Antimicrobial Activities of Saponaria cypria Boiss. Root Extracts, and the Identification of Nine Saponins and Six Phenolic Compounds
Abstract
:1. Introduction
2. Results
2.1. Determination of Total Saponin Content
2.2. Identification and Quantification of Saponins in S. cypria
2.3. Determination of Total Phenolic Content
2.4. Identification and Quantification of Phenolic Compounds in S. cypria
2.5. Antimicrobial Activity of Extracts
3. Discussion
4. Material and Methods
4.1. Plant Material
4.2. Preparation of Extracts
4.3. Total Saponin Content
4.4. UHPLC-QTOF-MS Analysis
4.5. Total Phenolic Content
4.6. Antibacterial Activity
4.6.1. Minimum Inhibitory Concentration
4.6.2. Minimum Bactericidal Concentration
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Vincken, J.P.; Heng, L.; de Groot, A.; Gruppen, H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 2007, 68, 275–297. [Google Scholar] [CrossRef] [PubMed]
- Moghimipour, E.; Handali, S. Saponin: Properties, methods of evaluation and applications. Annu. Res. Rev. Biol. 2015, 5, 207–220. [Google Scholar] [CrossRef]
- Lu, Y.; Van, D.; Deibert, L.; Bishop, G.; Balsevich, J. Antiproliferative quillaic acid and gypsogenin saponins from Saponaria officinalis L. roots. Phytochemistry 2015, 113, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Koike, K.; Nikaido, T. Major triterpenoid saponins from Saponaria officinalis. J. Nat. Prod. 1998, 61, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Koike, K.; Jia, Z.; Nikaido, T. New triterpenoid saponins and sapogenins from Saponaria officinalis. J. Nat. Prod. 1999, 62, 1655–1659. [Google Scholar] [CrossRef]
- Moniuszko-Szajwaj, B.; Pecio, Ł.; Kowalczyk, M.; Simonet, A.M.; Macias, F.A.; Szumacher-Strabel, M.; Cieślak, A.; Oleszek, W.; Stochmal, A. New triterpenoid saponins from the roots of Saponaria officinalis. Nat. Prod. Commun. 2013, 8, 1687–1690. [Google Scholar] [CrossRef]
- Budan, A.; Bellenot, D.; Freuze, I.; Gillmann, L.; Chicoteau, P.; Richomme, P.; Guilet, D. Potential of extracts from Saponaria officinalis and Calendula officinalis to modulate in vitro rumen fermentation with respect to their content in saponins. Biosci. Biotechnol. Biochem. 2014, 78, 288–295. [Google Scholar] [CrossRef]
- Sengul, M.; Ercisli, S.; Yildiz, H.; Gungor, N.; Kavaz, A.; Cetin, B. Antioxidant, antimicrobial activity and total phenolic content within aerial parts of Artemisia absinthum, Artemisia santonicum and Saponaria officinalis. Iran. J. Pharm. Res. 2011, 10, 49–56. [Google Scholar]
- Veda, P.G.; Mallikarjuna, R.T.; Ganga, R.B. Antibacterial activity of Saponaria officinalis and Zanthoxyllum aramatum. Int. J. Pharmacol. Toxicol. 2017, 5, 1–4. [Google Scholar]
- Eren, M.M.; Dikmen, B.; Vatansever, C.; Servi, H.; Yegin, H.C.; Ozan, G. Antimicrobial activity of sapindus mukorossi and saponaria officinalis extracts on streptococcus mutans and enterococcus faecalis. Ann. Med. Res. 2021, 28, 516–519. [Google Scholar] [CrossRef]
- Endonova, G.B.; Antsupova, T.P.; Zhamsaranova, S.D.; Lygdenov, D.V. Study of flavonoid and antioxidant activity of Saponaria officinalis L. that occurs in buryatia. Biosci. Biotech. Res. Asia 2015, 12, 2017–2021. [Google Scholar] [CrossRef]
- Aguiñiga-Sánchez, I.; Soto-Hernández, M.; Cadena-Iñiguez, J.; Suwalsky, M.; Colina, J.R.; Castillo, I.; Rosado-Pérez, J.; Mendoza-Núñez, V.M.; Santiago-Osorio, E. Phytochemical analysis and antioxidant and anti-inflammatory capacity of the extracts of fruits of the Sechium hybrid. Molecules 2020, 25, 4637. [Google Scholar] [CrossRef] [PubMed]
