Antioxidative Properties and Acrylamide Content of Functional Wheat-Flour Cookies Enriched with Wild-Grown Fruits
Abstract
:1. Introduction
2. Results and Discussion
2.1. Organoleptic Evaluation
2.2. Chemical Composition
2.3. Total Polyphenols and Antioxidant Activity
2.4. Acrylamide
3. Materials and Methods
3.1. Materials
Wheat Cookie Preparation
3.2. Methods
3.2.1. Organoleptic Assessment
3.2.2. Chemical Composition
3.2.3. Preparation of Methanol–Acetone Extracts
3.2.4. Total Polyphenols
3.2.5. Determination of ABTS Activity
3.2.6. Determination of FRAP Activity
3.2.7. Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) Analysis of Flavonoids and Phenolic Acids
3.2.8. High-Performance Liquid Chromatography (HPLC) Analysis of Anthocyanins
3.2.9. Determination of the Acrylamide Content
3.3. Data Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rifai, L.; Saleh, F.A.A. Review on acrylamide in food: Occurrence, toxicity, and mitigation strategies. Int. J. Toxicol. 2020, 39, 93–102. [Google Scholar]
- Sung, W.C.; Chen, C.Y. Influence of cookies formulation on the formation of acrylamide. J. Food Nutr. Res. 2017, 5, 370–378. [Google Scholar]
- Benford, D.; Ceccatelli, S.; Cottrill, B.; DiNovi, M.; Dogliotti, E.; Edler, L.; Farmer, P.; Fuerst, P.; Hoogenboom, L.R.; Knutsen, H.K.; et al. Scientific opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar] [CrossRef]
- Ou, J.; Wang, M.; Zheng, J.; Ou, S. Review. Positive and negative effects of polyphenol incorporation in baked foods. Food Chem. 2019, 2984, 90–99. [Google Scholar]
- Gómez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar]
- Sidor, A.; Gramza-Michałowska, A. Black chokeberry Aronia melanocarpa L.-A qualitative composition, phenolic profile and antioxidant potential. Molecules 2019, 24, 3710. [Google Scholar] [CrossRef]
- Borowska, S.; Brzóska, M.M. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr. Rev. Food Sci. Food Saf. 2016, 15, 982–1017. [Google Scholar]
- Samec, D.; Piljac-Żegarac, J. Postharvest stability of antioxidant compounds in hawthorn and cornelian cherries at room and refrigerator temperatures-comparison with blackberries, white and red grapes. Sci. Hortic. 2011, 131, 15–21. [Google Scholar]
- Zhang, Z.; Chang, Q.; Zhu, M.; Huang, Y.; Ho, W.K.K.; Chen, Z.-Y. Characterization of antioxidants present in hawthorn fruits. J. Nutr. Biochem. 2001, 12, 144–152. [Google Scholar]
- Baltacioğlu, C.; Velioğlu, S.; Karacabey, E. Changes in total phenolic and flavonoid contents of rowanberry fruit during postharvest storage. J. Food Qual. 2011, 34, 278–283. [Google Scholar]
- Hukkanen, A.T.; Pölönen, S.S.; Kärenlampi, S.O.; Kokko, H.I. Antioxidant capacity and phenolic content of sweet rowanberries. J. Agric. Food Chem. 2006, 54, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Polumackanycz, M.; Kaszuba, M.; Konopacka, A.; Marzec-Wróblewska, U.; Wesolowski, M.; Waleron, K.; Buciński, A.; Viapiana, A. Phenolic composition and biological properties of wild and commercial dog rose fruits and leaves. Molecules 2020, 25, 5272. [Google Scholar] [CrossRef] [PubMed]
