Flavonoid and Phenolic Acid Profiles of Dehulled and Whole Vigna subterranea (L.) Verdc Seeds Commonly Consumed in South Africa
Abstract
:1. Introduction
2. Results
2.1. Quantitative Characterization of Phenolic Compounds in Whole Seed and Cotyledon BGN Extracts
2.2. Quantitative Characterization of Phenolic Acids Present in Whole Seed and Cotyledon BGN Extracts
2.3. Bambara Groundnut Seed Clusters in Relation to Flavonoid and Phenolic Acid Content
3. Discussion
3.1. Flavonoids and Lignan in Whole BGN Seeds and Cotyledons
3.2. Phenolic Acids Present in Whole BGN Seeds and Cotyledons
3.3. Bambara Groundnut Seed Clusters in Relation to Flavonoid and Phenolic Acid Content
4. Materials and Methods
4.1. Sample Collection
4.2. Preparation of BGN Seeds and Cotyledons
4.3. Preparation of BGN Extracts
4.4. Qualitative and Quantitative Polyphenol Profiling of Whole BGN Seeds and Cotyledons Using UPLC-qTOF-MS
4.5. Phenolic Acid Analysis with GC-MS and Chromatographic Separation
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouchenak, M.; Lamri-Senhadji, M. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. J. Med. Food 2013, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P.; Abd El Mohsen, M.M.; Minihane, A.M.; Mathers, J.C. Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br. J. Nutr. 2008, 99, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Amic, D.; Davidovic-Amic, D.; Beslo, D.; Trinajstic, N. Antioxidant and antimicrobial properties of Telfairia occidentalis (fluted pumpkin) leaf extracts. Croat. Chem. Acta. 2003, 76, 55. [Google Scholar]
- Marathe, S.A.; Rajalakshmi, V.; Jamdar, S.N.; Sharma, A. Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem. Toxicol. 2011, 49, 2005–2012. [Google Scholar] [CrossRef]
- Roche, A.; Ross, E.; Walsh, N.; O’Donnell, K.; Williams, A.; Klapp, M.; Fullard, N.; Edelstein, S. Representative literature on the phytonutrients category: Phenolic acids. Crit. Rev. Food Sci. Nutr. 2017, 57, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.Y.; Chan, C.L.; Yang, Q.Q.; Li, H.B.; Zhang, D.; Ge, Y.Y.; Gunaratne, A.; Ge, J.; Corke, H. Bioactive compounds and beneficial functions of sprouted grains. In Sprouted Grains Nutritional Value, Production and Applications; Feng, H., Nem, B., De-Vries, J.W., Eds.; AACC International Press: Washington, DC, USA, 2019; pp. 191–246. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Meyer, A.S.; Andreasen, M.F. Antioxidant activity of hydroxycinnamic acids on human low-density lipoprotein oxidation in vitro. In Natural Antioxidants and Anticarcinogens in Nutrition, Health and Disease; Kumpulainen, J.T., Salonen, J.Y., Eds.; The Royal Society of Chemistry: Cambridge, UK, 1999; pp. 197–199. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Tangney, C.C.; Rasmussen, H.E. Polyphenols, inflammation, and cardiovascular disease. Curr. Atheroscler. Rep. 2013, 15, 324. [Google Scholar] [CrossRef]
- Ruzaidi, A.; Abbe, M.; Amin, I.; Nawalyah, A.G.; Muhajir, H.; Pauliena, M.B.S.; Muskinah, M.S. Hypoglycaemic properties of Malaysian cocoa (Theobromacacao) polyphenols-rich extract. Int. Food Res. J. 2008, 15, 305–312. [Google Scholar]
- Ademiluyi, A.O.; Oboh, G.; Boligon, A.A.; Athayde, M.L. Dietary supplementation with fermented legumes modulate hyperglycemia and acetylcholinesterase activities in streptozotocin-induced diabetes. Pathophysiology 2015, 22, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Kang, M.; Xie, Q.; Xu, B.; Sun, C.; Chen, K.; Wu, Y. Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation. J. Agric. Food Chem. 2011, 59, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Towler, M.C.; Hardie, D.G. AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 2007, 100, 328–341. [Google Scholar] [CrossRef]
- Xu, J.G.; Tian, C.R.; Hu, Q.P.; Luo, J.Y.; Wang, X.D.; Tian, X.D. Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. J. Agric. Food Chem. 2009, 57, 10392–10398. [Google Scholar] [CrossRef]
- Nderitu, A.M.; Dykes, L.; Awika, J.M.; Minnaar, A.; Duodu, K.G. Phenolic composition and inhibitory effect against oxidative DNA damage of cooked cowpeas as affected by simulated in vitro gastrointestinal digestion. Food Chem. 2013, 141, 1763–1771. [Google Scholar] [CrossRef]
- Ali, S.S.; Ahmad, W.A.N.W.; Budin, S.B.; Zainalabidin, S. Implication of dietary phenolic acids on inflammation in cardiovascular disease. Rev. Cardiovasc. Med. 2020, 21, 225–240. [Google Scholar] [CrossRef]
- Koné, M.; Paice, A.G.; Touré, Y. Bambara groundnut [Vigna subterranea (L.) Verdc. (Fabaceae)] usage in human health. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 192–194. [Google Scholar] [CrossRef]
- Swanevelder, C.J. South Africa country report on Bambara groundnuts. In Proceedings of the Workshop on Conservation and Improvement of Bambara groundnuts (Vigna subterranea (L.) Verdc.), Harare, Zimbabwe, 14–16 November 1995; Heller, J., Begemann, F., Mushonga, J., Eds.; International Plant Genetic Resources Institute (IPGRI): Rome, Italy, 1995; pp. 50–52. [Google Scholar]
- Directorate Plant Production (DPP). Production Guidelines for Bambara Groundnuts; Department of Agriculture, Forestry and Fisheries: Pretoria, South Africa, 2011; pp. 1–10.