- Asensio-Vegas, C.; Khedim, M.B.; Rico, D.; Brunton, N.; Rai, D.; Hossain, M.; Martin-Diana, A.B. In-vitro approach for the determination of antioxidant and antiinflammatory activity of wild marjoram (Thymus mastichina L.). J. Food Nutr. Res. 2018, 6, 731–739. [Google Scholar] [CrossRef]
- Duru, K.C.; Kovaleva, E.G.; Danilova, I.G.; Van der Bijl, P.; Belousova, A.V. The potential beneficial role of isoflavones in type 2 diabetes mellitus. Nutr. Res. 2018, 59, 1–15. [Google Scholar] [CrossRef] [PubMed]
- El-Sayyad, H.I.H. Cholesterol overload impairing cerebellar function: The promise of natural products. Nutrition 2015, 31, 621–630. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure–activity relationship) models. Front. Microbiol. 2019, 10, 1–23. [Google Scholar] [CrossRef]
- Meikle, R.D. Flora of Cyprus. Volume One; Bentham-Moxon Trust: Kew Gardens, UK, 1977. [Google Scholar]
- Tsintides, T. The Endemic Plants of Cyprus; Bank of Cyprus Group and Cyprus Association of Professional Foresters: Nicosia, Cyprus, 1995. [Google Scholar]
- Medina-Meza, I.G.; Aluwi, N.A.; Saunders, S.R.; Ganjyal, G.M. GC-MS profiling of triterpenoid saponins from 218 quinoa varieties (Chenopodium quinoa Willd.) grown in Washington State. J. Agric. Food Chem. 2016, 64, 8583–8591. [Google Scholar] [CrossRef]
- Jia, Z.; Koike, K.; Nikaido, T. Saponarioside C, the first α-D-Galactose containing triterpenoid saponin, and five related compounds from Saponaria officinalis. J. Nat. Prod. 1999, 62, 449–453. [Google Scholar] [CrossRef]
- Thakur, M.; Jerz, G.; Tuwalska, D.; Gilabert-Oriol, R.; Wybraniec, S.; Winterhalter, P.; Fuchs, H.; Weng, A. High-speed countercurrent chromatographic recovery and off-line electrospray ionization mass spectrometry profiling of bisdesmodic saponins from Saponaria officinalis possessing synergistic toxicity enhancing properties on targeted antitumor toxins. J. Chromatogr. B 2014, 955, 1–9. [Google Scholar] [CrossRef]
- Peeters, L.; Van der Auwera, A.; Beirnaert, C.; Bijttebier, S.; Laukens, K.; Pieters, L.; Hermans, N.; Foubert, K. Compound characterization and metabolic profile elucidation after in vitro gastrointestinal and hepatic biotransformation of an Herniaria hirsuta extract using unbiased dynamic metabolomic data analysis. Metabolites 2020, 10, 111. [Google Scholar] [CrossRef] [PubMed]
- Ekanayaka, E.P.; Celiz, M.D.; Jones, A.D. Relative mass defect filtering of mass spectra: A path to discovery of plant specialized metabolites. Plant Physiol. 2015, 167, 1221–1232. [Google Scholar] [CrossRef]
- Shirazi, O.U.; Khattak, M.M.A.K.; Shukri, N.A.M.; Nasyriq, M.N. Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices. J. Pharmacogn. Phytochem. 2014, 3, 104–108. [Google Scholar]
- Karar, M.E.; Kuhnert, N. UPLC-ESI-Q-TOF-MS/MS characterization of phenolics from Crataegus monogyna and Crataegus laevigata (Hawthorn) leaves, fruits and their herbal derived drops (Crataegutt Tropfen). J. Chem. Biol. Ther. 2015, 1, 2572-0406. [Google Scholar]
- Hao, J.; Li, Y.; Jia, Y.; Wang, Z.; Rong, R.; Bao, J.; Zhao, M.; Fu, Z.; Ge, G. Comparative analysis of major flavonoids among parts of Lactuca indica during different growth periods. Molecules 2021, 26, 7445. [Google Scholar] [CrossRef] [PubMed]
- Hand, R.; Hadjikyriakou, G.N.; Christodoulou, S.S. (Eds.) 2011—(Continuously Updated): Flora of Cyprus—A Dynamic Checklist. Available online: http://www.flora-of-cyprus.eu/ (accessed on 17 August 2022).