- Lipowski, J.; Marszałek, K.; Skąpska, S. Sea Buckthorn-an innovative raw material for the fruit and vegetable processing industry. J. Fruit Ornam. Plant Res. 2009, 17, 121–126. [Google Scholar]
- Kruczek, M.; Świderski, A.; Mech-Nowak, A.; Król, K. Antioxidant capacity of crude extracts containing carotenoids from the berries of various cultivars of sea buckthorn (Hippophae rhamnoides L.). Acta Biochim. Polon. 2012, 59, 135–137. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food-a review. J. Funct. Foods 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef]
- Cristea, E.; Ghendov-Mosanu, A.; Patras, A.; Socaciu, C.; Pintea, A.; Tudor, C.; Sturza, R. The influence of temperature, storage conditions, pH, and ionic strength on the antioxidant activity and color parameters of rowan berry extracts. Molecules 2021, 26, 3786. [Google Scholar] [CrossRef]
- Nazhand, A.; Lucarini, M.; Durazzo, A.; Zaccardelli, M.; Cristarella, S.; Souto, S.B.; Silva, A.M.; Severino, P.; Souto, E.B.; Santini, A. Hawthorn (Crataegus spp.): An updated overview on its beneficial properties. Forests 2020, 11, 564. [Google Scholar] [CrossRef]
- Singh, K.; Singh, D.; Lone, J.F.; Bhat, S.; Sharma, Y.P.; Gairola, S. Nutraceutical potential of rose hips of three wild Rosa species from Western Himalaya, India. Not. Bot. Horti Agrobot. Cluj Napoca 2021, 49, 12471. [Google Scholar] [CrossRef]
- Liu, D.; He, X.Q.; Wu, D.T.; Li, H.B.; Feng, Y.B.; Zou, L.; Gan, R.Y. Elderberry (Sambucus nigra L.): Bioactive compounds, health functions, and applications. J. Agric. Food Chem. 2022, 70, 4202–4220. [Google Scholar] [CrossRef]
- Tereshchuk, L.; Starovoytova, K.; Babich, O.; Dyshlyuk, L.; Sergeeva, I.; Pavsky, V.; Ivanova, S.; Prosekov, A. Sea buckthorn and rosehip oils with chokeberry extract to prevent hypercholesterolemia in mice caused by a high-fat diet in vivo. Nutrients 2020, 12, 2941. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.M.; Wosiacki, G. Sensory evaluation of bakery products with the addition of apple pomace flour. Cienc. Tecnol. Aliment. 2010, 30, 582–588. [Google Scholar] [CrossRef]
- Kohajdova, Z.; Karovicova, J.; Magala, M.; Kuchtova, V. Effect of apple pomace powder addition on farinographic properties of wheat dough and Biscuits quality. Chem. Pap. 2014, 68, 1059–1065. [Google Scholar] [CrossRef]
- Sudha, M.L.; Dharmesh, S.M.; Pynam, H.; Bhimangouder, S.V.; Eipson, S.W.; Somasundaram, R.; Nanjarajurs, S.M. Antioxidant and cyto/DNA protective properties of apple pomace enriched bakery products. J. Food Sci. Technol. 2016, 53, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Šarić, B.; Mišan, A.; Mandić, A.; Nedeljković, N.; Pojić, M.; Pestorić, M.; Đilas, S. Valorisation of raspberry and blueberry pomace through the formulation of value-added gluten-free cookies. J. Food Sci. Technol. 2016, 53, 1140–1150. [Google Scholar] [CrossRef]
- Tańska, M.; Roszkowska, B.; Czaplicki, S.; Borowska, E.J.; Bojarska, J.; Dąbrowska, A. Effect of fruit pomace addition on shortbread cookies to improve their physical and nutritional values. Plant Foods Hum. Nutr. 2016, 71, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Šaponjac, V.T.; Ćetković, G.; Čanadanović-Brunet, J.; Pajin, B.; Djilas, S.; Petrović, J.; Lončarević, I.; Stajčić, S.; Vulić, J. Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chem. 2016, 207, 27–33. [Google Scholar] [CrossRef]
