Radix Asteris: Traditional Usage, Phytochemistry and Pharmacology of An Important Traditional Chinese Medicine
Abstract
:1. Introduction
2. Methodology
3. Botany and Ethnopharmacology
3.1. Botany
3.2. Ethnopharmacology
4. Chemical Composition
4.1. Terpenes
4.2. Organic Acids
4.3. Peptides
4.4. Flavonoids
4.5. Other Compounds
5. Pharmacological Activity
5.1. Anti-Inflammation Activity
5.2. Anti-tumor Activity
5.3. Antioxidation Activity
5.4. Antidepressant Activity
5.5. Antibacterial Activity
5.6. Antiviral Activity
5.7. Other Activities
6. Toxicity
7. Quality Control
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Publisher: Beijing, China, 2020; Volume 1. [Google Scholar]
- Editorial Board of Flora of China (Ed.). Flora of China; China Science Publisher: Beijing, China, 1992. [Google Scholar]
- Yu, P.; Cheng, S.; Xiang, J.; Yu, B.; Zhang, M.; Zhang, C.; Xu, X. Expectorant, antitussive, anti-inflammatory activities and compositional analysis of Aster tataricus. J. Ethnopharmacol. 2015, 164, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Song, Q.; Wang, L.; Xie, T.; Wu, X.; Wang, P.; Yin, G.; Ye, W.; Wang, T. Antitussive, expectorant and anti-inflammatory activities of different extracts from Exocarpium Citri grandis. J. Ethnopharmacol. 2014, 156, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Y.; Zhang, T.J.; Gao, W.Y.; Zheng, Y.N.; Chen, H.X. Triterpenes and Steroids from Aster tataricus. Nat. Prod. Res. 2006, 18, 4–6. [Google Scholar]
- Su, X.D.; Jang, H.J.; Wang, C.Y.; Lee, S.W.; Rho, M.C.; Kim, Y.H.; Yang, S.Y. Anti-inflammatory Potential of Saponins from Aster tataricus via NF-kappaB/MAPK Activation. J. Nat. Prod. 2019, 82, 1139–1148. [Google Scholar] [CrossRef]
- Liu, Z.; Xi, R.; Zhang, Z.; Li, W.; Liu, Y.; Jin, F.; Wang, X. 4-Hydroxyphenylacetic acid attenuated inflammation and edema via suppressing HIF-1alpha in seawater aspiration-induced lung injury in rats. Int. J. Mol. Sci. 2014, 15, 12861–12884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Q.; Wang, T.; Zhang, H.; Tian, Y.; Luo, H.; Yang, S.; Wang, Y.; Huang, X. Inhibition of human gastric carcinoma cell growth in vitro by a polysaccharide from Aster tataricus. Int. J. Biol. Macromol. 2012, 51, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Xiu, Y.F.; Cheng, X.M.; Liu, L.; Wu, T.; Wang, Z.T. Comparison of shionone content in different slices of prepared radix asteris. J. Shanghai Univ. TCM 2006, 20, 59–61. [Google Scholar]
- Nagao, T.; Okabe, H.; Yamauchi, T. Studies on the Constituents of Aster tataricus L. f. I.: Structures of Shionosides a and B: Monoterpene Glycosides Isolated from the Root. Chem. Pharm. Bull. 1988, 36, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Nagao, T.; Hachiyama, S.; Okabe, H.; Yamauchi, T. Studies on the Constituents of Aster tataricus L. f. II: Structures of Aster Saponins Isolated from the Root. Chem. Pharm. Bull. 1989, 37, 1977–1983. [Google Scholar] [CrossRef] [Green Version]