- Barve, K.H.; Laddha, K.S.; Jayakumar, B. Extraction of saponins from safed musli. Pharmacogn. J. 2010, 2, 561–564. [Google Scholar] [CrossRef]
- Szakiel, A.; Paczkowski, C.; Henry, M. Influence of enviromental abiotic factors on the content of saponins in plants. Phytochem. Rev. 2011, 10, 471–491. [Google Scholar] [CrossRef]
- Fenwick, G.R.; Price, K.R.; Tsukamoto, C.; Okubo, K. Saponins. In Toxic Substances in Crop Plants; D’Mello, J.P.F., Duffus, C.M., Duffus, J.H., Eds.; The Royal Society of Chemistry: Cambridge, UK, 1991; pp. 285–327. [Google Scholar]
- San Martin, R.; Briones, R. Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Econ. Bot. 1999, 53, 302–331. [Google Scholar] [CrossRef]
- Oleszek, W.; Sitek, M.; Stochmal, A.; Piacente, S.; Pizza, C.; Cheeke, P. Steroidal saponins of Yucca schidigera Roezl. J. Agric. Food Chem. 2001, 49, 4392–4396. [Google Scholar] [CrossRef]
- Reichert, C.L.; Salminen, H.; Weiss, J. Quillaja saponin characteristics and functional properties. Annu. Rev. Food Sci. Technol. 2019, 10, 43–73. [Google Scholar] [CrossRef]
- Avato, P.; Bucci, R.; Tava, A.; Vitali, C.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phytother. Res. 2006, 20, 454–457. [Google Scholar] [CrossRef]
- Zehavi, U.; Polacheck, I. Saponins as antimycotic agents: Glycosides of medicagenic acid. In Advances in Experimental Medicine and Biology. Saponins Used in Traditional and Modern Medicine; Waller, G.R., Yamasaki, K., Eds.; Plenum Press: NewYork, NY, USA, 1996; Volume 404, pp. 535–546. [Google Scholar]
- Aras, A.; Alan, Y. Enzyme Inhibition, Antimicrobial Potentials of Saponaria prostrata plant extracts. J. Sci. Technol. 2022, 15, 135–143. [Google Scholar] [CrossRef]
- Rashed, K.N.; Ćirić, A.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.; Soković, M. Antimicrobial activity, growth inhibition of human tumour cell lines, and phytochemical characterization of the hydromethanolic extract obtained from Sapindus saponaria L. aerial parts. Biomed Res. Int. 2013, 2013, 659183. [Google Scholar] [CrossRef] [PubMed]
- Niloufer, S.; Lakshmi, L.B. In-vitro analysis of phytochemical, anti-oxidant capacity of seed ethanolic extracts of Sapindus saponaria Vahl. and anti-bacterial activity on common dental pathogens. Res. J. Pharm. Tech. 2021, 14, 51–355. [Google Scholar]
- Hamed, Y.S.; Abdin, M.; Chen, G.; Akhtar, H.M.S.; Zeng, X. Effects of impregnate temperature on extraction of caffeoylquinic acid derivatives from Moringa oleifera leaves and evaluation of inhibitory activity on digestive enzyme, antioxidant, anti-proliferative and antibacterial activities of the extract. Int. J. Food Sci. Technol. 2020, 55, 3082–3090. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 1–13. [Google Scholar] [CrossRef]