- Ajila, C.M.; Leelavathi, K.; Rao, U.J.S.P. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Arun, K.B.; Persia, F.; Aswathy, P.S.; Chandran, J.; Sajeev, M.S.; Jayamurthy, P.; Nisha, P. Plantain peel-a potential source of antioxidant dietary fibre for developing functional cookies. J. Food Sci. Technol. 2015, 52, 6355–6364. [Google Scholar] [CrossRef] [Green Version]
- Agama-Acevedo, E.; Islas-Hernández, J.J.; Pacheco-Vargas, G.; Osorio-Díaz, P.; Bello-Pérez, L.A. Starch digestibility and glycemic index of cookies partially substituted with unripe banana flour. LWT-Food Sci. Technol. 2012, 46, 177–182. [Google Scholar] [CrossRef]
- Turksoy, S.; Ozkaya, B. Pumpkin and carrot pomace powders as a source of dietary fiber and their effects on the mixing properties of wheat flour dough and cookie quality. Food Sci. Technol. Res. 2011, 17, 545–553. [Google Scholar] [CrossRef]
- Srivastava, P.; Indrani, D.; Singh, R.P. Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. Int. J. Food Sci. Nutr. 2014, 65, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Younis, K.; Islam, R.; Jahan, K.; Kundu, M.; Ray, A. Investigating the effect of mosambi (Citrus limetta) peel powder on physicochemical and sensory properties of cookies. Qual. Assur. Saf. Crops Foods 2016, 8, 393–398. [Google Scholar] [CrossRef]
- Kohajdova, Z.; Karovicova, J.; Jurasova, M. Influence of grapefruit dietary fibre rich powder on the rheological characteristics of wheat flour dough and on biscuit quality. Acta Aliment. 2013, 42, 91–101. [Google Scholar] [CrossRef]
- Kohajdova, Z.; Karovicova, J.; Jurasova, M.; Kukurova, K. Application of citrus dietary fibre preparations in biscuit production. J. Food Nutr. Res. 2011, 50, 182–190. [Google Scholar]
- Arora, A.; Camire, M.E. Performance of potato peels in muffins and cookies. Food Res. Int. 1994, 27, 15–22. [Google Scholar] [CrossRef]
- Naknaen, P.; Itthisoponkul, T.; Sondee, A.; Angsombat, N. Utilization of watermelon rind waste as a potential source of dietary fiber to improve health promoting properties and reduce glycemic index for cookie making. Food Sci. Biotechnol. 2016, 25, 415–424. [Google Scholar] [CrossRef]
- Albuquerque, J.G.; Duarte, A.M.; Conceição, M.L.; Aquino, J.S. Integral utilization of seriguela fruit (Spondias purpurea L.) in the production of cookies. Rev. Bras. Frutic. 2016, 38, 1–7. [Google Scholar] [CrossRef]
- Aboshora, W.; Yu1, J.; Omar, K.A.; Li, Y.; Hassanin, H.A.M.; Navich, W.B.; Zhang, L. Preparation of doum fruit (Hyphaene thebaica) dietary fiber supplemented biscuits: Influence on dough characteristics, biscuits quality, nutritional profile and antioxidant properties. J. Food Sci. Technol. 2019, 56, 1328–1336. [Google Scholar] [CrossRef]
- Ertaş, N.; Aslan, M. Antioxidant and physicochemical properties of cookies containing raw and roasted hemp flour. Acta Sci. Pol. Technol. Aliment. 2020, 19, 177–184. [Google Scholar]
- Borczak, B.; Sikora, M.; Kapusta-Duch, J. The effect of polyols and intensive sweeteners blends on the nutritional properties and starch digestibility of sugar-free cookies. Starch–Stärke 2022, 74, 2100180. [Google Scholar] [CrossRef]