- Van der Walt, A.M.; Mossanda, K.S.A.; Jivan, S.D.; Swart, W.J.; Bezuidenhout, C.C. Indigenous African food plants: Vehicles of disease or sources of protection? INDILINGA—Afr. J. Indig. Knowl. Syst. 2005, 4, 270–279. [Google Scholar]
- Na, H.-K.; Mossanda, K.S.; Lee, J.-Y.; Surh, Y.-J. Inhibition of phorbol ester-induced COX-2 expression by some edible African plants. BioFactors 2004, 21, 149–153. [Google Scholar] [CrossRef]
- Swanevelder, C.J. Bambara—Food for Africa; National Department of Agriculture, Government Printer: Pretoria, South Africa, 1998.
- Goli, A.E.; Begemann, F.; Ng, N.Q. Germplasm diversity in Bambara groundnut and prospects for crop improvement: In Crop Genetic Resources of Africa; Ng, N.Q., Perrino, P., Attere, F., Zedan, H., Eds.; IITA: Ibadan, Nigeria, 1991; Volume 2, pp. 195–202. Available online: https://hdl.handle.net/10568/101766 (accessed on 2 April 2022).
- Ngugi, G.W. Kenya country report on Bambara groundnuts. In Proceedings of the Workshop on Conservation and Improvement of Bambara groundnuts (Vigna subterranean (L.) Verdc.), Harare, Zimbabwe, 14–16 November 1995; Heller, J., Begemann, F., Mushonga, J., Eds.; International Plant Genetic Resources Institute (IPGRI): Rome, Italy, 1995; pp. 33–44. [Google Scholar]
- Karikari, S.K.; Wigglesworth, D.J.; Kwerepe, B.C.; Balole, T.V.; Sebolai, B.; Munthali, D.C. Botswana country report on Bambara groundnuts. In Proceedings of the Workshop on Conservation and Improvement of Bambara Groundnuts (Vigna subterranea (L.) Verdc.), Harare, Zimbabwe, 14–16 November 1995; Heller, J., Begemann, F., Mushonga, J., Eds.; International Plant Genetic Resources Institute (IPGRI): Rome, Italy, 1995; pp. 11–18. [Google Scholar]
- Jideani, V.A.; Diedericks, C.F. Nutritional, therapeutic, and prophylactic properties of Vigna substerranea and Moringa oleifera. In Antioxidant-Rich Natural Products and Human Health; Oguntibeju, O., Ed.; InTech-Open Access Publisher: London, UK, 2014; Volume 9, pp. 187–201. [Google Scholar] [CrossRef]
- Nyau, V.; Prakash, S.; Rodrigues, J.; Farrant, J. Identification of nutraceutical phenolic compounds in Bambara groundnuts (Vigna subterranea L. Verdc) by HPLC-PDA-ESI-MS. Br. J. Appl. Sci. Technol. 2015, 6, 77–85. [Google Scholar] [CrossRef]
- Salawu, S. Comparative study of the antioxidant activities of methanolic extract and simulated gastrointestinal enzyme digest of Bambara nut (Vigna subterranean). FUTA J. Res. Sci. 2016, 1, 107–120. [Google Scholar]
- Harris, T.; Jideani, V.; Le Roes-Hill, M. Flavonoids and tannin composition of Bambara groundnut (Vigna subterranea) of Mpumalanga, South Africa. Heliyon 2018, 4, e00833. [Google Scholar] [CrossRef] [PubMed]
- Tsamo, A.T.; Ndibewu, P.P.; Dakora, F.D. Phytochemical profile of seeds from 21Bambara groundnut landraces via UPLC-QTOF-MS. Food Res. Int. 2018, 112, 160–168. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Njobeh, P.B.; Kayitesi, E. Assessment of nutritional and phytochemical quality of Dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea). Microchem. J. 2019, 149, 104034. [Google Scholar] [CrossRef]
- Okafor, J.N.C.; Rautenbauch, F.; Meyer, M.; Le Roes-Hill, M.; Harris, T.; Jideani, V.A. Phenolic content, antioxidant, cytotoxic and antiproliferative effects of fractions of Vigna subterraenea (L.) Verdc. from Mpumalanga, South Africa. Heliyon 2021, 7, e08397. [Google Scholar] [CrossRef]
