Pomegranate Wastes Are Rich in Bioactive Compounds with Potential Benefit on Human Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pomegranate Peel Preparation and Extraction
2.3. Sample Extract Preparation
2.4. Determination of Total Phenolic Compounds, Total Flavonoids, and Vitamins A, C, and E in Pomegranate Peel
2.5. Protein and Carbohydrate Detection in Pomegranate Peel
2.6. Determination of Antioxidant Activities in Pomegranate Peel
2.7. RP-DAD-HPLC Identification of Phenolic and Flavonoid Components
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Sarkhosh, A.; Zamani, Z.; Fatahi, R.; Ebadi, A. RAPD markers reveal polymorphism among some Iranian pomegranate (Punica granatum L.) genotypes. Sci. Hortic. 2006, 111, 24–29. [Google Scholar] [CrossRef]
- Derakhshana, Z.; Ferrante, M.; Tadi, M.; Ansari, F.; Heydarif, A.; Zam, W.; Khaddour, A. Anti-virulence effects of aqueous pomegranate peel extract on E. coli urinary tract infection. Progr. Nutr. 2019, 19, 98–104. [Google Scholar] [CrossRef]
- Mastrogiovanni, F.; Mukhopadhya, A.; Lacetera, N.; Ryan, M.T.; Romani, A.; Bernini, R.; Sweeney, T. Anti-Inflammatory Effects of Pomegranate Peel Extracts on In Vitro Human Intestinal Caco-2 Cells and Ex Vivo Porcine Colonic Tissue Explants. Nutrients 2019, 11, 548. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, E.M.C.; Silva, S.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef]
- Usha, T.; Middha, S.K.; Sidhalinghamurthy, K.R. Pomegranate Peel and Its Anticancer Activity: A Mechanism-Based Review. In Plant-Derived Bioactives; Swamy, M., Ed.; Springer: Singapore, 2020; pp. 223–250. [Google Scholar] [CrossRef]
- Aviram, M.; Rosenblat, M. Pomegranate Protection against Cardiovascular Diseases. Evidence-Based Complement. Altern. Med. 2012, 2012, 382763. [Google Scholar] [CrossRef]
- Wang, D.; Özen, C.; Abu-Reidah, I.M.; Chigurupati, S.; Patra, J.K.; Horbańczuk, J.O.; Jozwik, A.; Tzvetkov, N.T.; Uhrin, P.; Atanasov, A.G. Vasculoprotective Effects of Pomegranate (Punica granatum L.). Front. Pharmacol. 2018, 9, 544. [Google Scholar] [CrossRef]
- Zuraini, N.Z.A.; Sekar, M.; Wu, Y.S.; Gan, S.H.; Bonam, S.R.; Rani, N.N.I.M.; Begum, M.Y.; Lum, P.T.; Subramaniyan, V.; Fuloria, N.K.; et al. Promising Nutritional Fruits Against Cardiovascular Diseases: An Overview of Experimental Evidence and Understanding Their Mechanisms of Action. Vasc. Health Risk Manag. 2021, 17, 739–769. [Google Scholar] [CrossRef] [PubMed]
- Tito, A.; Colantuono, A.; Pirone, L.; Pedone, E.; Intartaglia, D.; Giamundo, G.; Conte, I.; Vitaglione, P.; Apone, F. Pomegranate Peel Extract as an Inhibitor of SARS-CoV-2 Spike Binding to Human ACE2 Receptor (in vitro): A Promising Source of Novel Antiviral Drugs. Front. Chem. 2021, 9, 638187. [Google Scholar] [CrossRef]
- Czieczor, L.; Bentkamp, C.; Damerow, L.; Blanke, M. Non-invasive determination of the quality of pomegranate fruit. Postharvest Biol. Technol. 2018, 136, 74–79. [Google Scholar] [CrossRef]
- Kumar, N.; Neeraj, D. Study on physico-chemical and antioxidant properties of pomegranate peel. J. Pharmacogn. Phytochem. 2018, 7, 2141–2147. [Google Scholar]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1580–1604. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Sadeghi, R.; Kokini, J. Pomegranate as a promising opportunity in medicine and nanotechnology. Trends Food Sci. Technol. 2017, 69, 59–73. [Google Scholar] [CrossRef]