- Luthria, D.L.; Lu, Y.; John, K.M.M. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties. J. Funct. Foods 2015, 18, 910–925. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Fulgencio, S.C. Literature underestimate the actual antioxidant capacity of cereals. J. Agric. Food Chem. 2005, 53, 5036–5040. [Google Scholar] [CrossRef] [PubMed]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Sadilova, E.; Carle, R.; Stintzing, F.C. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol. Nutr. Food Res. 2007, 51, 1461–1471. [Google Scholar] [CrossRef]
- Sinela, A.M.; Mertz, C.; Achir, N.; Rawat, N.; Vidot, K.; Fulcrand, H.; Dornier, M. Exploration of reaction mechanisms of anthocyanin degradation in a roselle extract through kinetic studies on formulated model media. Food Chem. 2017, 235, 67–75. [Google Scholar] [CrossRef]
- Matilla, P.; Pihlava, J.M.; Hellstrom, J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005, 53, 8290–8295. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Rabalski, I. Effect of baking on free and bound phenolic acids in wholegrain bakery products. J. Cereal Sci. 2013, 57, 312–318. [Google Scholar] [CrossRef]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato—a review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallosc, L.; Hawkins Byrnec, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compost. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska-Ryś, E.; Zalewska-Korona, M.; Kalbarczyk, J. Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. J. Fruit Ornam Plant Res. 2009, 17, 115–120. [Google Scholar]
- Borczak, B.; Sikora, E.; Sikora, M.; Kapusta-Duch, J.; Kutyła-Kupidura, E.M.; Fołta, M. Nutritional properties of wholemeal wheat-flour bread with an addition of selected wild grown fruits. Starch–Stärke 2016, 68, 1–8. [Google Scholar] [CrossRef]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Russo, D. 2018. Flavonoids and the structure-antioxidant activity relationship. J. Pharmacogn. Nat. Prod. 2018, 4, 1. [Google Scholar] [CrossRef]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef]
- Gokmen, V.; Senyuva, H.Z. Acrylamide formation is prevented by diavalent cations during the Maillard reaction. Food Chem. 2007, 103, 196–203. [Google Scholar] [CrossRef]
- Gokmen, V.; Acar, O.C.; Koksel, H.; Acar, J. Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem. 2007, 104, 1136–1142. [Google Scholar] [CrossRef]
- Ahn, J.S.; Castle, L.; Clarke, D.B.; Lloyd, A.S.; Philo, M.R.; Speck, D.R. Verification of the findings of acrylamide in heated foods. Food Addit. Contam. 2002, 19, 1116–1124. [Google Scholar] [CrossRef]
- Joint FAO/WHO Food Standards Programme Codex Committee. Food Additives and Contaminants. Thirty-Sixth Session; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Agenda Item 6 (b). Joint FAO/WHO Food Standards Programme Codex Committee. In Proceedings of the Paper Presented at: Food Additives and Contaminants: Working Document for Information and Support to the Discussion on the General Standard for Food Additives, Thirty-Eighth Session, The Hague, The Netherlands, 24–28 April 2006.