- Chinnapun, D. Antioxidant activity and DNA protection against oxidative damage of Bambara groundnut seeds (Vigna subterranea (L.) Verdc.) as affected by processing methods. Int. J. Food Prop. 2018, 21, 1661–1669. [Google Scholar] [CrossRef]
- Oboh, G.; Ademiluyi, A.O.; Akindahunsi, A.A. Changes in polyphenols distribution and antioxidant activity during fermentation of some underutilized legumes. Food Sci. Technol. Int. 2009, 15, 41–46. [Google Scholar] [CrossRef]
- Ademiluyi, A.O.; Ogunsuyi, O.B.; Adebayo, A.A.; Oboh, G. Effect of fermented legume seeds on some key enzymes relevant to erectile dysfunction in vitro. J. Food Biochem. 2018, 42, e12437. [Google Scholar] [CrossRef]
- Nyau, V.; Prakash, S.; Rodrigues, J.; Farrant, J. Antioxidant activities of Bambara groundnuts as assessed by FRAP and DPPH Assays. Am. J. Food Nutr. 2015, 3, 7–11. [Google Scholar] [CrossRef]
- Klompong, V.; Benjakul, S. Antioxidative and antimicrobial activities of the extracts from the seed coat of Bambara groundnut (Voandzeia subterranea). RSC Adv. 2015, 5, 9973–9985. [Google Scholar] [CrossRef]
- Cotelle, N. Role of flavonoids in oxidative stress. Curr. Top. Med. Chem. 2001, 1, 569–590. [Google Scholar] [CrossRef]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, N.P.; Bondonno, C.P.; Blekkenhorst, L.C.; Considine, M.J.; Maghzal, G.; Stocker, R.; Woodman, R.J.; Ward, N.C.; Hodgson, J.M.; Croft, K.D. Flavonoid-rich apple improves endothelial function in individuals at risk for cardiovascular disease: A randomized controlled clinical trial. Mol. Nutr. Food Res. 2018, 62, 1700674. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Croft, K.D.; Kennedye, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Akesson, A.; Gigante, B.; Wolk, A. Chocolate consumption and risk of myocardial infarction: A prospective study and meta-analysis. Heart 2016, 102, 1017–1022. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, I.; Li, A.; Manson, J.E.; Sesso, H.D.; Wang, L.; Liu, S. Cocoa flavanol intake and biomarkers for cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J. Nutr. 2016, 146, 2325–2333. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Fezeu, L.; Andreeva, V.A.; Touvier, M.; Scalbert, A.; Hercberg, S.; Galan, P. Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J. Nutr. 2012, 142, 76–83. [Google Scholar] [CrossRef]
- Moreira, A.; Diogenes, M.J.; de Mendonca, A.; Lunet, N.; Barros, H. Chocolate consumption is associated with a lower risk of cognitive decline. J. Alzheimer’s Dis. 2016, 53, 85–93. [Google Scholar] [CrossRef]
- Crichton, G.E.; Elias, M.F.; Alkerwi, A. Chocolate intake is associated with better cognitive function: The Maine-Syracuse Longitudinal Study. Appetit 2016, 100, 126–132. [Google Scholar] [CrossRef]
- Gardeazabal, I.; Romanos-Nanclares, A.; Martínez-González, M.A.; Sánchez-Bayona, R.; Vitelli-Storelli, F.; Gaforio, J.J.; Aramendía-Beitia, J.M.; Toledo, E. Total polyphenol intake and breast cancer risk in the Seguimiento Universidad de Navarra (SUN) cohort. Br. J. Nutri. 2019, 122, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, D. Total flavonoids, phenolics, tannins and antioxidant activity in seeds of lentil and grass pea. Int. J. Phytomed. 2013, 4, 537–542. [Google Scholar]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W. AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals; AOAC International: Gaithersburg, MD, USA, 2002; pp. 12–19. [Google Scholar]