- Materska, M. Quercetin and its derivatives: Chemical structure and bioactivity—A review. Polish J. Food Nutr. Sci. 2008, 58, 407–413. [Google Scholar]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid. Med. Cell. Longev. 2018, 2018, 1–17. [Google Scholar] [CrossRef]
- Kim, D.W.; Hwang, I.K.; Lim, S.S.; Yoo, K.Y.; Li, H.; Kim, Y.S.; Kwon, D.Y.; Moon, W.K.; Kim, D.W.; Won, M.H. Germinated buckwheat extract decreases blood pressure and nitrotyrosine immunoreactivity in aortic endothelial cells in spontaneously hypertensive rats. Phytother. Res. 2009, 23, 993–998. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef]
- Cikman, O.; Soylemez, O.; Ozkan, O.F.; Kiraz, H.A.; Sayar, I.; Ademoglu, S.; Taysi, S.; Karaayvaz, M. Antioxidant activity of syringic acid prevents oxidative stress in L-arginine–induced acute pancreatitis: An experimental study on rats. Int. J. Surg. 2015, 100, 891–896. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, A.; Srivastava, S.; Rawat, A.K.S.; Khan, A.R. HPTLC-densitometric determination and kinetic studies on antioxidant potential of monomeric phenolic acids (MPAs) from Bergenia species. RSC Adv. 2014, 4, 52647–52657. [Google Scholar] [CrossRef]
- Manuja, R.; Sachdeva, S.; Jain, A.; Chaudhary, J. A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. Int. J. Pharm. Sci. Rev. Res. 2013, 22, 109–115. [Google Scholar]
Solvent Type | TSC (mg OAE 1/g Crude Extract) ± SD |
---|---|
Methanol | 64.331 c ± 2.040 |
Ethanol | 106.210 b ± 4.167 |
Acetone | 169.000 a ± 7.155 |
Compound Number | RT | Molecular Formula | Observed Ion m/z [M-H]− | MS/MSProduct Ions | Compound Name | Saponin Content WT % ± SD | References |
---|---|---|---|---|---|---|---|
1 | 8.86 | C66H104O35 | 1455.6156 | 1275.5501, 1231.5589, 1149.5248, 969.4606, 501.3174,439.3152, 485.1478, 323.0953, 179.0549, 113.0231 | MA | 0.005 ± 0.001 | [22] |
2 | 9.23 | C54H86O26 | 1149.5256 | 969.4637, 501.3194, 483.3075, 439.3187, 485.1478, 341.1074, 323.0969, 113.0241 | MA | 0.113 ± 0.082 | [22] |
3 | 9.57 | C60H94O30 | 1293.5673 | 1113.5009, 969.4701, 501.3185, 439.3183, 485.1477, 341.1099, 323.0953, 113.0262 | MA | 2.588 ± 0.091 | [22] |
4 | 10.06 | C78H122O42 | 1729.73302− | 955.4468, 113.0226 | QA octosaccharide | 0.005 ± 0.001 | [7] |
5 | 10.75 | C77H120O41 | 1699.71722− | 1681.7118, 1567.6679, 955.4555, 469.1593 | Saponarioside A | 0.034 ± 0.012 | [7,21] |
6 | 11.57 | C71H118O43 | 1657.69782− | 955.4449, 485.3222, 113.0253 | QA heptasaccharide | 1.762 ± 0.065 | [7] |
7 * | 14.00 | C73H120O43 | 1683.71692− | 1551.6802, 939.4517, 469.3272 | G octasaccharide | 1.855 ± 0.081 | [7] |
8 * | 14.43 | C73H120O43 | 1683.71142− | 1551.6691, 939.4502, 469.3272 | G octasaccharide | 1.527 ± 0.076 | [7] |
9 | 15.82 | C64H104O36 | 1447.62172− | 939.4448, 469.3299, 113.0223 | G hexasaccharide | 2.447 ± 0.069 | [7] |
Solvent Type | TPC (mg GAE 1/g Crude Extract) ± SD |
---|---|
Methanol | 13.623 b ± 0.183 |
Ethanol | 12.156 b ± 0.262 |
Acetone | 21.016 a ± 0.357 |
