Hypericum Essential Oils—Composition and Bioactivities: An Update (2012–2022)
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Chemical Constituents of Hypericum spp. EOs
Hypericum spp. | Plant Origin | Main Ingredients of EOs | Reference |
---|---|---|---|
H. aegypticum ssp. webbii (Spach) N. Robson | Greece | α-pinene (63.4–68.5%), β-pinene (16.9–17.0%) (two collection points) | [38] |
H. amblyocalyx Coustur. & Gand | Greece | β-elemene (17.4%), β-selinene (10.5%), α-pinene (10.2%), E-caryophyllene (8.8%), α-selinene (8.7%) | [39] |
H. ascyron L. (syn. H. hemsleyanum H.Lév. & Vaniot) | China | osthole (35.6%) | [40] |
H. asperulum Jaub. & Spach | Iran | γ-muurolene (13.1%), α-pinene (12.2%), germacrene D (11.3%), β-caryophyllene (9.8%), spathulenol (7.2%) | [33] |
H. bellum H.L.Li | China | curdione (30.9%), eicosyl nonyl ether (15.5%), but-3-yn-2-yl ester of undec-10- ynoic acid (9.4%), palmityl palmitoleate (9.3%) | [24] |
H. canariense L. | Canary Islands | n-nonane (44.3%), (E)-caryophyllene (7.9%), β-pinene (7.7%) | [32] |
H. capitatum Choisy | Turkey | spathulenol (12.9%), iso-longifolene (11.2%) | [56] |
H. saturejifolium Jaub. & Spach (syn. H. confertum Choisy) | Turkey | germacrene D (30.2%) | [42] |
Turkey | α-pinene (7.8%), γ-muurolene (7.2%), δ-cadinene (6.5%) | [53] | |
H. empetrifolium Willd. | Greece | α-pinene (37.5%), iswarane (30.5%) | [21] |
Greece | α-pinene (19.0%), germacrene D (12.5%), β-pinene (8.7%), E-caryophyllene (5.3%) | [39] | |
Turkey | allo-aromodendrene (24.7%), α-pinene (14.7%), β-pinene (10.7%), α-terpineol (7.7%) | [55] | |
H. empetrifolium Willd. ssp. empetrifolium | Greece | (E)-β-farnesene (29.5%), α-pinene (18.7%), (E)-β-caryophyllene (10.1%) | [31] |
H. gaitii Haines | India | α-pinene (69.5%), β-caryophyllene (10.5%), sabinene (5.6%), myrcene (3.0%), geranyl acetate (2.0%) | [34] |
H. grandifolium Choisy | Canary Islands | n-nonane (42.3%), (E)-caryophyllene (24.2%) | [32] |
H. helianthemoides (Spach) Boiss. | Iran | α-pinene (31.9%), (E)-β-ocimene (12.5%), β-phellandrene (8.4%), β-pinene (6.3%), β-caryophyllene (5.7%), germacrene-D (4.3%) | [57] |
H. hircinum L. | Turkey | α-pinene (88.3%) | [42] |
Greece | (E)-caryophyllene (65.87%) | [21] | |
H. hircinum L. ssp. majus (Aiton) N. Robson | Italy | cis-β-guaiene (29.3%), δ-selinene (11.3%), isolongifolan-7-α-ol (9.8%), (E)-caryophyllene (7.2%) | [54] |
H. hookerianum Wight & Arn. | China | triacontane (26.4%), 1-iodotetracosane (20.6%), 2-methyl-2-decanol (14.8%), 2-(5-ethenyl-5-methyloxolan-2-yl) propan-2-yl ethyl carbonate (3.9%), aromadendrane (1.3%) | [24] |
H. humifusum L. | Tunisia | α-pinene (27.8%), caryophyllene oxide (12.5%), β-pinene (11.5%), n-undecane (5.0%) | [60] |
H. japonicum Thunb. ex Murray | India | 2-methyl octane (24.9%), n-nonane (21.4%), (2Z)-nonenol (16.5%), n-decanal (8.2%), allo-aromadendrene epoxide (3.3%) | [37] |
H. jovis Greuter | Greece | trans-calamenene (13.5%), α-selinene (8.3%), β-elemene (7.6%) | [39] |
H. kotschyanum Boiss. | Turkey | α-pinene (14.4%), nonacosane (11.1%), hexadecanoic acid (9.2%), β-pinene (8.7%), spathulenol (6.3%), limonene (5.1%) | [27] |
Η. laricifolium Juss. | Mérida-Venezuela | α-pinene (20.2%), verticiol (13.4%), 3-methyl-nonane (12.3%), 2-methyl-octane (9.6%), nonane (7.6%) | [36] |
H. lydium Boiss. | Turkey | verbenone (22.2%), caryophyllene oxide (18.3%), α-eudesmol (11.3%), cis-linolool oxide (6.8%), β-selinene (6.3%) | [53] |
Turkey | α-pinene (58%), β-pinene (5.10%), β -myrcene (3.1%) | [51] | |
Turkey | α-pinene (71.2%) | [52] | |
H. maculatum Crantz | Serbia | germacrene D (21.5%), nonane (6.5%), (E)-β-farnesene (5.3%), δ-cadinene (4.5%), ledol (4.4%) | [46] |
H. microcalycinum Boiss. & Heldr. (syn. H. hyssopifolium Chaix ssp. elongatum (Ledeb.) Woron var. microcalycinum. (Boiss. & Heldr.) Boiss.) | Turkey | α-pinene (57.8%) | [42] |
H. orientale L. | Turkey | β-selinene (37.1%), β-caryophyllene (9.7%), γ-muurolene (4.4%), cadinene (6.1%) | [53] |
H. origanifolium Willd. | Turkey | α-selinene (19.6 or 18.7%), β-selinene (16.1 or 15.3%), γ-muurolene (4.6 or 4.7%), δ-cadinene (8.2 or 7.7%), spathulenol, 4.2 or 5.1%) (from leaves and flowers) | [35] |
H. origanifolium var. depilatum (Freyn & Bornm.) N.Robson (syn. H. aviculariifolium ssp. depilatum (Freyn & Bornm.) N.Robson) | Turkey | α-pinene (52.1%), germacrene D (8.5%), β-pinene (3.6%) | [29] |
H. patulum Thunb. | China | nonane 17.1–32.6% (undried and dried sample) | [58] |
Iran | β-pinene (30.2%), α-pinene (18.3%), limonene (8.4%), α-humulene (2.3%) | [59] | |
H. perfoliatum L. | Greece | γ-muurolene (8.5%), δ-cadinene (7.8%), γ-cadinene (5.3%), (E)-β-caryophyllene (6.6%), germacrene D (5.9%), n-undecane (4.2%) | [31] |
Kosovo | 2-methyl-octane (1.1–15.5%), α-pinene (3.7–36.5%), β-caryophyllene (1.2–12.4%), caryophyllene oxide (3.3–17.7%), n-tetradecanol (3.6–10.4%) (different populations) | [61] | |
Romania | α-pinene (30.9%), β-pinene (18.3%), caryophyllene (15.3%) | [62] | |
Iran | 2,6-dimethyl-heptane (6.3–36.1%), α-pinene (5.5–26.0%), γ-cadinene (0.0–22.6%), δ-cadinene (0.0–16.9%) (different populations) | [48] | |
Iran | decane (59.6%), dodecane (12.9%), ethylcyclohexane (6.8%), 5-methylnonane (4.7%), 3-methylnonane (4.3%), tetradecane (3.8%) | [63] | |