- Hmid, I.; Elothmani, D.; Hanine, H.; Oukabli, A.; Mehinagic, E. Comparative study of phenolic compounds and their antioxidant attributes of eighteen pomegranate (Punica granatum L.) cultivars grown in Morocco. Arab. J. Chem. 2017, 10, S2675–S2684. [Google Scholar] [CrossRef]
- Bassiri-Jahromi, S.; Doostkam, A. Comparative evaluation of bioactive compounds of various cultivars of pomegranate (Punica granatum) in different world regions. AIMS Agric. Food 2019, 4, 41–55. [Google Scholar] [CrossRef]
- Lee, C.J.; Chen, L.G.; Liang, W.L.; Wang, C.C. Anti-inflammatory effects of Punica granatum Linne in vitro and in vivo. Food Chem. 2010, 118, 315–322. [Google Scholar] [CrossRef]
- Panichayupakaranant, P.; Tewtrakul, S.; Yuenyongsawad, S. Antibacterial, anti-inflammatory and anti-allergic activities of standardised pomegranate rind extract. Food Chem. 2010, 123, 400–403. [Google Scholar] [CrossRef]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, C.; Yang, J.; Wei, J.; Xu, J.; Cheng, S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 2006, 96, 254–260. [Google Scholar] [CrossRef]
- Hossin, F.L.A. Effect of Pomegranate (Punica granatum) Peels and It’s Extract on Obese Hypercholesterolemic Rats. Pak. J. Nutr. 2009, 8, 1251–1257. [Google Scholar] [CrossRef]
- Lin, L.-T.; Chen, T.-Y.; Lin, S.-C.; Chung, C.-Y.; Lin, T.-C.; Wang, G.-H.; Anderson, R.; Lin, C.-C.; Richardson, C.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol. 2013, 13, 187. [Google Scholar] [CrossRef] [Green Version]
- Mphahlele, R.R.; Fawole, O.A.; Makunga, N.P.; Opara, U.L. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complement. Altern. Med. 2016, 16, 143. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.; Thakur, N.S.; Jindal, N. Studies on the effect of drying methods and packaging on quality and shelf life of dried wild pomegranate arils. Asian J. Dairy Food Res. 2014, 33, 18–24. [Google Scholar] [CrossRef]
- Kumar, N.; Pratibha; Neeraj; Sami, R.; Khojah, E.; Aljahani, A.H.; Al-Mushhin, A.A.M. Effects of drying methods and solvent extraction on quantification of major bioactive compounds in pomegranate peel waste using HPLC. Sci. Rep. 2022, 12, 8000. [Google Scholar] [CrossRef] [PubMed]
- Muscolo, A.; Papalia, T.; Settineri, G.; Mallamaci, C.; Panuccio, M.R. Sulfur bentonite-organic-based fertilizers as tool for improving bio-compounds with antioxidant activities in red onion. J. Sci. Food Agric. 2019, 100, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Aremu, S.O.; Nweze, C.O. Determination of vitamin A content from selected Nigerian fruits using spectrophotometric method. Bangladesh J. Sci. Ind. Res. 2017, 52, 153–158. [Google Scholar] [CrossRef]
- Davies, S.H.; Masten, S.J. Spectrophotometric method for ascorbic acid using dichlorophenolindophenol: Elimination of the interference due to iron. Anal. Chim. Acta 1991, 248, 225–227. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Vaneková, Z.; Vanek, M.; Škvarenina, J.; Nagy, M. The Influence of Local Habitat and Microclimate on the Levels of Secondary Metabolites in Slovak Bilberry (Vaccinium myrtillus L.) Fruits. Plants 2020, 9, 436. [Google Scholar] [CrossRef]
- Fialho, L.; Ramôa, S.; Parenzan, S.; Guerreiro, I.; Catronga, H.; Soldado, D.; Guerreiro, O.; García, V.G.; e Silva, P.O.; Jerónimo, E. Effect of regulated deficit irrigation on pomegranate fruit quality at harvest and during cold storage. Agric. Water Manag. 2021, 251, 106869. [Google Scholar] [CrossRef]