- Barampama, Z.; Simard, R.E. Nutrient composition, protein quality and antinutritional factors of some varieties of dry beans (Phaseolus vulgaris L.) grown in Burundi. Food Chem. 1993, 47, 159–167. [Google Scholar] [CrossRef]
- Ranilla, L.G.; Genovese, M.I.; Lajolo, F.M. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.). J. Agric. Food Chem. 2007, 55, 90–98. [Google Scholar] [CrossRef]
- López, A.; El-Naggar, T.; Dueñas, M.; Ortega, T.; Estrella, I.; Hernández, T.; Gómez-Serranillos, M.P.; Palomino, O.M.; Carretero, M.E. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem. 2013, 138, 547–555. [Google Scholar] [CrossRef]
- Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef]
- Jeong, S.; Kong, A.T. Biological properties of monomeric and polymeric catechins: Green tea catechins and procyanidins. Pharm. Biol. 2004, 42, 84–93. [Google Scholar] [CrossRef]
- Rizvi, S.I.; Zaid, M.A.; Anis, R.; Mishra, N. Protective role of tea catechins against oxidation induced damage of type 2 diabetic erythrocytes. Clin. Exp. Pharmacol. Physiol. 2005, 32, 70–75. [Google Scholar] [CrossRef]
- Koo, S.I.; Noh, S.K. Green tea as inhibitor of the intestinal absorption of lipids: Potential mechanism for its lipid-lowering effect. J. Nutr. Biochem. 2007, 18, 179–183. [Google Scholar] [CrossRef]
- Baba, S.; Osakabe, N.; Kato, Y.; Natsume, M.; Yasuda, A.; Kido, T.; Fukuda, K.; Muto, Y.; Kondo, K. Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am. J. Clin. Nutr. 2007, 85, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Corder, R.; Mullen, W.; Khan, N.Q.; Marks, S.C.; Wood, E.G.; Carrier, M.J.; Crozier, A. Oenology: Red wine procyanidins and vascular health. Nature 2006, 444, 566. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Multi-targeted therapy of cancer by green tea polyphenols. Cancer Lett. 2008, 269, 269–280. [Google Scholar] [CrossRef]
- Maurya, P.K.; Rizvi, S.I. Protective role of tea catechins on erythrocytes subjected to oxidative stress during human aging. Nat. Prod. Res. 2009, 23, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Trombetta, D.; Smeriglio, A.; Mandalari, G.; Romeo, O.; Felice, M.R.; Gattuso, G.; Nabavi, S.M. Food flavonols: Nutraceuticals with complex health benefits and functionalities. Trends Food Sci. Technol. 2021, 117, 194–204. [Google Scholar] [CrossRef]
- Dueñas, M.; González-Manzano, S.; González-Paramás, A.; Santos-Buelga, C. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. J. Pharm. Biomed. Anal. 2010, 51, 443–449. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.K.; Pakade, Y.B.; Singh, B.; Yadav, S.C. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf. B. 2010, 80, 184–192. [Google Scholar] [CrossRef]
- Ganesan, S.; Faris, A.N.; Comstock, A.T.; Wang, Q.; Nanua, S.; Hershenson, M.B.; Sajjan, U.S. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antivir. Res. 2012, 94, 258–271. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Russo, G.L.; Daglia, M.; Nabavi, S.M. Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chem. 2015, 179, 305–310. [Google Scholar] [CrossRef]
- Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M.J.; Wielinga, P.Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 2011, 218, 44–52. [Google Scholar] [CrossRef]