Iran | α-pinene (25.4%), α-amorphene (12.1%) | [64] | |
Albania | caryophyllene oxide (31.0%), δ-selinene (10.5%), carvacrol (10.4%) | [65] | |
β-pinene (24.9%), α-pinene (31.8%), caryophyllene (9.1%) | [66] | ||
Turkey | α-pinene (33.3%) | [42] | |
Iran | α-pinene (12.5%), β-pinene (8.3%), undecane (7.0%), germacrene-D (6.9%) | [57] | |
Tunisia | α-pinene (5.4%), β-selinene (8.9%), α-selinene (5.0%), 1-tetradecanol (10.2%) | [60] | |
Albania | caryophyllene oxide (31.0%), δ-selinene (10.5%), carvacrol (10.4%) | [65] | |
Iran | germacrene-D (15.2%), limonene (11.0%), β-caryophyllene (10.9%), α-pinene (10.7%), β-pinene (9.7%), germacrene-B (6.9%), α-guaiene (4.6%), β-farnesene (4.3%), spathulenol (2.5%), caryophyllene oxide (2.3%), δ-cadinene (2.1%), trans-ocimene (1.9%) | [23] | |
USA Greece | (flowers) cis-p-menth-3-en-1,2-diol (9.1%), α-terpineol (6.1%), terpinen-4-ol (7.4%), limonen-4-ol (3.2%); (leaves) germacrene D (25.7%), β-caryophyllene (9.5%), terpinen-4-ol (2.6%) | [67] | |
ishwarane (22.0%), α-himachalene (6.9%), α-pinene (6.4%), β-pinene (6.1%) | [22] | ||
China | (from Wuxic) docosyl heptyl ether (31.3%), pentyl tetracosyl ether (5.4%), 2-methyl-2-decanol (3.4%), heptacosane (1.3%) pentyl linoleate (1.0%); (from Wushan) docosyl heptyl ether (28.1%), 2-nonanone (6.8%), 2-methyl-2-decanol (5.0%), undecane (2.9%), linalyl oxide (2.3%), pentyl linoleate (2.2%) | [24] | |
H. perforatum L. ssp. veronense (Schrank) H. Lindb. | Croatia | α-pinene (16.6%), n-nonane (13.6%) | [49] |
Greece | α-selinene (14.6%), β-selinene (14.7%), (E)–β–caryophyllene (10.3%), α-pinene (7.5%), germacrene-D (5.52%) | [31] | |
H. philonotis Schltdl. & Cham. | Mexico | 2-methyloctane (52.7%), n-nonane (35.9%), β-pinene (3.5%), 3-methyl-nonane (2.3%) | [28] |
H. pruinatum Boiss. & Balansa | Turkey | β-selinene (15%), β-caryophyllene (8%), γ-muurolene (7%), α-selinene (6%), E-β-farnesene (4%), caryophyllene oxide (9%) | [30] |
H. pseudohenryi N.Robson | China | heptacosane (2.7%), geranylgeraniol (1.9%), palmitic acid (1.8%) | [24] |
H. reflexum L. | Canary Islands | α-pinene (3.3–16.7%), β-pinene (4.6–7.6%), n-undecane (9.7–17.6%), (E)-caryophyllene (4.9–8.2%), δ-cadinene (6.1–7.0%), α-cadinol (1.1–2.8%), caryophyllene oxide (1.4–1.6%) (from 2 collection sites) | [32] |
H. rochelii Griseb. & Schenk | Serbia | n-nonane (24.7%), β-pinene (22.4%), germacrene D (7.5%), n-undecane (6.8%), α-pinene (5.8%) | [41] |
Η. rumeliacum Boiss. | Serbia | flowering phase: undecane (6.6%), dodecanal (10.8%), germacrene D (14.1%); fruitforming phase: α-pinene (7.3%), β-pinene (26.1%), (Z)-β-ocimene (8.5%), (E)-ocimene (10.2%), bicyclogermacrene (7.7%), germacrene D (15.1%) | [44] |
H. salsugineum N.Robson & Hub.-Mor. | Turkey | nonacosane (42.7%), hexadecanoic acid (23.2%), baeckeol (6.1%) | [27] |
H. scabroides N.Robson & Poulter | Turkey | hexadecanoic acid (17.7%), spathulenol (5.3%), nonacosane (4.4%), dodecanoic acid (4.1%), baeckeol (4.1%), γ-muurolene (3.9%) | [27] |
H. scabrum L. | Iran | α-pinene (50.0%), β-pinene (9.7%), limonene (6.6%), (E)-β-ocimene (5.6%), carvacrol (5.8%) | [57] |
Iran | α-pinene (40.9%), spathulenol (7.9%), β-pinene (5%), α-cadinol (4.7%), limonene (4.3%), epi-α-muurolol (3.2%) | [68] | |
Iran | α-pinene (32.2%), β-pinene (9.2%), germacrene-D (7.1%), nonane (6.9%), limonene (6.4%), δ-cadinene (5.4%), 2-methyl-octane (3.8%), valencene (3.3%), 2-methyl-decane (3.3%), α-amorphene (3.10%), β-caryophyllene (2.1%) | [23] | |
Turkey | α-pinene (74%), β-pinene (4.8%), myrcene (3.4%) | [69] | |
Iran | α-pinene (70.2%), p-mentha-1,5-dien-8-ol (2.9%) | [64] | |
Turkey | roots: undecane (66.1%); aerial parts: α-pinene (17.5%), γ-terpinene (17.4%), α-thujene (16.9%); flowers: α-pinene (55.6%), α-thujene (10.9%),γ-terpinene (7.7%); fruits oils: α-pinene (85.2%) | [70] | |
Lebanon | α-pinene (37.8%), limonene (11.6%), myrcene (5.6%), β-pinene (3.4%), nonane (3%) | [71] | |
H. silenoides Juss. | Mexico | n-nonane (31.9%), α-pinene (16.1%), n-decanal (15.2%), 1-tridecanol (11.6%), n-dodecanal (10.5%) | [28] |
H. thymopsis Boiss. | Turkey | α-pinene (44.0%), baeckeol (32.9%), spathulenol (8.0%), limonene (7.6%), camphene (5.2%) | [27] |
H. tomentosum L. | Tunisia | α-pinene (3.7 or 26.3%), β-selinene (1.5 or 4.2%), n-pentacosane (57.0 or 0.6%), 1-heneicosene (10.3% or not detected), n-undecane (3.8 or 6.8%) (from different populations) | [60] |
H. triquetrifolium Turra | Turkey | 1-hexanal (18.8%), 3-methylnonane (12.5%), α-pinene (12.3%) | [29] |
Iran | germacrene-D (21.7%), β-caryophyllene (18.3%), δ-cadinene (6.4%), trans-β-farnesene (4.3%), α-humulene (3.8%), β-selinene (3.7%), γ-cadinene (3.3%), trans-phytol (3.2%) | [50] | |
Greece | (E)-β-caryophyllene (27.9%), caryophyllene oxide (15.7%) | [31] | |
Greece | α-pinene (13.9%), 3-methyl-nonane (10.2%), E-caryophyllenne (14.0%), caryophyllene oxide (9.7%), germacrene D (8.2%) | [22] | |
H. umbellatum A. Kern | Serbia | germacrene D (6.1%), (E)-nerolidol (4.4%), n-nonane (4.0%), (E)-caryophyllene (3.0%), caryophyllene oxide (3.0%) | [41] |
H. uniglandulosum Hausskn. ex Bornm. | Turkey | 2,6-dimethyl-3,5-heptadien-2-one (40.7%), nonacosane (3.2%), hexadecanoic acid (2.7%), α-pinene (2.7%) | [27] |
Turkey | α-pinene (35.1%), undecane (19.2%), benzoic acid (2.7%), cyclohexasiloxane (2.3%) | [51] |