- Nagao, T.; Okabe, H.; Yamauchi, T. Studies on the Constituents of Aster tataricus L. f. III: Structures of Aster Saponins E and F Isolated from the Root. Chem. Pharm. Bull. 1990, 38, 783–785. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, R.; Nagao, T.; Okabe, H.; Yamauchi, T. Studies on the Constituents of Aster tataricus L. f. IV: Structures of Aster Saponins Isolated from the Herb. Chem. Pharm. Bull. 1990, 38, 1153–1157. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Zhou, B.N.; Lin, L.Z.; Cordell, G.A. Triterpenoid saponins from Aster batangensis. Phytochemistry 1995, 38, 927–933. [Google Scholar] [CrossRef]
- Shao, Y.; Li, Y.L.; Zhou, B.N. Phenolic and triterpenoid glycosides from Aster batangensis. Phytochemistry 1996, 41, 1593–1598. [Google Scholar] [CrossRef]
- Yu, S.; Chi-Tang, H.; Chee-Kok, C.; Robert, T.R.; Bin, H.; Guo-Wei, Q. Triterpenoid saponins from Aster lingulatus. Phytochemistry 1997, 44, 337–340. [Google Scholar]
- Shao, Y.; Ho, C.; Chin, C.; Poobrasert, O.; Yang, S.; Cordell, G.A. Asterlingulatosides C and D, Cytotoxic Triterpenoid Saponins from Aster lingulatus. J. Nat. Prod. 1997, 60, 743–746. [Google Scholar] [CrossRef]
- Akihisa, T.; Kimura, Y.; Koike, K.; Yasukawa, K.; Arai, K.; Suzuki, Y.; Nikaido, T. Astertarone A: A Triterpenoid Ketone Isolated from the Roots of Aster tataricus L. Chem. Pharm. Bull. 1998, 46, 1824–1826. [Google Scholar] [CrossRef] [Green Version]
- Toshihiro, A.; Yumiko, K.; Takaaki, T.; Koichi, A. Astertarone B, a Hydroxy-Triterpenoid Ketone from the Roots of Aster tataricus L. Chem. Pharm. Bull. 1999, 47, 1161–1163. [Google Scholar]
- Lanzotti, V. Bioactive Saponins from Allium and Aster Plants. Phytochem. Rev. 2005, 4, 95–110. [Google Scholar] [CrossRef]
- Zhou, W.B.; Zeng, G.Z.; Xu, H.M.; He, W.J.; Zhang, Y.M.; Tan, N.H. Astershionones A-F, six new anti-HBV shionane-type triterpenes from Aster tataricus. Fitoterapia 2014, 93, 98–104. [Google Scholar] [CrossRef]
- Wen, B.Z.; Jun, Y.T.; Hui, M.X.; Ke, L.C.; Guang, Z.Z.; Chang, J.J.; Yu, M.Z.; Ning, H.T. Three New Antiviral Triterpenes from Aster tataricus. Z. Naturforsch. 2014, 65, 1393–1396. [Google Scholar]
- Yupeng, S.; Li, L.; Man, L.; Min, S.; Changchen, W.; Lantong, Z.; Hailin, Z. A systematic data acquisition and mining strategy for chemical profiling of Aster tataricus rhizoma (Ziwan) by UHPLC-Q-TOF-MS and the corresponding anti-depressive activity screening. J. Pharmaceut. Biomed. 2018, 154, 216–226. [Google Scholar]
- Cheng, D.; Shao, Y.; Hartman, R.; Roder, E.; Zhao, K. Oligopeptides from Aster tataricus. Phytochemistry 1994, 36, 945–948. [Google Scholar] [PubMed]
- Morita, H.; Nagashima, S.; Takeya, K.; Itokawa, H. Structure of a new peptide, astin J, from Aster tataricus. Chem. Pharm. Bull. 1995, 43, 271–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, D.L.; Shao, Y.; Zhao, K.; Hartmann, R.; Roeder, E. Pentapeptides from the roots of Aster tataricus. Pharmazie 1996, 51, 185–186. [Google Scholar]
- Morita, H.; Nagashima, S.; Uchiumi, Y.; Kuroki, O.; Takeya, K.; Itokawa, H. Cyclic peptides from higher plants. XXVIII. Antitumor activity and hepatic microsomal biotransformation of cyclic pentapeptides, astins, from Aster tataricus. Chem. Pharm. Bull. 1996, 44, 1026–1032. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, M.D.; Cao, P.P.; Zhang, C.F.; Huang, F.; Xu, X.H.; Liu, B.L.; Zhang, M. Astin B, a cyclic pentapeptide from Aster tataricus, induces apoptosis and autophagy in human hepatic L-02 cells. Chem. Biol. Interact. 2014, 223, 1–9. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, G.; Zhou, W.; He, W.; Tan, N. Astins K–P, six new chlorinated cyclopentapeptides from Aster tataricus. Tetrahedron. 2013, 69, 7964–7969. [Google Scholar] [CrossRef]