- Yamagata, K.; Tagami, M.; Yamori, Y. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease. Nutrition 2015, 31, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007, 137, 2405–2411. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Ernández, T.; Estrella, I. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 2006, 98, 95–103. [Google Scholar] [CrossRef]
- Duodu, K.G. Effect of processing on phenolic phytochemicals in cereals and legumes. Cereal Foods World 2014, 59, 64–70. [Google Scholar] [CrossRef]
- Tiwari, P.; Kumar, B.; Kaur, M.; Kuar, G.; Kuar, H. Phytochemical screening and extraction: A review. Int. Pharm. Sci. 2011, 1, 98–106. [Google Scholar]
- Espinosa-Alonso, L.G.; Lygin, A.; Widholm, J.M.; Valverde, M.E.; Paredes-Lopez, O. Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2006, 54, 4436–4444. [Google Scholar] [CrossRef]
- López-Amorós, M.L.; Hernández, T.; Estrella, I. Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Compos. Anal. 2006, 19, 277–283. [Google Scholar] [CrossRef]
- Magalhaes, S.C.; Taveira, M.; Cabrita, A.R.; Fonseca, A.J.; Valentão, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Salawu, S.O.; Bester, M.J.; Duodu, K.G. Phenolic composition and bioactive properties of cell wall preparations and whole grains of selected cereals and legumes. J. Food Biochem. 2014, 38, 62–72. [Google Scholar] [CrossRef]
- Khang, D.T.; Dung, T.N.; Elzaawely, A.A.; Xuan, T.D. Phenolic profiles and antioxidant activity of germinated legumes. Foods 2016, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Zhang, B.Y.; Qiu, L.P.; Guan, R.F.; Ye, Z.H.; Yu, X.P. Structure properties and mechanisms of action of naturally originated phenolic acids and their derivatives against human viral infections. Curr. Med. Chem. 2017, 24, 4279–4302. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- El-Hussainy, E.H.M.; Hussein, A.M.; Abdel-Aziz, A.; El-Mehasseb, I. Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: Possible cardioprotective effect of gallic acid. Can. J. Physiol. Pharmacol. 2016, 94, 868–878. [Google Scholar] [CrossRef]
- Kang, N.; Lee, J.H.; Lee, W.; Ko, J.Y.; Kim, E.A.; Kim, J.S.; Heu, M.S.; Kim, G.H.; Jeon, Y.J. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ. Toxicol. Pharmacol. 2015, 39, 764–772. [Google Scholar] [CrossRef]
- Dludla, P.V.; Nkambule, B.B.; Jack, B.; Mkandla, Z.; Mutize, T.; Silvestri, S.; Orlando, P.; Tiano, L.; Louw, J.; Mazibuko-Mbeje, S.E. Inflammation and oxidative stress in an obese state and the protective effects of gallic acid. Nutrients 2019, 11, 23. [Google Scholar] [CrossRef]
- Devi, Y.P.; Uma, A.; Narasu, M.L.; Kalyani, C. Anticancer activity of gallic acid on cancer cell lines, HCT-15 and MDA MB 231. Int. J. Res. Appl. Nat. Soc. Sci. 2014, 2, 269–272. [Google Scholar]
- Ferk, F.; Kundi, M.; Brath, H.; Szekeres, T.; Al-Serori, H.; Mišík, M.; Saiko, P.; Marculescu, R.; Wagner, K.H.; Knasmueller, S. Gallic acid improves health-associated biochemical parameters and prevents oxidative damage of DNA in type 2 diabetes patients: Results of a placebo-controlled pilot study. Mol. Nutr. Food Res. 2018, 62, 1700482. [Google Scholar] [CrossRef]
- Baniahmad, B.; Safaeian, L.; Vaseghi, G.; Rabbani, M.; Mohammadi, B. Cardio-protective effect of vanillic acid against doxorubicin induced cardiotoxicity in rat. Res. Pharm. Sci. 2020, 15, 87. [Google Scholar] [CrossRef]