3.2. Bioactivities from Hypericum Essential Oils
Hypericum spp. | Plant Origin | EO Biological Activities | Reference |
---|---|---|---|
H. aegypticum ssp. webbii (Spach) N. Robson | Greece | antibacterial activity (Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Klebsiella pneymoniae, Micrococcus luteus, Pseudomonas aeruginosa, Salmonella abony, Staphylococcus aureus, S. epidermis); antifungal activity (Candida albicans) | [38] |
H. amblyocalyx Coustur. & Gand | Greece | antibacterial activity (Aspergillus fumigatus, Bacillus cereus, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus); antifungal activity (Candida tropicalis, Candida krusei, Penicillium funiculosum, Penicillium verucosum) | [39] |
H. annulatum Moris | Serbia | antibacterial activity (Bacillus subtilis, Escherichia coli, Pseudomonas Aeruginosa, Salmonella abony, Staphylococcus aureus); antifungal activity (Aspergillus niger, Candida albicans) | [41] |
H. bellum H.L.Li | China | neurite outgrowth-promoting assay; neuroprotective activity assay; antibacterial activity (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica ssp. enterica Staphylococcus aureus ssp. aureus), antifungal activity (Candida albicans); tyrosinase inhibitory assay | [24] |
H. canariense L. | Canary Islands | antiproliferative (A375 and MDA-MB 231, HCT116 cells by MTT assay); antioxidant activity (phenolic content, DPPH, ABTS and FRAP assays); antibacterial activity (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis; antifungal activity (Candida albicans) | [32] |
H. saturejifolium Jaub. & Spach (syn. H. confertum Choisy) | Turkey | anti-angiogenic effects using the chick embryo chorioallantoic membrane (CAM) assay | [42] |
H. elegans Steph. ex Willd. | Serbia | antibacterial activity (Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella abony); antifungal activity (Aspergillus niger, Candida albicans) | [41] |
H. empetrifolium Willd. | Greece | antibacterial activity (Bacillus cereus, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus); antifungal activity (Aspergillus fumigatus, Penicillium funiculosum, P. verucosum, Candida albicans, C. tropicalis, C. krusei) | [39] |
Greece | wound healing in vivo using SKH-hr1 mice | [22] | |
H. gaitii Haines | India | antioxidant activity (DPPH, ABTS, reducing power assay) | [34] |
H. grandifolium Choisy | Canary Islands | antiproliferative (A375 and MDA-MB 231, HCT116 cells by MTT assay); antioxidant activity (phenolic content, DPPH, ABTS and FRAP assays); antibacterial activity (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis; antifungal activity (Candida albicans) | [32] |
H. helianthemoides (Spach) Boiss. | Iran | antibacterial (Bacillus cereus, Listeria monocytogenes, Proteus vulgaris, Salmonella typhimurium); antioxidant activity (DPPH) | [57] |
H. ascyron L. (syn. H. hemsleyanum H.Lév. & Vaniot) | China | insecticidal activity (repellency of three plant essential oils against red flour beetle Tribolium castaneum) | [40] |
H. hircinum L. | Turkey | anti-angiogenic effects using the chick embryo chorioallantoic membrane (CAM) assay | [42] |
H. hircinum L. ssp. majus (Aiton) N. Robson | Italy | antioxidant activity (DPPH, ABTS); antiproliferative activity (human glioblastoma (T98G), human prostatic adenocarcinoma (PC3), human squamous carcinoma (A431) and mouse melanoma (B16-F1) tumor cell lines by MTT assay) | [54] |
H. hookerianum Wight & Arnott | China | neurite outgrowth-promoting assay; neuroprotective activity assay, antibacterial activity (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica ssp. enterica, Staphylococcus aureus ssp. aureus,); antifungal activity (Candida albicans); tyrosinase inhibitory assay | [24] |
H. humifusum L. | Tunisia | insecticidal (larvicidal) activity (Culex pipiens) | [60] |
H. jovis Greuter | Greece | antibacterial activity (Bacillus cereus, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus); antifungal activity (Aspergillus fumigatus, Penicillium funiculosum, P. verucosum, Candida tropicalis, C. krusei) | [39] |
H. lydium Boiss. | Turkey | antioxidant activity (on liposome peroxidation, DPPH, superoxide radical scavenging activity, non-site and site-specific hydroxyl radical-mediated 2-deoxy-d-ribose degradation) | [52] |
H. maculatum Crantz | Serbia | antibacterial activity (Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella abony, Staphylococcus aureus); antifungal activity (Aspergillus niger, Candida albicans) | [46] |
H. microcalycinum Boiss. & Heldr. [syn. H. hyssopifolium Chaix ssp. elongatum (Ledeb.) Woron var. microcalycinum. (Boiss. & Heldr.) Boiss.] | Turkey | anti-angiogenic effects using the chick embryo chorioallantoic membrane (CAM) assay | [42] |
H. patulum Thumb. | China | antioxidant activity (DPPH and ABTS+ radicals scavenging assays | [58] |
H. perforatum L. | Romania | antibacterial activity (Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus); antifungal activity (Candida albicans) | [62] |
Iran | insecticidal effects against Tribolium castaneum | [63] | |
Tunisia | larvicidal activity (Culex pipiens) | [60] | |
Serbia | antifungal activity (Candida albicans) | [86] | |
Turkey | insectisidal against adults of Colorado potato beetle, Leptinotarsa decemlineata | [79] | |
