyphenols on Membrane Phospholipid Order. J. Agric. Food Chem. 2010, 58, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Kosalec, I.; Bakmaz, M.; Pepeljnjak, S.; Vladimir-Knezević, S. Quantitative Analysis of the Flavonoids in Raw Propolis from Northern Croatia. Acta Pharm. 2004, 54, 65–72. [Google Scholar]
- Zovko Končić, M.; Kremer, D.; Karlović, K.; Kosalec, I. Evaluation of Antioxidant Activities and Phenolic Content of Berberis vulgaris L. and Berberis Croatica Horvat. Food Chem. Toxicol. 2010, 48, 2176–2180. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
Extraction Yield | Total Phenols Content | Flavonoids Content | EC50 (FRAP) | TAC |
---|---|---|---|---|
30.60% | 107.79 ± 5.39 mg GAE/g dm | 14.98 ± 0.79 mg QE/g dm | 0.017 ± 0.00085 mg/mL | 470.90 mg EAA/g E |
Peak N° | Compound | tR (min) | UV (nm) | [M − H]− | [M + H]+ | Fragments | Standards | Quantity (mg/Kg) Extract ± SD | References |
---|---|---|---|---|---|---|---|---|---|
1 | Syringic acid | 9.23 | 280 | 197 | - | - | - | Nq | [14] |
2 | Caffeic acid | 15.31 | 322 | 179 | - | - | - | Nq | [14] |
3 | Apigenin-6,8-di-C-glucoside | 17.20 | 270, 336 | 593 | 595 | - | Apigenin | 1623.53 ± 288.42 | [15,16] |
4 | Lithospermic acid A isomer | 22.25 | 284, 344 | 537 | - | 339 | - | Nq | [17] |
5 | Unknown | 22.93 | 287, 331 | 555 | - | 359(+) | - | - | [18] |
6 | Luteolin glucoside | 25.06 | 286, 336 | 447 | 449 | 287(+) | Kaempferol-glucoside | 185.92 ± 37.27 | [5,18] |
7 | Luteolin glucuronide | 25.27 | 253, 343 | 461 | 463 | 287(+) | Kaempferol-glucoside | 258.28 ± 50.75 | [15,18] |
8 | Salvianolic acid I | 34.50 | 309 | 537 | 493, 341 | 297(+) | - | Nq | [19] |
9 | Rosmarinic acid | 32.55 | 289, 328 | 359 | - | - | Rosmarinic acid | 48128.62 ± 8077.44 | [15,18,20,21] |
10 | Melitric acid B | 37.03 | 286, 310 | 519 | 521 | - | - | Nq | [18] |
11 | Melitric acid A | 37.52 | 287, 312 | 537 | 539 | - | - | Nq | [18] |
12 | Unknown | 40.27 | 287, 327 | 605 | 607 | 271(+) | - | - | [20] |
13 | Diosmetin | 40.50 | 286, 332 | 299 | 301 | - | Apigenin | 263.56 ± 26.02 | [18] |
14 | Jaceosidin | 41.76 | 283, 341 | 329 | 331 | - | Nq | [21] | |
15 | Apigenin | 44.01 | 288, 332 | 269 | 271 | - | Apigenin | 89.64 ± 14.49 | [15,18,20] |
16 | Cirsilineol | 47.71 | 284, 339 | - | 345 | - | - | Nq | [5,18,22] |
Bacteria | MIC | MBC | MBC/MIC |
---|---|---|---|
Escherichia coli | 1.30 ± 0.11 | 41.66 ± 0.20 | 32 |
Salmonella typhimirium | 20.83 ± 0.20 | 166.66 ± 0.18 | 8 |
Staphyloccocus aureus | 41.66 ± 0.15 | 166.66 ± 0.11 | 4 |
Listeria monocytogenes | 41.66 ± 0.19 | 83.33 ± 0.15 | 2 |
Family Sought | Reagents and/or Reactions Used |
---|---|
Alcaloids | Dragendorff reagent and Mayer reagent |
Tannins | Ferric chloride reaction and Stiasny reagent |
Sterols and Triterpenes | Liebermann-Buchard reaction |
Flavonoids | cyanidin reaction |
Reducing compounds | Fehling’s solution |
Saponosides | stirring the aqueous solution |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chroho, M.; Bouymajane, A.; Aazza, M.; Oulad El Majdoub, Y.; Cacciola, F.; Mondello, L.; Zair, T.; Bouissane, L. Determination of the Phenolic Profile, and Evaluation of Biological Activities of Hydroethanolic Extract from Aerial Parts of Origanum compactum from Morocco. Molecules 2022, 27, 5189. https://doi.org/10.3390/molecules27165189
Chroho M, Bouymajane A, Aazza M, Oulad El Majdoub Y, Cacciola F, Mondello L, Zair T, Bouissane L. Determination of the Phenolic Profile, and Evaluation of Biological Activities of Hydroethanolic Extract from Aerial Parts of Origanum compactum from Morocco. Molecules. 2022; 27(16):5189. https://doi.org/10.3390/molecules27165189
Chicago/Turabian StyleChroho, Mounia, Aziz Bouymajane, Mustapha Aazza, Yassine Oulad El Majdoub, Francesco Cacciola, Luigi Mondello, Touriya Zair, and Latifa Bouissane. 2022. "Determination of the Phenolic Profile, and Evaluation of Biological Activities of Hydroethanolic Extract from Aerial Parts of Origanum compactum from Morocco" Molecules 27, no. 16: 5189. https://doi.org/10.3390/molecules27165189
APA StyleChroho, M., Bouymajane, A., Aazza, M., Oulad El Majdoub, Y., Cacciola, F., Mondello, L., Zair, T., & Bouissane, L. (2022). Determination of the Phenolic Profile, and Evaluation of Biological Activities of Hydroethanolic Extract from Aerial Parts of Origanum compactum from Morocco. Molecules, 27(16), 5189. https://doi.org/10.3390/molecules27165189