- Tardiff, R.G.; Gargas, M.L.; Kirman, C.R.; Leigh, C.M.; Sweeney, L.M. Estimation of safe dietary intake levels of acrylamide for humans. Food Chem. Toxicol. 2010, 48, 658–667. [Google Scholar] [CrossRef]
- Lindsay, R.C.; Jang, S. Chemical intervention strategies for substantial suppression of acrylamide formation in fried potato products. Adv. Exp. Med. Biol. 2005, 561, 393–404. [Google Scholar] [PubMed]
- Gokmen, V.; Akbudak, B.; Serpen, A.; Acar, J.; Turan, Z.M.; Eris, A. Effects of controlled atmosphere storage and low-dose irradiation on potato tuber components affecting acrylamide and color formations upon frying. Eur. Food Res. Technol. 2007, 224, 681–687. [Google Scholar] [CrossRef]
- Amrein, T.M.; Schonbachler, B.; Escher, F.; Amado, R. Acrylamide in gingerbread: Critical factors for formation and possible ways for reduction. J. Agr. Food Chem. 2004, 52, 4282–4288. [Google Scholar] [CrossRef] [PubMed]
- Pedreschi, F.; Kaack, K.; Granby, K. The effect of asparaginase on acrylamide formation in French fries. Food Chem. 2008, 109, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Ciesarova, Z.; Kiss, E.; Boegl, P. Impact of L-asparaginase on acrylamide content in potato products. J. Food Nutr. Res. 2006, 45, 141–146. [Google Scholar]
- Brathen, E.; Kita, A.; Knutsen, S.H.; Wicklund, T. Addition of glycine reduces the content of acrylamide in cereal and potato products. J. Agr. Food Chem. 2005, 53, 3259–3264. [Google Scholar] [CrossRef]
- Biedermann, M.; Grob, K. Model studies on acrylamide formation in potato, wheat flour and corn starch; ways to reduce acrylamide contents in bakery ware. Mitt. Lebensmittel unters. Hygiene 2003, 94, 406–422. [Google Scholar]
- Hedegaard, R.V.; Granby, K.; Frandsen, H.; Thygesen Skibsted, J.; Horsfelt, L. Acrylamide in bread. effect of prooxidants and antioxidants. Eur. Food Res. Technol. 2008, 227, 519–525. [Google Scholar] [CrossRef]
- Açar, O.C.; Gökmen, V. Investigation of acrylamide formation on bakery products using a crust-like model. Mol. Nutr. Food Res. 2009, 53, 1521–1525. [Google Scholar] [CrossRef]
- Mehri, S.; Veis, H.K.; Hassani, F.H.; Hosseinzadeh, H. Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. Iran Biomed. J. 2014, 18, 101–106. [Google Scholar]
- Maslanka, R.; Zadrag-Tecza, R.; Kwolek, K.; Kwolek-Mirek, M. The effect of berry juices on the level of oxidative stress in yeast cells exposed to acrylamide. J. Food Biochem. 2016, 40, 686–695. [Google Scholar] [CrossRef]
- POLISH STANDARD PN-EN ISO 4121; Sensory Analysis-Methodology-Assessment of Food Products by Scaling Methods. Polish Committee for Standardization: Warsaw, Poland, 1998.
- POLISH STANDARD PN-ISO 6658; Sensory Analysis-Methodology-General Guidelines. Polish Committee for Standardization: Warsaw, Poland, 1998.
- POLISH STANDARD PN-EN ISO 8586-2; Sensory Analysis-General Guidelines for Choice, Training and Monitoring of the Trainee-part 2: Experts of Sensory Assessment. Polish Committee for Standardization: Warsaw, Poland, 2008.
- POLISH STANDARD PN-EN ISO 8586; Sensory Analysis-General Guidelines for Choice, Training and Monitoring of the Trainee-Selected Assessors. Polish Committee for Standardization: Warsaw, Poland, 2014.