Turkey | insecticidal activity (fumigant Toxicity against Sitophilus zeamais) | [78] | |
Iran | antioxidant activity (β-carotene bleaching and DPPH); antibacterial (Escherichia coli, Staphylococcus aureus) | [64] | |
Iran | antibacterial (Bacillus cereus, Listeria monocytogenes, Proteus vulgaris, Salmonella typhimurium); antioxidant activity (DPPH) | [57] | |
Albania | antioxidant activity (Inhibition of linoleic acid lipid peroxidation, soybean lipoxygenase inhibition, DPPH) | [65] | |
Albania | antimicrobial activity (Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae Pseudomonas aeruginosa, Salmonela typhimurium, Staphylococcus aureus); antifungal activity (Candida albicans) | [66] | |
Turkey | insecticidal activity on Sitophilus granarius | [77] | |
Turkey | anti-angiogenic effects using the chick embryo chorioallantoic membrane assay | [42] | |
Greece | wound healing in vivo using SKH-hr1 mice | [22] | |
China | neurite outgrowth-promoting assay; neuroprotective activity assay; antibacterial activity (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica ssp. Enterica, Staphylococcus aureus ssp. aureus); antifungal activity (Candida albicans); tyrosinase inhibitory assay | [24] | |
USA | immunomodulatory activity | [67] | |
H. perforatum L. ssp. veronense (Schrank) H. Lindb. | Croatia | antiproliferative (HeLa, HCT116, U2OS); antioxidant activity (ORAC, DPPH); antiphytoviral (Tobacco mosaic virus) activities | [49] |
H. pseudohenryi N.Robson | China | neurite outgrowth-promoting assay; neuroprotective activity assay; antibacterial activity (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica ssp. enterica, Staphylococcus aureus ssp. aureus); antifungal activity (Candida albicans); tyrosinase inhibitory assay | [24] |
H. reflexum L. | Canary Islands | antiproliferative (A375 and MDA-MB 231, HCT116 cells by MTT assay); antioxidant activity (phenolic content, DPPH, ABTS and FRAP assays); antibacterial activity (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis; antifungal activity (Candida albicans) | [32] |
H. rochelii Griseb. & Schenk | Serbia | antibacterial activity (Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella abony, Staphylococcus aureus); antifungal activity (Aspergillus niger, Candida albicans) | [41] |
H. scabrum L. | Turkey | biting deterrent activity against Aedes aegypti; antimalarial activity against Plasmodium falciparum; Mycobacterium intracellulare; antifungal activity (Cryptococcus neoformans, Candida krusei) | [69] |
Turkey | insecticidal effects against adults of Leptinotarsa decemlineata Say | [79] | |
Iran | antioxidant activity (β-carotene bleaching and DPPH); antibacterial (Escherichia coli, Staphylococcus aureus) | [64] | |
Iran | modulating effect on hepatic metabolizing enzymes in vivo in rats treated by acetaminophen | [83] | |
Iran | hepatoprotective effects against oxidative stress induced by acetaminophen in vivo in rats | [68] | |
Iran | antioxidant activity (DPPH and β-carotene assays) | [82] | |
Iran | antibacterial activity (Bacillus cereus, Listeria monocytogenes, Proteus vulgaris, Salmonella typhimurium); antioxidant activity (DPPH) | [57] | |
Turkey | insecticidal activity (Sitophilus granarius) | [77] | |
Turkey | antibacterial activity (Escherichia coli, Staphylococcus aureus, Bacillus subtilis); antifungal activity (Candida albicans, C. tropicalis); antioxidant activity (DPPH) | [70] | |
Lebanon | antibacterial activity (Pseudomonas aeruginosa, Staphylococcus aureus); antifungal activity (Candida albicans, Trichophyton rubrum, T. mentagrophytes, T. soudanense, T. violaceum, T. tonsurans); synergistic effect with amphotericin B | [71] | |
H. tomentosum L. | Tunisia | insecticidal (larvicidal) activity (Culex pipiens) | [60] |
H. triquetrifolium Turra | Tunisia | antibacterial activity (Aeromonas hydrophila, Bacillus cereus, Enterococcus faecalis, Escherichia coli, Pseudomonas aureginosa, Salmonella typhimurium, Staphylococcus aureus, Staphylococcus epidermidis, Vibrio cholerae); antifungal activity (Aspergillus niger, Fusarium solani, Botrytis cinerea, Candida albicans, Candida glabrata, Candida krusei); antiviral activity (Coxsakievirus) activities | [72] |
Greece | wound healing in vivo using SKH-hr1 mice | [22] | |
H. umbellatum A. Kern | Serbia | antibacterial activity (Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Salmonella abony, Staphylococcus aureus); antifungal activity (Aspergillus niger, Candida albicans) | [41] |
3.2.1. In Vitro Studies
Antibacterial Activity
Antifungal Activity
Antimalarial Activity
Insecticidal Activity
Cytotoxic Activity
Antioxidant Activity
Neuroprotective Activity
Tyrosinase Inhibitory Activity
Immunomodulatory Activity
3.2.2. In Vivo
Anti-Angiogenic Activity
Hepatoprotective Activity
Wound Healing Activity
3.3. Potential Relationship between Traditional Uses and Hypericum Essential Oils Activities
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Crockett, S.L.; Robson, N.K.B. Taxonomy and Chemotaxonomy of the Genus Hypericum. Med. Aromat. Plant Sci. Biotechnol. 2011, 5, 1–13. [Google Scholar] [PubMed]
- Totelin, L.M.V. Hippocratic Recipes: Oral and written transmission of pharmacological knowledge in fifth- and fourth-century Greece. In Studies in Ancient Medicine; Brill: Leiden, The Netherlands, 2009. [Google Scholar]