- Kosová, K.; Vítámvás, P.; Urban, M.O.; Prášil, I.T.; Renaut, J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. Front. Plant Sci. 2018, 9, 122. [Google Scholar] [CrossRef]
- Laspina, N.V.; Groppa, M.D.; Tomaro, M.D.; Benavides, M.P. Nitric oxide protects sunflower leaves against Cd–induced oxidative stress. Plant Sci. 2005, 169, 323–330. [Google Scholar] [CrossRef]
- Muñoz, P.; Munné-Bosch, S. Vitamin E in Plants: Biosynthesis, Transport, and Function. Trends Plant Sci. 2019, 24, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Vattem, D.; Shetty, K. Biological functionality of ellagic acid: A review. J. Food Biochem. 2005, 29, 234–266. [Google Scholar] [CrossRef]
- Jordão, J.B.R.; Porto, H.K.P.; Lopes, F.M.; Batista, A.C.; Rocha, M.L. Protective Effects of Ellagic Acid on Cardiovascular Injuries Caused by Hypertension in Rats. Planta Med. 2017, 83, 830–836. [Google Scholar] [CrossRef]
- Pei, S.; Zhao, H.; Chen, L.; He, X.; Hua, Q.; Meng, X.; Shi, R.; Zhang, J.; Zhang, H.; Liu, R.; et al. Preventive Effect of Ellagic Acid on Cardiac Dysfunction in Diabetic Mice through Regulating DNA Hydroxymethylation. J. Agric. Food Chem. 2022, 70, 1902–1910. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- Kakkar, S.; Bais, S. A Review on Protocatechuic Acid and Its Pharmacological Potential. Int. Sch. Res. Not. 2014, 2014, 952943. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Polyphenol and flavonoid profiles and radical scavenging activity in leafy vegetable Amaranthus gangeticus. BMC Plant Biol. 2020, 20, 499. [Google Scholar] [CrossRef]
- Vázquez-Ruiz, Z.; Toledo, E.; Vitelli-Storelli, F.; Goni, L.; de la O, V.; Bes-Rastrollo, M.; Martínez-González, M. Effect of Dietary Phenolic Compounds on Incidence of Cardiovascular Disease in the SUN Project; 10 Years of Follow-Up. Antioxidants 2022, 11, 783. [Google Scholar] [CrossRef]
- Dasiman, R.; Md Nor, N.; Eshak, Z.; Mutalip, S.S.M.; Suwandi, N.R.; Bidin, H. A Review of Procyanidin: Updates on Current Bioactivities and Potential Health Benefits. Biointerface Res. Appl. Chem. 2022, 12, 5918–5940. [Google Scholar] [CrossRef]
- Venusova, E.; Kolesarova, A.; Horky, P.; Slama, P. Physiological and Immune Functions of Punicalagin. Nutrients 2021, 13, 2150. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, D.; Nobile, V.; Cestone, E.; Santin, G.; Bottone, M.G.; Marzatico, F.; Lazzeretti, A.; Tocabens, P. Resveratrol-procyanidin blend: Nutraceutical and antiaging efficacy evaluated in a placebo-controlled, double-blind study. Clin. Cosmet. Investig. Dermatol. 2012, 5, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, Z.; Ferrante, M.; Tadi, M.; Ansari, F.; Heydari, A.; Hosseini, M.S.; Conti, G.O.; Sadrabad, E.K. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem. Toxicol. 2018, 114, 108–111. [Google Scholar] [CrossRef]
- Russo, M.; Fanali, C.; Tripodo, G.; Dugo, P.; Muleo, R.; Dugo, L.; De Gara, L.; Mondello, L. Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: Application to different Italian varieties. Anal. Bioanal. Chem. 2018, 410, 3507–3520. [Google Scholar] [CrossRef]
PSD | CFD | SAFD | IC | |
---|---|---|---|---|
mg/g SS | mg/g SS | mg/g SS | mg/g SS | |
Phenolic acids | ||||
Gallic | 11.1 a | 0.2 c | 1.2 b | 0.2 c |
Protocatechuic | 7.9 a | 1.4 b | nd | nd |
Syringic | 0.6 | nd | nd | nd |
p-coumaric | 5.8 a | 4 b | 0.09 c | 0.07 d |
m-coumaric | 4 a | 0.6 b | nd | nd |
o-coumaric | 0.8 ab | nd | 1.2 a | 0.5 b |
Trans-cinnamic | 1.2 b | 0.4 c | 2.0 a | 0.3 c |