- Ibitoye, O.B.; Ajiboye, T.O. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Arch. Physiol. Biochem. 2018, 124, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Agunloye, O.M.; Oboh, G.; Ademiluyi, A.O.; Ademosun, A.O.; Akindahunsi, A.A.; Oyagbemi, A.A.; Omobowale, T.O.; Ajibade, T.O.; Adedapo, A.A. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed. Pharmacother. 2019, 109, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.W.; Moon, S.K.; Chang, Y.C.; Ko, J.H.; Lee, Y.C.; Cho, G.; Kim, S.H.; Kim, J.G.; Kim, C.H. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: Complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J. 2004, 18, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Wei, Y.; Hou, M.; Zhao, C.; Shen, Z. A multicenter clinical trial of caffeic acid tablet in treatment of 103 primary immune thrombocytopenia patients. Zhonghua Xue Xue Zhi = Zhonghua Xueyexue Zazhi 2015, 36, 103–106. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Lin, F.H.; Wang, C.Y.; Hsiao, C.Y.; Chen, H.C.; Kuo, H.Y.; Tsai, T.F.; Chiou, S.H. Recovery of oxidative stress induced damage in Cisd2-deficient cardiomyocytes by sustained release of ferulic acid from injectable hydrogel. Biomaterials 2016, 103, 207–218. [Google Scholar] [CrossRef]
- Navarrete, S.; Alarcón, M.; Palomo, I. Aqueous extract of tomato (Solanum lycopersicum L.) and ferulic acid reduce the expression of TNF-_ and IL-1_ in LPS-activated macrophages. Molecules 2015, 20, 15319–15329. [Google Scholar] [CrossRef]
- Senaphan, K.; Kukongviriyapan, U.; Sangartit, W.; Pakdeechote, P.; Pannangpetch, P.; Prachaney, P.; Greenwald, S.E.; Kukongviriyapan, V. Ferulic acid alleviates changes in a rat model of metabolic syndrome induced by high-carbohydrate, high-fat diet. Nutrients 2015, 7, 6446–6464. [Google Scholar] [CrossRef]
- Fukuda, T.; Kuroda, T.; Kono, M.; Hyoguchi, M.; Tanaka, M.; Matsui, T. Augmentation of ferulic acid-induced vasorelaxation with aging and its structure importance in thoracic aorta of spontaneously hypertensive rats. Naunyn Schmiedeberg’s Arch. Pharmacol. 2015, 388, 1113–1117. [Google Scholar] [CrossRef]
- Niero, E.L.; Machado-Santelli, G.M. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. J. Exp. Clin. Cancer Res. 2013, 32, 31. [Google Scholar] [CrossRef]
- El-Bassossy, H.; Badawy, D.; Neamatallah, T.; Fahmy, A. Ferulic acid, a natural polyphenol, alleviates insulin resistance and hypertension in fructose fed rats: Effect on endothelial-dependent relaxation. Chem. Biol. Interact. 2016, 254, 191–197. [Google Scholar] [CrossRef]
- Chowdhury, S.; Ghosh, S.; Rashid, K.; Sil, P.C. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food Chem. Toxicol. 2016, 97, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Bumrungpert, A.; Lilitchan, S.; Tuntipopipat, S.; Tirawanchai, N.; Komindr, S. Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2018, 10, 713. [Google Scholar] [CrossRef] [PubMed]
- Ollanketo, M.; Peltoketo, A.; Hartonen, K.; Hiltunen, R.; Riekkola, M.L. Extraction of sage (Salvia officinalis L.) by pressurized hot water and conventional methods: Antioxidant activity of the extracts. Eur. Food Res. Technol. 2002, 215, 158–163. [Google Scholar] [CrossRef]
- Kooti, W.; Ghasemiboroon, M.; Asadi-Samani, M.; Ahangarpoor, A.; Noori Ahmad Abadi, M.; Afrisham, R.; Dashti, N. The effects of hydro-alcoholic extract of celery on lipid profile of rats fed a high fat diet. Adv. Environ. Biol. 2014, 8, 325–330. [Google Scholar]