- Berendes, J. Des Pedianos Dioskurides aus Anazarbos Arzneimittellehre; F. Enke: Stutgard, Germany, 1902; Reprinted Dr. Martin Sandig; M. Sandig: Wiesbaden, Germany, 1970. [Google Scholar]
- Valiakos, E.; Marselos, M.; Sakellaridis, N.; Constantinidis, T.; Skaltsa, H. Ethnopharmacological approach to the herbal medicines of the “Antidotes” in Nikolaos Myrepsos’ Dynameron. J. Ethnopharmacol. 2015, 163, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Valiakos, E.; Marselos, M.; Sakellaridis, N.; Constantinidis, T.; Skaltsa, H. Ethnopharmacological approach to the herbal medicines of the “Elements Alpha to Delta” in Nikolaos Myrepsos’ Dynameron. Part II. J. Ethnopharmacol. 2017, 205, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.A. Chapter 1. Herbal Medicine: Current Trends and Future Prospects. Asian Pac. J. Cancer Prev. 2003, 4, 281–288. [Google Scholar]
- Mushtaq, S.; Abbasi, B.H.; Uzair, B.; Abbasi, R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018, 17, 420–451. [Google Scholar] [PubMed]
- Shin, S.-A.; Moon, S.Y.; Kim, W.-Y.; Paek, S.-M.; Park, H.H.; Lee, C.S. Structure-Based Classification and Anti-Cancer Effects of Plant Metabolites. Int. J. Mol. Sci. 2018, 19, 2651. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Zhang, R.; Ji, Y.; Zhang, X.; Kennelly, E.J.; Long, C. Ethnopharmacology of Hypericum species in China: A comprehensive review on ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2020, 254, 112686. [Google Scholar] [CrossRef]
- Avato, P. A Survey on the Hypericum Genus: Secondary Metabolites and Bioactivity. Stud. in Nat. Prod. Chem. 2005, 30, 603–634. [Google Scholar]
- Rodríguez-Landa, J.F.; Contreras, C.M. A review of clinical and experimental observations about antidepressant actions and side effects produced by Hypericum perforatum extracts. Phytomedicine 2003, 10, 688–699. [Google Scholar] [CrossRef]
- Winkelmann, K.; San, M.; Kypriotakis, Z.; Skaltsa, H.; Bosilij, B.; Heilmann, J. Antibacterial and Cytotoxic Activity of Prenylated Bicyclic Acylphloroglucinol Derivatives from Hypericum amblycalyx. Z. Nat. C 2003, 58, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Jendželovská, Z.; Jendželovský, R.; Kuchárová, B.; Fedoročko, P. Hypericin in the Light and in the Dark: Two Sides of the Same Coin. Front. Plant Sci. 2016, 7, 560. [Google Scholar] [CrossRef] [PubMed]
- Bridi, H.; de Meirelles, G.C.; von Poser, G.L. Structural diversity and biological activities of phloroglucinol derivatives from Hypericum species. Phytochemistry 2018, 155, 203–232. [Google Scholar] [CrossRef] [PubMed]
- Grafakou, M.-E.; Barda, C.; Pintać, D.; Lesjak, M.; Heilmann, J.; Skaltsa, H. Prenylated Acylphloroglucinols from Hypericum jovis with Anti-inflammatory Potential. Planta Med. 2021, 87, 1184–1191. [Google Scholar] [CrossRef]
- Crockett, S.L. Essential Oil and Volatile Components of the Genus Hypericum (Hypericaceae). Nat. Prod. Commun. 2010, 5, 1934578X1000500. [Google Scholar] [CrossRef]
- Ríos, J.-L. Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–10. [Google Scholar]
- Bertoli, A.; Çirak, C.; Jaime, A. Hypericum Species as Sources of Valuable Essential Oils. Med. Aromat. Plant Sci. Biotechnol. 2011, 5, 29–47. [Google Scholar]
- Guedes, A.P.; Franklin, G.; Fernandes-Ferreira, M. Hypericum sp.: Essential oil composition and biological activities. Phytochem. Rev. 2012, 11, 127–152. [Google Scholar] [CrossRef]
- Fanouriou, E.; Kalivas, D.; Daferera, D.; Tarantilis, P.; Trigas, P.; Vahamidis, P.; Economou, G. Hippocratic medicinal flora on the Greek Island of Kos: Spatial distribution, assessment of soil conditions, essential oil content and chemotype analysis. J. Appl. Res. Med. Aromat. Plants 2018, 9, 97–109. [Google Scholar] [CrossRef]
- Grafakou, M.-E.; Diamanti, A.; Simirioti, E.; Terezaki, A.; Barda, C.; Sfiniadakis, I.; Rallis, M.; Skaltsa, H. Wound Healing Effects from 3 Hypericum spp. Essential Oils. Planta Med. Int. Open 2021, 8, e69–e77. [Google Scholar] [CrossRef]
- Ghiasvand, A.; Shadabi, S.; Hajipour, S.; Nasirian, A.; Borzouei, M.; Hassani-Moghadam, E.; Hashemi, P. Comparison of Ultrasound-Assisted Headspace Solid-Phase Microextraction and Hydrodistillation for the Identification of Major Constituents in Two Species of Hypericum. J. Chromatogr. Sci. 2016, 54, 264–270. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, J.; Zhang, R.; Chen, Q.; Xu, R.; Wei, X.; Chen, X.; Chen, S.; Guo, F.; Kennelly, E.J.; et al. Chemical characterization, neuroprotective, antimicrobial and enzyme inhibitory activities of Hypericum volatile oils. Ind. Crops Prod. 2021, 172, 113991. [Google Scholar] [CrossRef]
- Tahir, N.A.-R.; Azeez, H.A.; Muhammad, K.A.; Faqe, S.A.; Omer, D.A. Exploring of bioactive compounds in essential oil acquired from the stem and root derivatives of Hypericum triquetrifolium callus cultures. Nat. Prod. Res. 2019, 33, 1504–1508. [Google Scholar] [CrossRef] [PubMed]
- Kiliç, Ö.; Özdemir, F.A. In vitro callus culture and these callus essential oil composi- tions of ten populations Hypericum scabrum L. from Turkey. Prog. Nutr. 2016, 18, 166–175. [Google Scholar]
- Ahmed, M.; Djebli, N.; Aissat, S.; Khiati, B.; Douichene, S.; Meslem, A.; Berrani, A. Composition of Essential Oils from Five Endemic Hypericum Species of Turkey. Org. Chem. Curr. Res. 2013, 2, 113. [Google Scholar]