- AOAC. Official Methods of Analysis, 18th ed.; Gaithersburg Association of Official Analytical Chemists International: Rockville, MD, USA, 2006. [Google Scholar]
- Swain, T.; Hillis, W.E. The phenolic constituens of Prunus domestica. The quantitative analysis of phenolic constituents. J. Agric. Food Chem. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power. The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Barton, H.; Fołta, M.; Zachwieja, Z. Application of FRAP, ABTS and DPPH methods to estimation of antioxidant activity of food products. Med. News 2005, 74, 510–513. [Google Scholar]
- Ellnain-Wojtaszek, M.; Zgórka, G. High-perfomance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1457–1471. [Google Scholar] [CrossRef]
- Weber, N.; Veberic, R.; Miculic-Petkovsek, M.; Stampar, F.; Koron, D.; Munda, A.; Jakopic, J. Metabolite accumulation in strawberry (Fragaria x ananassa Duch.) fruits and runners in response to Colletotrichum nymphaeae infection. Physiol. Mol. Plant Pathol. 2015, 92, 119–129. [Google Scholar] [CrossRef]
- Paleologos, E.K.; Konotominas, M.G. Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection. J. Chromatogr. A 2005, 1077, 128–135. [Google Scholar] [CrossRef]
Dough Ingredients (g) | ||||||
---|---|---|---|---|---|---|
Cookies Kinds | Wheat Flour | Margarine | Saccharose | Eggs | Baking Powder | Lypholized Fruits |
Control | 500 | 250 | 200 | 150 | 5 | 0 |
Chokeberry (Aronia melanocarpa) | 495 | 250 | 200 | 150 | 5 | 5 |
Wild rose (Rosa canina L.) | 495 | 250 | 200 | 150 | 5 | 5 |
Elderberry (Sambucus nigra L.) | 495 | 250 | 200 | 150 | 5 | 5 |
Hawthorn (Crataegus L.) | 495 | 250 | 200 | 150 | 5 | 5 |
Rowan (Sorbus aucuparia L.) | 495 | 250 | 200 | 150 | 5 | 5 |
Sea buckthorn (Hippophae rhamnoides L.) | 495 | 250 | 200 | 150 | 5 | 5 |
Cookies with Fruits | |||||||
---|---|---|---|---|---|---|---|
Chokeberry (Aronia melanocarpa) | Wild rose (Rosa canina L.) | Elderberry (Sambucus nigra L.) | Hawthorn (Crataegus L.) | Rowan (Sorbus aucuparia L.) | Sea buckthorn (Hippophae rhamnoides L.) | Control | |
Quality parameters | |||||||
Appearance | 0.80 a ± 0.1 | 0.93 b ± 0.1 | 0.80 a ± 0.1 | 0.72 a ± 0.1 | 0.93 b ± 0.1 | 0.80 a ± 0.1 | 0.91 b ± 0.1 |
Surface | 0.60 bc ± 0.1 | 0.67 d ± 0.1 | 0.55 a ± 0.1 | 0.55 a ± 0.6 | 0.60 abc ± 0.1 | 0.57 ab ± 0.1 | 0.65 cd ± 0.1 |
Consistency | 0.40 abc ± 0.1 | 0.42 c ± 0.1 | 0.37 ab ± 0.0 | 0.35 a ± 0.6 | 0.40 bc ± 0.1 | 0.37 ab ± 0.1 | 0.39 abc ± 0.0 |
Color | 0.41 a ± 0.0 | 0.46 b ± 0.1 | 0.40 a ± 0.1 | 0.40 b ± 0.0 | 0.45 b ± 0.1 | 0.40 a ± 0.0 | 0.43 ab ± 0.0 |