- Ng, T.B.; Liu, F.; Lu, Y.; Cheng, C.H.; Wang, Z. Antioxidant activity of compounds from the medicinal herb Aster tataricus. Comp. Biochem. Physiol. C Toxicol Pharmacol. 2003, 136, 109–115. [Google Scholar] [CrossRef]
- Campbell, J.B.; Peerbaye, Y.A. Saponin. Res. Immunol. 1992, 143, 526–530+577–578. [Google Scholar] [CrossRef]
- Zhao, D.; Hu, B.; Zhang, M.; Zhang, C.; Xu, X. Simultaneous separation and determination of phenolic acids, pentapeptides, and triterpenoid saponins in the root of Aster tataricus by high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2015, 38, 571–575. [Google Scholar] [CrossRef]
- Yang, H.; Shi, H.; Zhang, Q.; Liu, Y.; Wan, C.; Zhang, L. Simultaneous determination of five components in Aster tataricus by ultra performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. Sci. 2016, 54, 500–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Ni, J. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res. 2016, 30, 1207–1218. [Google Scholar] [CrossRef]
- Barton, G.M. A calculated response: Control of inflammation by the innate immune system. J.Clin. Investig. 2008, 118, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol. 2007, 147, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Bates, J.H.; Rincon, M.; Irvin, C.G. Animal models of asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 2009, 297, L401–L410. [Google Scholar] [CrossRef]
- Lee, H.Y.; Kim, I.K.; Yoon, H.K.; Kwon, S.S.; Rhee, C.K.; Lee, S.Y. Inhibitory effects of resveratrol on airway remodeling by transforming growth Factor-beta/Smad signaling pathway in chronic asthma model. Allergy Asthma Immunol. Res. 2017, 9, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wu, H.; Li, Y.; Liu, J.; Jia, Z.; Xu, W.; Xiao, H.; Wang, W. Aster tataricus attenuates asthma efficiently by simultaneously inhibiting tracheal ring contraction and inflammation. Biomed. Pharmacother. 2020, 130, 110616. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, M.; He, Q.; Chi, N.; Xiu, C.; Wang, Y. Effect of Aster tataricus on production of inflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) and THP-1 cells. Saudi Pharm. J. 2017, 25, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.S.; Hyun-Jae, J.; Hong, X.L.; Young, H.K.; Seo, Y.Y. Identification of potential inflammatory inhibitors from Aster tataricus. Bioorg. Chem. 2019, 92, 1303208. [Google Scholar]
- Wang, X.; Fan, L.; Yin, H.; Zhou, Y.; Tang, X.; Fei, X.; Tang, H.; Peng, J.; Ren, X.; Xue, Y.; et al. Protective effect of Aster tataricus extract on NLRP3-mediated pyroptosis of bladder urothelial cells. J. Cell. Mol. Med. 2020, 24, 13336–13345. [Google Scholar] [CrossRef]