- La Cruz, L.G.; Caballero-Caballero, S.; Zamudio, S.; Duarte-Lisci, G.; Navarrete, A. Essential Oil Composition of Aerial Parts of Hypericum silenoides Juss. and Hypericum philonotis Cham. & Schlecht. Growing in Central Mexico. J. Essent. Oil Bear. Plants 2013, 16, 456–460. [Google Scholar]
- Yuce, E.; Bagci, E. The essential oils of the aerial parts of two Hypericum taxa (Hypericum triquetrifolium and Hypericum aviculariifolium subsp. depilatum var. depilatum (Clusiaceae)) from Turkey. Nat. Prod. Res. 2012, 26, 1985–1990. [Google Scholar]
- Cirak, C.; Bertoli, A. Aromatic profiling of wild and rare species growing in Turkey: Hypericum aviculariifolium Jaub. and Spach subsp. depilatum (Freyn and Bornm.) Robson var. depilatum and Hypericum pruinatum Boiss. and Bal. Nat. Prod. Res. 2013, 27, 100–107. [Google Scholar] [CrossRef]
- Zeliou, K.; Koui, E.-M.; Papaioannou, C.; Koulakiotis, N.S.; Iatrou, G.; Tsarbopoulos, A.; Papasotiropoulos, V.; Lamari, F.N. Metabolomic fingerprinting and genetic discrimination of four Hypericum taxa from Greece. Phytochemistry 2020, 174, 112290. [Google Scholar] [CrossRef]
- Zorzetto, C.; Sánchez-Mateo, C.C.; Rabanal, R.M.; Lupidi, G.; Petrelli, D.; Vitali, L.A.; Bramucci, M.; Quassinti, L.; Caprioli, G.; Papa, F.; et al. Phytochemical analysis and in vitro biological activity of three Hypericum species from the Canary Islands (Hypericum reflexum, Hypericum canariense and Hypericum grandifolium). Fitoterapia 2015, 100, 95–109. [Google Scholar] [CrossRef]
- Azadi, B. Volatile constituents of Hypericum asperulum Jaub. & Spach aerial parts from Iran. Int. J. Phytomed. 2013, 5, 367–372. [Google Scholar]
- Kamila, P.K.; Ray, A.; Jena, S.; Mohapatra, P.K.; Panda, P.C. Chemical composition and antioxidant activities of the essential oil of Hypericum gaitii Haines—An endemic species of Eastern India. Nat. Prod. Res. 2018, 32, 739–742. [Google Scholar] [CrossRef]
- Bertoli, A.; Çirak, C.; Seyis, F. Hypericum origanifolium Willd.: The essential oil composition of a new valuable species. Ind. Crops Prod. 2015, 77, 676–679. [Google Scholar] [CrossRef]
- Rojas, J.; Buitrago, A.; Rojas, L.B.; Morales, A. Chemical Composition of Hypericum laricifolium Juss. Essential Oil Collected from merida-Venezuela. Med. Aromat. Plants 2012, 2, 5. [Google Scholar]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Chanotiya, C.S.; Yadav, A. Chemical composition of the aliphatic compounds rich essential oil of Hypericum japonicum Thunb. ex Murray from India. J. Essent. Oil Res. 2012, 24, 501–505. [Google Scholar] [CrossRef]
- Marčetić, M.D.; Milenković, M.T.; Lakušić, D.V.; Lakušić, B.S. Chemical Composition and Antimicrobial Activity of the Essential Oil and Methanol Extract of Hypericum aegypticum subsp. webbii (Spach) N. Robson. Chem. Biodivers. 2016, 13, 427–436. [Google Scholar] [CrossRef]
- Grafakou, M.-E.; Diamanti, A.; Antaloudaki, E.; Kypriotakis, Z.; Ćirić, A.; Soković, M.; Skaltsa, H. Chemical Composition and Antimicrobial Activity of the Essential Oils of Three Closely Related Hypericum Species Growing Wild on the Island of Crete, Greece. Appl. Sci. 2020, 10, 2823. [Google Scholar] [CrossRef]
- Wagan, T.A.; Hu, D.; He, Y.; Nawaz, M.; Nazir, T.; Mabubu, J.I.; Hua, H. Repellency of three plant essential oils against red flour beetle Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae). Turk. J. Entomol. 2016, 40, 347–354. [Google Scholar] [CrossRef]
- Đorđević, A.; Lazarević, J.; Šmelcerović, A.; Stojanović, G. The case of Hypericum rochelii Griseb. & Schenk and Hypericum umbellatum A. Kern. essential oils: Chemical composition and antimicrobial activity. J. Pharm. Biomed. Anal. 2013, 77, 145–148. [Google Scholar]
- Kıyan, H.T.; Demirci, B.; Başer KH, C.; Demirci, F. The in vivo evaluation of anti-angiogenic effects of Hypericum essential oils using the chorioallantoic membrane assay. Pharm. Biol. 2014, 52, 44–50. [Google Scholar] [CrossRef]
- Caprioli, G.; Iannarelli, R.; Cianfaglione, K.; Fiorini, D.; Giuliani, C.; Lucarini, D.; Papa, F.; Sagratini, G.; Vittori, S.; Maggi, F. Volatile profile, nutritional value and secretory structures of the berry-like fruits of Hypericum androsaemum L. Food Res. Int. 2016, 79, 1–10. [Google Scholar] [CrossRef]
- Radulović, N.S.; Blagojević, P.D. Chemical Composition of Hypericum rumeliacum Boiss. Essential Oil. A New Chemotype of This Pharmacologically Valuable Species? Chem. Biodivers. 2012, 9, 2324–2341. [Google Scholar] [CrossRef]
- Rouis, Z.; Elaissi, A.; Abid, N.B.S.; Lassoued, M.A.; Cioni, P.L.; Flamini, G.; Aouni, M. Chemical Composition and Intraspecific Variability of the Essential Oils of Five Populations of Hypericum triquetrifolium Turra Growing in North Tunisia. Chem. Biodivers. 2012, 9, 806–816. [Google Scholar] [CrossRef]
- Ðorđević, A.S.; Lazarević, J.S.; Petrović, G.M.; Zlatković, B.K.; Solujić, S.R. Chemical and Biological Evaluation of Hypericum maculatum Crantz Essential Oil. Chem. Biodivers. 2014, 11, 140–149. [Google Scholar] [CrossRef]
- Bardhi, N.; Stefkov, G.; Karapandzova, M.; Cvetkovikj, I.; Kulevanova, S. Essential oil composition of indigenous populations of Hypericum perforatum L. from southern Albania. Maced. J. Chem. Chem. Eng. 2015, 34, 333. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Ebadi, A.; Maggi, F.; Fattahi, R.; Yazdani, D.; Jafari, M. Chemical characterization of the essential oil compositions from Iranian populations of Hypericum perforatum L. Ind. Crops Prod. 2015, 76, 565–573. [Google Scholar] [CrossRef]