3-hydroxycinnamic | 0.6 | nd | nd | nd |
Trans-4-hydroxycinnamic acid | 0.6 b | 1 a | 0.3 b | 0.05 c |
Sinapic acid | 0.7 a | 0.2 b | 0.05 c | 0.01 d |
2,5 dihydroxy-benzoic acid | 16.4 a | 0.8 b | 0.4 b | 0.04 c |
Vanillic acid | 0.8 b | 2.6 a | 0.8 b | 0.2 c |
Chlorogenic acid | 5.6 a | 6 a | 1.4 b | 0.5 c |
Ferulic acid | 4 a | 0.4 b | 0.3 b | 0.02 c |
Ellagic acid | 240 a | 8 b | 2 c | 0.5 d |
PSD | CFD | SAFD | OCLR | |
---|---|---|---|---|
mg/g SS | mg/g SS | mg/g SS | mg/g SS | |
Flavonoids | ||||
Procyanidin B2 | 178 a | 1.6 c | 1.2 d | 8.9 b |
Pelargonidin | 5.8 a | nd | nd | nd- |
Cyanidin 3 O-glucoside | 12.2 a | 4 b | 4 b | 0.15 c |
Catechin | 12 a | 3 a | 0.03 c | 1.4 b |
Epicatechin | 1.37 a | nd | 0.017 c | 0.07 b |
Delphinidin | 0.8 b | 173 a | 0.39 c | 0.42 c |
Myricetin | 1.2 a | 1.4 a | nd | nd |
Luteolin | nd | 1 | nd | 0.0025 |
Naringin | 0.9 | nd | nd | nd |
Apigenin-7-neohesperosside | 0.2 b | 1.2 a | 0.34 b | nd |
Spiraeoside | 1.0 a | 0.6 b | 0.5 b | nd |
Quercetin | 3 a | 2 a | 0.3 b | 0.02 c |
Kaempferol | 1.2 a | 0.2 b | 0.05 b | 0.1 b |
Procyanidin B1 | 13 a | 1.6 b | 1.2 b | nd |
Vicenin 2 | nd | 2 | nd | nd |
Rutin | 0.3 b | 3 a | 0.56 b | 0.021 c |
Quercetin-3 beta-d glucoside | 1.3 a | nd | 0.18 b | 0.05 c |
Apigenin | 2 a | 2 a | 0.7 b | 0.037 c |
Others | ||||
Erythrocin | 0.9 | nd | nd | nd |
Punicalagin | 86 a | 65 b | 40 | 28 |
Tocopherol | 2.4 | nd | nd | nd |
Variables | TP | TF | VIT A | VIT C | VIT E | DPPH | ABTS | TAC | PRO | CARB |
---|---|---|---|---|---|---|---|---|---|---|
TP | 1 | 0.848 | 0.954 | 0.940 | 0.883 | 0.766 | 0.803 | 0.727 | 0.867 | −0.649 |
TF | 0.848 | 1 | 0.787 | 0.796 | 0.502 | 0.314 | 0.374 | 0.253 | 0.488 | −0.232 |
VIT A | 0.954 | 0.787 | 1 | 0.998 | 0.878 | 0.722 | 0.750 | 0.705 | 0.792 | −0.783 |
VIT C | 0.940 | 0.796 | 0.998 | 1 | 0.850 | 0.682 | 0.710 | 0.666 | 0.754 | −0.770 |
VIT E | 0.883 | 0.502 | 0.878 | 0.850 | 1 | 0.964 | 0.972 | 0.958 | 0.972 | −0.880 |
DPPH | 0.766 | 0.314 | 0.722 | 0.682 | 0.964 | 1 | 0.998 | 0.996 | 0.979 | −0.825 |
ABTS | 0.803 | 0.374 | 0.750 | 0.710 | 0.972 | 0.998 | 1 | 0.988 | 0.990 | −0.809 |
TAC | 0.727 | 0.253 | 0.705 | 0.666 | 0.958 | 0.996 | 0.988 | 1 | 0.958 | −0.859 |
PRO | 0.867 | 0.488 | 0.792 | 0.754 | 0.972 | 0.979 | 0.990 | 0.958 | 1 | −0.760 |
CARB | −0.649 | −0.232 | −0.783 | −0.770 | −0.880 | −0.825 | −0.809 | −0.859 | −0.760 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marra, F.; Petrovicova, B.; Canino, F.; Maffia, A.; Mallamaci, C.; Muscolo, A. Pomegranate Wastes Are Rich in Bioactive Compounds with Potential Benefit on Human Health. Molecules 2022, 27, 5555. https://doi.org/10.3390/molecules27175555
Marra F, Petrovicova B, Canino F, Maffia A, Mallamaci C, Muscolo A. Pomegranate Wastes Are Rich in Bioactive Compounds with Potential Benefit on Human Health. Molecules. 2022; 27(17):5555. https://doi.org/10.3390/molecules27175555
Chicago/Turabian StyleMarra, Federica, Beatrix Petrovicova, Francesco Canino, Angela Maffia, Carmelo Mallamaci, and Adele Muscolo. 2022. "Pomegranate Wastes Are Rich in Bioactive Compounds with Potential Benefit on Human Health" Molecules 27, no. 17: 5555. https://doi.org/10.3390/molecules27175555
APA StyleMarra, F., Petrovicova, B., Canino, F., Maffia, A., Mallamaci, C., & Muscolo, A. (2022). Pomegranate Wastes Are Rich in Bioactive Compounds with Potential Benefit on Human Health. Molecules, 27(17), 5555. https://doi.org/10.3390/molecules27175555