Flavor | 0.79 ab ± 0.1 | 0.85 b ± 0.1 | 0.75 ac ± 0.1 | 0.68 c ± 0.1 | 0.83 ab ± 0.1 | 0.76 a ± 0.1 | 0.80 ab ± 0.1 |
Tastiness | 0.90 a ± 0.1 | 1.01 b ± 0.4 | 0.85 c ± 0.2 | 0.75 c ± 0.2 | 0.97 ab ± 0.2 | 0.88 a ± 0.1 | 0.97 ab ± 0.2 |
Total | 3.89 c ± 0.3 | 4.40 a ± 0.4 | 3.71 c ± 0.4 | 3.45 d ± 1.3 | 4.19 b ± 0.4 | 3.79 c ± 0.3 | 4.14 b ± 0.4 |
Analysed Parameters/Cookies with Fruits | Chokeberry (Aronia melanocarpa) | Wild Rose (Rosa canina L.) | Elderberry (Sambucus nigra L.) | Hawthorn (Crataegus L.) | Rowan (Sorbus aucuparia L.) | Sea Buckthorn (Hippophae rhamnoides L.) | Control |
---|---|---|---|---|---|---|---|
Dry matter (%) | 95.50 ± 0.1 c | 94.39 ± 0.1 a | 94.91 ± 0.1 b | 94.83 ± 0.2 c | 94.73 ± 0.1 c | 94.75 ± 0.1 c | 94.18 ± 0.2 a |
Carbohydrates (g·100 g−1 dm) | 65.31 ± 0.0 a | 60.62 ± 0.1 f | 62.55 ± 0.0 b | 59.26 ± 0.1 c | 61.34 ± 0.0 d | 56.86 ± 0.2 e | 60.07 ± 0.0 f |
Proteins (g·100 g−1 dm) | 9.09 ± 0.0 d | 9.71 ± 0.0 c | 9.57 ± 0.0 b | 9.27 ± 0.0 a | 9.30 ± 0.0 a | 9.53 ± 0.0 b | 9.76 ± 0.1 c |
Fat (g·100 g−1 dm) | 20.44 ± 0.1 ab | 21.03 ± 0.1 c | 20.39 ± 0.1 a | 20.56 ± 0.1 b | 21.00 ± 0.1 c | 21.22 ± 0.1 d | 21.17 ± 0.1 d |
Dietary fiber (g·100 g−1 dm) | 3.12 ± 0.0 d | 2.19 ± 0.1 a | 1.69 ± 0.1 c | 5.00 ± 0.1 e | 2.27 ± 0.1 ab | 6.36 ± 0.1 f | 2.33 ± 0.0 b |
Ash (g·100 g−1 dm) | 0.66 ± 0.1 c | 0.84 ± 0.0 ab | 0.71 ± 0.0 d | 0.74 ± 0.0 e | 0.82 ± 0.0 a | 0.78 ± 0.0 f | 0.85 ± 0.0 b |
Chokeberry (Aronia melanocarpa) | Wild Rose (Rosa canina L.) | Elderberry (Sambucus nigra L.) | Hawthorn (Crataegus L.) | Rowan (Sorbus aucuparia L.) | Sea Buckthorn (Hippophae rhamnoides L.) | Control | |
---|---|---|---|---|---|---|---|
Total polyphenols (mg·100 g−1 dm) | 165.31 ± 1.2 b | 256.44 ± 1.0 a | 144.69 ± 0.5 c | 139.52 ± 0.7 e | 149.66 ± 1.6 d | 98.66 ± 0.4 f | 91.26 ± 1.50 g |
Phenolic acids (µg·100 g−1 dm) | |||||||
Neochlorogenic acid | 919.28 ± 4.85 a | nd | nd | 178.03 ± 0.14 b | 5366.52 ± 12.11 c | nd | nd |
Protocatechuic acid | 269.20 ± 0.62 a | 59.33 ± 0.29 b | 131.23 ± 0.72 c | 33.59 ± 0.29 d | 2244.69 ± 0.90 c | nd | 23.72 ± 0.01 e |
Chlorogenic acid | 1026.18 ± 4.94 a | nd | nd | 113.59 ± 1.23 b | nd | 51.00 ± 0.87 d | nd |
Cinnamic acid | 3.32 ± 1.85 a | nd | nd | nd | 77.18 ± 0.04 b | nd | nd |
Caffeic acid | nd | nd | nd | nd | nd | nd | nd |
Vanillic acid | nd | nd | nd | nd | nd | nd | 42.71 ± 0.18 |
Flavanols (µg·100 g−1 dm) | |||||||
Catechin | 21.82 ± 1.23 ab | 45.60 ± 20.17 b | 14.05 ± 0.12 a | 23.73 ± 1.23 ab | nd | 11.70 ± 0.52 a | nd |
Epicatechin | 792.48 ± 0.53 a | nd | nd | 823.86 ± 6.58 b | nd | nd | nd |
Flavonols (µg·100 g−1 dm) | |||||||