- Vuko, E.; Dunkić, V.; Ruščić, M.; Nazlić, M.; Mandić, N.; Soldo, B.; Šprung, M.; Fredotović, Ž. Chemical Composition and New Biological Activities of Essential Oil and Hydrosol of Hypericum perforatum L. ssp. veronense (Schrank) H. Lindb. Plants 2021, 10, 1014. [Google Scholar] [CrossRef]
- Sajjadi, S.E.; Mehregan, I.; Taheri, M. Essential oil composition of Hypericum triquetrifolium Turra growing wild in Iran. Res. Pharm. Sci. 2015, 10, 90–94. [Google Scholar]
- Yüce-Babacan, E.; Bagci, E. Essential oil composition of Hypericum uniglandulosum Hausskn. ex Bornm. and Hypericum lydium Boiss. from Turkey. Int. J. Nat. Life Sci. 2017, 1, 12–16. [Google Scholar]
- Şerbetçi, T.; Özsoy, N.; Demirci, B.; Can, A.; Kültür, Ş.; Başer, K.H.C. Chemical composition of the essential oil and antioxidant activity of methanolic extracts from fruits and flowers of Hypericum lydium Boiss. Ind. Crops Prod. 2012, 36, 599–606. [Google Scholar] [CrossRef]
- Bertoli, A.; Çirak, C.; Seyis, F. Hypericum spp. volatile profiling and the potential significance in the quality control of new valuable raw material. Microchem. J. 2018, 136, 94–100. [Google Scholar] [CrossRef]
- Quassinti, L.; Lupidi, G.; Maggi, F.; Sagratini, G.; Papa, F.; Vittori, S.; Bianco, A.; Bramucci, M. Antioxidant and antiproliferative activity of Hypericum hircinum L. subsp. majus (Aiton) N. Robson essential oil. Nat. Prod. Res. 2013, 27, 862–868. [Google Scholar] [PubMed]
- Boga, M.; Ersoy, E.; Eroglu Ozkan, E.; Cinar, E.; Mataraci Kara, E.; Yesil Canturk, Y.; Zengin, G. Volatile and phenolic profiling of a traditional medicinal plant, Hypericum empetrifolium with in vitro biological activities. J. Ethnopharmacol. 2021, 272, 113933. [Google Scholar] [CrossRef] [PubMed]
- Boga, M.; Ertas, A.; Eroglu-Ozkan, E.; Kizil, M.; Ceken, B.; Topcu, G. Phytochemical analysis, antioxidant, antimicrobial, anticholinesterase and DNA protective effects of Hypericum capitatum var. capitatum extracts. S. Afr. J. Bot. 2016, 104, 249–257. [Google Scholar] [CrossRef]
- Ghasemi Pirbalouti, A.; Fatahi-Vanani, M.; Craker, L.; Shirmardi, H. Chemical composition and bioactivity of essential oils of Hypericum helianthemoides. Hypericum perforatum and Hypericum scabrum. Pharm. Biol. 2014, 52, 175–181. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, Y.; Wu, W.; Yao, H.; Li, Y.; Zhang, C. Chemical Composition and Antioxidant Activity of the Essential Oil of Hypericum patulum (Family: Clusiaceae). Int. J. Agric. Biol. 2018, 20, 6. [Google Scholar]
- Morshedloo, M.R.; Yazdani, D.; Aghayi, F. Chemical Composition of the Essential Oil from Hypericum patulum Thunb. Cultivated in Iran. J. Essent. Oil Bear. Plants 2014, 17, 131–135. [Google Scholar] [CrossRef]
- Rouis, Z.; Laamari, A.; Abid, N.; Elaissi, A.; Cioni, P.L.; Flamini, G.; Aouni, M. Chemical composition and larvicidal activity of several essential oils from Hypericum species from Tunisia. Parasitol. Res. 2013, 112, 699–705. [Google Scholar] [CrossRef]
- Hajdari, A.; Mustafa, B.; Nebija, D.; Kashtanjeva, A.; Widelski, J.; Glowniak, K.; Novak, J. Essential oil composition and variability of Hypericum perforatum L. from wild population in Kosovo. Curr. Issues Pharm. Med. Sci. 2014, 27, 51–54. [Google Scholar] [CrossRef]
- Moleriu, L.; Jianu, C.; Bujanca, G.; Doros, G.; Misca, C.; Ilie, O.C.; Moleriu, R.D.; Ilie, A.C. Essential Oil of Hypericum perforatum. The chemical composition and antimicrobial activity. Rev. Chim. 2017, 68, 687–692. [Google Scholar] [CrossRef]
- Parchin, R.A.; Ebadollahi, A. Biological Activities of Hypericum perforatum L. Essential Oil against Red Flour Beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Entomol. 2016, 13, 91–97. [Google Scholar] [CrossRef]
- Akhbari, M.; Batooli, H.; Mozdianfard, M. Comparative study of composition and biological activities of SDE prepared essential oils from flowers and fruits of two Hypericum species from central Iran. Nat. Prod. Res. 2012, 26, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Hodaj-Çeliku, E.; Tsiftsoglou, O.; Shuka, L.; Abazi, S.; Hadjipavlou-Litina, D.; Lazari, D. Antioxidant Activity and Chemical Composition of Essential Oils of some Aromatic and Medicinal Plants from Albania. Nat. Prod. Commun. 2017, 12, 1934578X1701200. [Google Scholar] [CrossRef]
- Jianu, C.; Golet, I.; Misca, C.; Jianu, A.M.; Pop, G.; Gruia, A.T. Antimicrobial Properties and Chemical Composition of Essential Oils Isolated from Six Medicinal Plants Grown in Romania Against Foodborne Pathogens. Rev. Chim.-Buchar.-Orig. Ed. 2016, 67, 1056–1061. [Google Scholar]
- Schepetkin, I.; Özek, G.; Özek, T.; Kirpotina, L.; Khlebnikov, A.; Quinn, M. Chemical Composition and Immunomodulatory Activity of Hypericum perforatum Essential Oils. Biomolecules 2020, 10, 916. [Google Scholar] [CrossRef]
- Dadkhah, A.; Roshanaei, K.; Fatemi, F.; Kazemi, M.; Alipour, M.; Abdolmohammadi, M.H. Biological Properties of Iranian Hypericum Scabrum Essential oil and Hydroalcoholic Extract from Alamut Mountain. J. Essent. Oil Bear. Plants 2014, 17, 186–195. [Google Scholar] [CrossRef]