- Stander, M.A.; van Wyk, B.E.; Taylor, M.J.C.; Long, H.S. Analysis of phenolic compounds in rooibos tea (Aspalathus linearis) with a comparison of flavonoid-based compounds in natural populations of plants from different regions. J. Agric. Food Chem. 2017, 65, 10270–10281. [Google Scholar] [CrossRef] [PubMed]
Bambara Groundnut Landrace 1 | |||||
---|---|---|---|---|---|
Flavonoids (mg/g) | Black | Red | Brown | Black-Eyed | Brown-Eyed |
Catechin hexoside A | 60.44 ± 1.94 a | 53.26 ± 1.48 b | 78.56 ± 0.99 c | 3.67 ± 0.90 d | 4.12 ± 0.41 d |
Catechin hexoside B | 7.13 ± 0.81 a | 6.29 ± 0.58 b a | 12.24 ± 1.09 d | 0.41 ± 0.11 c | 0.52 ± 0.03 c |
Catechin | 3.00 ± 1.69 ab | 4.09 ± 0.65 a | 7.79 ± 0.27 b | 0.74 ± 0.13 c | 0.82 ± 0.12 c |
Quercetin-3-O-glucoside | 1.21 ± 0.24 a | 4.52 ± 0.15 b | 1.11 ± 0.66 a | 0.53 ± 0.09 c | 0.64 ± 0.04 c |
Quercetin | ND | 0.08 ± 0.15 a | 0.17 ± 0.14 b | 0.23 ± 0.02 bc | 0.26 ± 0.03 c |
Rutin | 1.02 ± 0.01 a | 7.88 ± 0.74 b | 1.37 ± 0.20 a | 0.48 ± 0.12 c | 0.51 ± 0.06 c |
Myricetin | ND | ND | ND | 1.58 ± 0.12 a | 1.35 ± 0.12 b |
Kaempferol | ND | ND | 0.057 | ND | ND |
Medioresinol | 30.51 ± 0.99 a | 33.95 ± 2.65 a | 57.08 ± 4.25 b | 24.86 ± 1.52 c | 24.07 ± 0.80 c |
655 | 9.96 ± 0.80 a | 10.31 ± 0.70 a | 10.93 ± 2.71 a | 6.79 ± 0.81 b | 6.92 ± 0.36 b |
305 | 3.32 ± 0.38 a | 3.21 ± 0.328 a | 6.02 ± 0.23 b | 2.50 ± 0.17 c | 2.93 ± 0.25 c |
Unknown 421 GLY | 89.78 ± 2.44 a | 97.11 ± 3.44 b | 102.25 ± 3.08 d | 78.91 ± 5.21 c | 90.54 ± 4.86 a |
205 | 67.72 ± 5.95 a | 75.27 ± 2.81 a | 111.44 ± 7.10 b | 44.55 ± 4.22 c | 35.03 ± 2.67 d |
381 | 12.67 ± 9.38 a | 20.18 ± 1.05 a | 36.12 ± 2.70 b | 19.06 ± 1.50 a | 18.51 ± 0.25 a |
691 | 0.53 ± 0.29 ab | 0.25 ± 0.10 a | 1.06 ± 0.38 c | 0.40 ± 0.07 ab | 0.75 ± 0.07 bc |
Bambara Groundnut Landrace 1 | |||||
---|---|---|---|---|---|
Flavonoids (mg/g) | Black | Red | Brown | Black-Eyed | Brown-Eyed |
Catechin hexoside-A | 7.45 ± 0.45 a | 6.76 ± 0.96 a | 17.36 ± 0.85 b | 2.78 ± 0.32 c | 1.27 ± 0.17 c |
Catechin hexoside-B | 1.03 ± 0.25 a | 2.59 ± 1.12 b | 2.66 ± 0.49 b | 0.30 ± 0.05 c | 0.17 ± 0.03 c |
Catechin | 0.77 ± 0.21 a | 0.69 ± 0.10 a | 1.47 ± 0.16 b | 0.34 ± 0.10 c | 0.27 ± 0.16 c |
Quercetin-3-O-glucoside | 0.58 ± 0.05 ab | 0.70 ± 0.07 b | 0.38 ± 0.04 a | 0.52 ± 0.08 ab | 0.58 ± 0.08 ab |
Quercetin | 0.27 ± 0.03 a | 0.27 ± 0.035 a | 0.17 ± 0.01b a | 0.25 ± 0.01 ab | 0.11 ± 0.012 b |
Rutin | 0.22 ± 0.08 a | 0.68 ± 0.08 b | 0.28 ± 0.01 a | 0.42 ± 0.08 d | 0.05 ± 0.03 c |
Myricetin | 0.89 ± 0.04 a | ND | ND | 1.65 ± 0.07 b | 1.36 ± 0.10 c |
Kaempherol | ND | ND | ND | ND | ND |
Medioresinol | 28.04 ± 1.05 a | 25.26 ± 2.90 bc | 21.58 ± 0.96 d | 23.32 ± 0.72 b | 23.44 ± 0.8 b |
655 | 7.15 ± 0.18 a | 7.06 ± 0.37 a | 5.54 ± 0.78 b | 6.04 ± 0.62 ab | 6.38 ± 0.76 ab |
305 | 2.44 ± 0.15 a | 2.08 ± 0.15 a | 1.59 ± 0.41 b | 2.51 ± 0.34 a | 2.07 ± 0.41 a |
Unknown 421 GLY | 86.69 ± 1.076 a | 94.09 ± 4.22 b | 64.40 ± 4.70 c | 71.72 ± 1.16 d | 79.17 ± 3.01 e |
205 | 40.53 ± 2.21 a | 45.20 ± 1.97 b | 34.03 ± 3.76 c | 41.11 ± 1.46 a | 34.26 ± 1.97 c |
381 | 10.68 ± 0.47 a | 20.37 ± 0.99 c | 11.97 ± 1.46 a | 18.59 ± 1.40 b | 18.22 ± 0.61 b |
691 | 0.28 ± 0.01 ab | 0.24 ± 0.05 a | 0.10 ± 0.08 a | 0.36 ± 0.07 b | 0.80 ± 0.12 d |
Bambara Groundnut Landrace 1 | |||||
---|---|---|---|---|---|
Phenolic Acid (µg/g) | Black | Red | Brown | Black-Eyed | Brown-Eyed |
4-Hydroxybenzoic acid | 41.07 ± 2.38 a | 41.32 ± 1.37 a | 58.87 ± 2.43 d | 51.31 ± 2.25 c | 57.79 ± 3.64 d |