Quercetin | 202.66 ± 1.71 a | 163.82 ± 0.29 b | 156.04 ± 0.23 c | 133.01 ± 0.07 d | 19.05 ± 0.18 e | 200.73 ± 0.76 f | nd |
Quercetin-3-galactoside (hyperoside) | 237.19 ± 3.17 a | 156.33 ± 0.98 b | nd | 309.04 ± 0.47 c | 77.18 ± 0.45 d | 190.86 ± 1.79 e | nd |
Kaempferol-7-O-glucoside (populnin) | nd | 743.44 ± 17.35 | nd | nd | nd | nd | nd |
Rutin | 461.74 ± 10.92 a | 100.60 ± 5.05 b | 1083.20 ± 1.40 c | 133.04 ± 0.08 d | 126.34 ± 0.80 e | 304.96 ± 2.06 f | nd |
Flavones (µg·100 g−1 dm) | |||||||
Apigenin-8-C-glucoside (vitexin) | nd | nd | nd | 166.59 ± 2.19 | nd | nd | nd |
Luteolin 7-O-glucoside (cynaroside) | nd | nd | nd | nd | nd | 294.36 ± 0.26 | nd |
Anthocyanins (µg·100 g−1 dm) | |||||||
Cyanidin-3-glucoside (idaein) | 78.05 ± 0.36 | nd | nd | nd | nd | nd | nd |
Cyanidin-3-O-glucoside (kuromanine) | nd | nd | 376.1 ± 11.42 a | 279.95 ± 3.31 b | nd | nd | nd |
Antioxidant activity | |||||||
ABTS (µmol·g−1 dm) | 15.22 ± 0.05 a | 5.38 ± 0.04 d | 9.42 ± 0.01 b | 7.58 ± 0.01 c | 7.61 ± 0.05 c | 4.99 ± 0.03 e | 1.11 ± 0.00 f |
FRAP (µmol·g−1 dm) | 17.47 ± 0.05 b | 26.12 ± 0.83 a | 11.37 ± 0.17 e | 12.30 ± 0.17 d | 13.66 ± 0.16 c | 9.83 ± 0.27 f | 2.46 ± 0.08 g |
Acrylamide content (µg·1000 g−1 dm) | 81.98 ± 0.95 a | 173.90 ± 0.54 d | 120.26 ± 1.09 b | 524.96 ± 1.98 f | 370.63 ± 1.76 e | 136.06 ± 0.65 c | 1290.77 ± 1.23 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borczak, B.; Sikora, M.; Kapusta-Duch, J.; Fołta, M.; Szewczyk, A.; Zięć, G.; Doskočil, I.; Leszczyńska, T. Antioxidative Properties and Acrylamide Content of Functional Wheat-Flour Cookies Enriched with Wild-Grown Fruits. Molecules 2022, 27, 5531. https://doi.org/10.3390/molecules27175531
Borczak B, Sikora M, Kapusta-Duch J, Fołta M, Szewczyk A, Zięć G, Doskočil I, Leszczyńska T. Antioxidative Properties and Acrylamide Content of Functional Wheat-Flour Cookies Enriched with Wild-Grown Fruits. Molecules. 2022; 27(17):5531. https://doi.org/10.3390/molecules27175531
Chicago/Turabian StyleBorczak, Barbara, Marek Sikora, Joanna Kapusta-Duch, Maria Fołta, Agnieszka Szewczyk, Gabriela Zięć, Ivo Doskočil, and Teresa Leszczyńska. 2022. "Antioxidative Properties and Acrylamide Content of Functional Wheat-Flour Cookies Enriched with Wild-Grown Fruits" Molecules 27, no. 17: 5531. https://doi.org/10.3390/molecules27175531
APA StyleBorczak, B., Sikora, M., Kapusta-Duch, J., Fołta, M., Szewczyk, A., Zięć, G., Doskočil, I., & Leszczyńska, T. (2022). Antioxidative Properties and Acrylamide Content of Functional Wheat-Flour Cookies Enriched with Wild-Grown Fruits. Molecules, 27(17), 5531. https://doi.org/10.3390/molecules27175531