- Tabancaa, N.; Demircib, B.; Alia, A.; Khana, S.I.; Jacoba, M.R.; Aytacc, Z.; Khana, I.A. Chemical Composition, Biting Deterrent, Antimalarial and Antimicrobial Activity of Essential Oil from Hypericum scabrum L. Curr. Bioact. Compd. 2015, 11, 62–72. [Google Scholar] [CrossRef]
- Ergin, K.N.; Karakaya, S.; Göger, G.; Sytar, O.; Demirci, B.; Duman, H. Anatomical and Phytochemical Characteristics of Different Parts of Hypericum scabrum L. Extracts, Essential Oils, and Their Antimicrobial Potential. Molecules 2022, 27, 1228. [Google Scholar] [CrossRef]
- Fahed, L.; Beyrouthy, M.E.; Ouaini, N.; Eparvier, V.; Stien, D.; Vitalini, S.; Iriti, M. Antimicrobial Activity and Synergy Investigation of Hypericum scabrum Essential Oil with Antifungal Drugs. Molecules 2021, 26, 6545. [Google Scholar] [CrossRef]
- Rouis, Z.; Abid, N.; Koudja, S.; Yangui, T.; Elaissi, A.; Cioni, P.L.; Flamini, G.; Aouni, M. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia. BMC Complement. Altern. Med. 2013, 13, 24. [Google Scholar] [CrossRef]
- Da Silva, J.K.R.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential Oils as Antiviral Agents, Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. Int. J. Mol. Sci. 2020, 21, 3426. [Google Scholar] [CrossRef]
- Ma, L.; Yao, L. Antiviral Effects of Plant-Derived Essential Oils and Their Components: An Updated Review. Molecules 2020, 25, 2627. [Google Scholar] [CrossRef]
- Birt, D.F.; Widrlechner, M.P.; Hammer, K.D.P.; Hillwig, M.L.; Wei, J.; Kraus, G.A.; Murphy, P.A.; McCoy, J.-A.; Wurtele, E.S.; Neighbors, J.D.; et al. Hypericum in infection: Identification of anti-viral and anti-inflammatory constituents. Pharm. Biol. 2009, 47, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Ayvaz, A.; Sagdic, O.; Karaborklu, S.; Ozturk, I. Insecticidal Activity of the Essential Oils from Different Plants against Three Stored-Product Insects. J. Insect Sci. 2010, 10, 21. [Google Scholar] [CrossRef]
- Kordali, S.; Usanmaz, A.; Bayrak, N.; Çakır, A. Fumigant Toxicity of Essential Oils of Nine Plant Species from Asteraceae and Clusiaceae against Sitophilus granarius (L.) (Coleoptera: Curculionidae). Egypt. J. Biol. Pest Control 2012, 22, 11–14. [Google Scholar]
- Kordali, S.; Emsen, B.; Yildirim, E. Fumigant Toxicity of Essential Oils from Fifteen Plant Species against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Egypt. J. Biol. Pest Control 2013, 23, 241–246. [Google Scholar]
- Usanman, A.; Usanmaz, B.; Kordali, A.S.K.M.; Altinok, M.A.; Ercisli, S.; Kaya, Y. Toxic Effects of Eight Plant Essential Oils Against Adults of Colorado Potato Beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Egypt. J. Biol. Pest Control 2016, 26, 439–443. [Google Scholar]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Li, X.-J.; Liang, L.; Shi, H.-X.; Sun, X.-P.S.; Wang, J.; Zhang, L.-S. Neuroprotective effects of curdione against focal cerebral ischemia reperfusion injury in rats. Neuropsychiatr. Dis. Treat. 2017, 13, 1733–1740. [Google Scholar] [CrossRef]
- Dadkhah, A.; Fatemi, F.; Farsani, M.E.; Roshanaei, K.; Alipour, M.; Aligolzadeh, H. Hepatoprotective effects of Iranian Hypericum scabrum essential oils against oxidative stress induced by acetaminophen in rats. Braz. Arch. Biol. Technol. 2014, 57, 340–348. [Google Scholar] [CrossRef]
- Dadkhah, A.; Fatemi, F.; Alipour, M.; Fatourehchi, S.; Parchini, F.S. Regulatory Effect of Iranian Hypericum Scabrum Essential Oils on Hepatic Metabolizing Enzymes in Rats Treated by Acetaminophen. J. Essent. Oil Bear. Plants 2015, 18, 335–348. [Google Scholar] [CrossRef]
- Puca, V.; Marulli, R.Z.; Grande, R.; Vitale, I.; Niro, A.; Molinaro, G.; Prezioso, S.; Muraro, R.; Di Giovanni, P. Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three-Years Retrospective Study. Antibiotics 2021, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- Zofou, D.; Kowa, T.K.; Wabo, H.K.; Ngemenya, M.N.; Tane, P.; Titanji, V.P. Hypericum lanceolatum (Hypericaceae) as a potential source of new anti-malarial agents: A bioassay-guided fractionation of the stem bark. Malar. J. 2011, 10, 167. [Google Scholar] [CrossRef] [PubMed]
- Tambur, Z.; Milošević, D.C.; Mileusnić, I.; Doder, R.; Marjanović, M.; Selimović, B.M.; Kulišić, Z.; Opačić, D. Inhibitory effects of different medicinal plants on Candida albicans growth. Med. Weter. 2018, 74, 473–476. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grafakou, M.-E.; Barda, C.; Karikas, G.A.; Skaltsa, H. Hypericum Essential Oils—Composition and Bioactivities: An Update (2012–2022). Molecules 2022, 27, 5246. https://doi.org/10.3390/molecules27165246
Grafakou M-E, Barda C, Karikas GA, Skaltsa H. Hypericum Essential Oils—Composition and Bioactivities: An Update (2012–2022). Molecules. 2022; 27(16):5246. https://doi.org/10.3390/molecules27165246
Chicago/Turabian StyleGrafakou, Maria-Eleni, Christina Barda, George Albert Karikas, and Helen Skaltsa. 2022. "Hypericum Essential Oils—Composition and Bioactivities: An Update (2012–2022)" Molecules 27, no. 16: 5246. https://doi.org/10.3390/molecules27165246
APA StyleGrafakou, M.-E., Barda, C., Karikas, G. A., & Skaltsa, H. (2022). Hypericum Essential Oils—Composition and Bioactivities: An Update (2012–2022). Molecules, 27(16), 5246. https://doi.org/10.3390/molecules27165246