2,6-Dimethoxybenzoic acid | 25.84 ± 2.64 a | 26.83 ± 2.60 ab | 26.77 ± 1.80 a | 25.19 ± 0.39 a | 28.94 ± 2.58 b |
Protocatechuic acid | 66.53 ± 1.92 a | 77.21 ± 1.38 b | 71.54 ± 1.37 b | 15.09 ± 0.25 c | 20.74 ± 0.94 d |
Vanillic acid | 39.82 ± 4.39 a | 51.78 ± 2.56 b | 56.77 ± 1.42 c | 45.37 ± 4.48 d | 31.78 ± 2.07 e |
Syringic acid | 216.96 | ND | ND | ND | ND |
Syringaldehyde | 61.12 ± 3.39 a | 190.74 ± 1.51 b | 61.54 ± 1.89 a | 53.61 ± 1.89 c | 74.79 ± 12.52 d |
Gallic acid | 69.93 ± 0.35 a | 78.01 ± 2.48 b | 96.73 ± 2.82 c | 40.85 ± 2.24 d | 53.90 ± 1.49 e |
Trans-cinnamic acid | 232.30 ± 56.40 a | 191.99 ± 30.85 a | 157.86 ± 24.1 b | 172.55 ± 25.9 b | 205.16 ± 62.97 a |
p-coumaric acid | 99.85 ± 9.49 a | 121.03 ± 6.12 b | 106.46 ± 15.22 c | 55.37 ± 5.17 d | 124.11 ± 15.18 b |
Caffeic acid | 67.25 ± 1.42 a | 63.06 ± 1.36 b | 63.93 ± 1.05 b | 58.49 ± 0.30 c | 103.02 ± 3.81 d |
Ferulic acid | 144.66 ± 11.61 a | 314.7 ± 16.77 b c | 293.01 ± 22.84 c | 116.56 ± 1.02 d | 121.73 ± 1.04 e |
Bambara Groundnut Landrace 1 | |||||
---|---|---|---|---|---|
Phenolic Acid (µg/g) | Black | Red | Brown | Black-Eyed | Brown-Eyed |
4-Hydroxybenzoic acid | 38.60 ± 2.74 a | 37.70 ± 0.38 a | 35.57 ± 1.07 b | 47.34 ± 2.04 c | 41.77 ± 2.05 d |
2,6-Dimethoxybenzoic acid | 23.49 ± 2.58 a | 21.58 ± 2.63 a | 26.01 ± 1.69 a | 23.56 ± 5.89 a | 22.52 ± 2.61 a |
Protocatechuic acid | 12.36 ± 1.55 a | 13.99 ± 5.97 ac | 26.28 ± 0.49 b | 14.54 ± 0.59 c | 6.58 ± 0.22 d |
Vanillic acid | 35.31 ± 0.51 a | 50.63 ± 8.58 b | 29.44 ± 4.08 c | 43.96 ± 6.83 b | 27.46 ± 4.24 c |
Syringic acid | ND | ND | ND | ND | ND |
Syringaldehyde | 49.07 ± 0.97 a | 153.50 ± 1.72 d | 50.24 ± 1.29 a | 68.89 ± 0.68 c | 49.16 ± 1.01 a |
Gallic acid | 35.82 ± 1.93 a | 39.67 ± 0.34 bc | 41.59 ± 0.40 c | 37.28 ± 2.58 ab | 35.52 ± 2.86 a |
Trans-cinnamic acid | 297.3 ± 15.58 a | 261.54 ± 39.76 a | 317.71 ± 56.68 bc | 299.23 ± 4.81 a | 378.6 ± 19.92 d |
p-coumaric acid | 69.27 ± 4.51 a | 74.49 ± 2.45 b | 60.24 ± 5.21 d | 53.37 ± 8.39 d c | 73.00 ± 7.05 a b |
Caffeic acid | 64.44 ± 2.62 a c | 60.16 ± 0.65 b | 59.08 ± 0.18 d | 62.06 ± 1.02 c | 58.93 ± 1.00 d |
Ferulic acid | 121.61 ± 4.03 a | 227.3 ± 12.65 b | 172.98 ± 3.98 c | 114.9 ± 22.57 d | 96.14 ± 3.75 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okafor, J.N.C.; Meyer, M.; Le Roes-Hill, M.; Jideani, V.A. Flavonoid and Phenolic Acid Profiles of Dehulled and Whole Vigna subterranea (L.) Verdc Seeds Commonly Consumed in South Africa. Molecules 2022, 27, 5265. https://doi.org/10.3390/molecules27165265
Okafor JNC, Meyer M, Le Roes-Hill M, Jideani VA. Flavonoid and Phenolic Acid Profiles of Dehulled and Whole Vigna subterranea (L.) Verdc Seeds Commonly Consumed in South Africa. Molecules. 2022; 27(16):5265. https://doi.org/10.3390/molecules27165265
Chicago/Turabian StyleOkafor, Jane N. C., Mervin Meyer, Marilize Le Roes-Hill, and Victoria A. Jideani. 2022. "Flavonoid and Phenolic Acid Profiles of Dehulled and Whole Vigna subterranea (L.) Verdc Seeds Commonly Consumed in South Africa" Molecules 27, no. 16: 5265. https://doi.org/10.3390/molecules27165265
APA StyleOkafor, J. N. C., Meyer, M., Le Roes-Hill, M., & Jideani, V. A. (2022). Flavonoid and Phenolic Acid Profiles of Dehulled and Whole Vigna subterranea (L.) Verdc Seeds Commonly Consumed in South Africa. Molecules, 27(16), 5265. https://doi.org/10.3390/molecules27165265