Compound Number | RT | Molecular Formula | Observed Ion m/z [M-H]− | MS/MS Productions | Compound Name | Phenolic Compounds Content WT % ± SD | Reference |
---|---|---|---|---|---|---|---|
1 | 4.52 | C15H20O10 | 359.0986 | 197.0455, 153.0555, 149.0237 | Syringic acid O-hexoside | 0.298 ± 0.108 | [25] |
2 | 6.07 | C33H40O20 | 755.2040 | 755.2028 | Quercetin 3-O-(2,6-di-O-rhamnosyl-glucoside) | 0.244 ± 0.112 | [25] |
3 | 6.55 | C27H30O16 | 609.1459 | 300.0277, 178.9991, 151.0035 | Rutin | 0.231 ± 0.084 | [26] |
4 | 7.50 | C21H20O11 | 447.0922 | 301.0338, 300.0265, 271.0245, 255.0300, 151.0035 | Quercetin 3-O-rhamnoside (quercitrin) | 0.712 ± 0.072 | [25] |
5 | 7.67 | C25H24O12 | 515.1192 | 353.0868, 179.0343 | 4,5-di-O-Caffeoylquinic acid | 1.855 ± 0.126 | [25] |
6 | 7.87 | C21H20O12 | 463.0885 | 301.0354, 300.0267, 273.0405, 151.0036, | Quercetin 3-O-galactoside | 0.095 ± 0.01 | [25] |
E. coli | S. aureus | E. faecalis | S. enteritidis | Amp 1 (Control) | Gen 1 (Control) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEOH | ETOH | ACE | MEOH | ETOH | ACE | MEOH | ETOH | ACE | MEOH | ETOH | ACE | - | - | |
MIC 2 (mg/mL) | 3.125 | 3.125 | 3.125 | 1.563 | 0.391 | 0.195 | 3.125 | 1.563 | 0.391 | 3.125 | 3.125 | 3.125 | 0.004 | 0.004 |
MBC 3 (mg/mL) | 6.250 | 6.250 | 6.250 | 1.563 | 0.391 | 0.195 | 3.125 | 1.563 | 0.391 | 12.500 | 6.250 | 6.250 | 0.004 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charalambous, D.; Christoforou, M.; Kitiri, E.N.; Andreou, M.; Partassides, D.; Papachrysostomou, C.; Frantzi, M.; Karikas, G.A.; Pantelidou, M. Antimicrobial Activities of Saponaria cypria Boiss. Root Extracts, and the Identification of Nine Saponins and Six Phenolic Compounds. Molecules 2022, 27, 5812. https://doi.org/10.3390/molecules27185812
Charalambous D, Christoforou M, Kitiri EN, Andreou M, Partassides D, Papachrysostomou C, Frantzi M, Karikas GA, Pantelidou M. Antimicrobial Activities of Saponaria cypria Boiss. Root Extracts, and the Identification of Nine Saponins and Six Phenolic Compounds. Molecules. 2022; 27(18):5812. https://doi.org/10.3390/molecules27185812
Chicago/Turabian StyleCharalambous, Despina, Michalis Christoforou, Elina N. Kitiri, Marios Andreou, Dora Partassides, Christoforos Papachrysostomou, Myriam Frantzi, George A. Karikas, and Maria Pantelidou. 2022. "Antimicrobial Activities of Saponaria cypria Boiss. Root Extracts, and the Identification of Nine Saponins and Six Phenolic Compounds" Molecules 27, no. 18: 5812. https://doi.org/10.3390/molecules27185812
APA StyleCharalambous, D., Christoforou, M., Kitiri, E. N., Andreou, M., Partassides, D., Papachrysostomou, C., Frantzi, M., Karikas, G. A., & Pantelidou, M. (2022). Antimicrobial Activities of Saponaria cypria Boiss. Root Extracts, and the Identification of Nine Saponins and Six Phenolic Compounds. Molecules, 27(18), 5812. https://doi.org/10.3390/molecules27185812