- Ohgaki, H.; Kleihues, P. Epidemiology and etiology of gliomas. Acta. Neuropathol. 2005, 109, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.L.; Schwartzbaum, J.A.; Wrensch, M.; Wiemels, J.L. Epidemiology of brain tumors. Neurol. Clin. 2007, 25, 867–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.; Mei, H.F.; Yin, X.; Xing, Y.Q. Delayed growth of glioma by a polysaccharide from Aster tataricus involve upregulation of Bax/Bcl-2 ratio, activation of caspase-3/8/9, and downregulation of the Akt. Tumour Biol. 2014, 35, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Zhang, M.; Yao, K.; Hu, Z. Protective effect of Aster tataricus extract on retinal damage on the virtue of its antioxidant and anti-inflammatory effect in diabetic rat. Biomed. Pharmacother. 2017, 89, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Dastmalchi, K.; Whitaker, B.D.; Kennelly, E.J. Two new antioxidant malonated caffeoylquinic acid isomers in fruits of wild eggplant relatives. J. Agric. Food Chem. 2011, 59, 9645–9651. [Google Scholar] [CrossRef]
- Peluso, G.; de Feo, V.; de Simone, F.; Bresciano, E.; Vuotto, M.L. Studies on the inhibitory effects of caffeoylquinic acids on monocyte migration and superoxide ion production. J. Nat. Prod. 1995, 58, 639–646. [Google Scholar] [CrossRef]
- de Oliveira, M.R.; Chenet, A.L.; Duarte, A.R.; Scaini, G.; Quevedo, J. Molecular mechanisms underlying the anti-depressant effects of resveratrol: A review. Mol. Neurobiol. 2018, 55, 4543–4559. [Google Scholar] [CrossRef]
- Wan, C.C.; Liu, Y.Y.; Yang, H.T.; Zhang, Q.Y.; Liao, M.; Zhang, X.; Zhang, L.T. Simultaneous determination of nine constituents in Asteris Radix by HPLC-MS/MS. Chin. Tradit. Herb. Drugs. 2016, 47, 2534–2539. [Google Scholar]
- Xiao-Wu, T.; Xiang-Xin, L.; Yu-Long, T.; Ya-Lin, L.; Kang-Hui, X. Analysis of effective constituents from Aster tataricus L. F. And extracting of alkaloid and its antibacterial test in vitro. J. Tradit. Chin. Vet. Med. 2016, 25, 16–18. [Google Scholar]
- Jia, Z.X.; Zhi, K.Y.; Li, J.L. Small talk about Aster Tataricus. Shanxi J. Tradit. Med. Chin. 2012, 28, 55–56. [Google Scholar]
- Jia, Z.X.; Wang, Y.H.; Feng, W.J.; Zhi, K.Y.; Gong, L. Experience research on the defecated function of Aster Tataricus. Guangming J. Chin. Med. 2011, 26, 1351–1353. [Google Scholar]
- Li, Y.; Liang, H. Investigation on effects of Aster tataricus on nourishing kidney and promoting urination and defecation. Shanghai J. Tradit. Chin. Med. 2017, 51, 65–66. [Google Scholar]
- Wu, H.; Chen, Y.; Huang, B.; Yu, Y.; Zhao, S.; Liu, J.; Jia, Z.; Xiao, H. Aster tataricus alleviates constipation by antagonizing the binding of acetylcholine to muscarinic receptor and inhibiting Ca(2+) influx. Biomed. Pharmacother. 2021, 133, 111005. [Google Scholar] [CrossRef]
- Peng, W.J.; Xin, R.H.; Luo, Y.J.; Liang, G.; Ren, L.H.; Liu, Y.; Wang, G.B.; Zheng, J.F. Evaluation of the acute and subchronic toxicity of Aster tataricus L.F. Afr. J Tradit. Complement Altern. Med. 2016, 13, 38–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, W.; Mian, Z.; Jing, J.; Fang, H.; Chao-Feng, Z. Toxic fraction of radix asteris and its acute hepatotoxicity to mice. Lishizhen Med. Mater. Med. Res. 2010, 21, 2526–2528. [Google Scholar]
- Zhang, J.W.; Dou, C.G.; Zhang, M.; Ma, S.P.; Huang, F. Toxicity of Radix Asteris, Flos Farfarae and their combination. Chin. J. Clin. Pharm. Ther. 2007, 12, 405–411. [Google Scholar]
- Xue, Z.K.; Wei, M.; Chao, O.; Weili, S.; Wen, X.; Lan, W. Preparation and quality evaluation of the standard decoction of asteris radix et rhizoma praeparata cum melle. J. Chin. Med. Mater. 2018, 41, 904–908. [Google Scholar]
- Gui-Mei, L.; You-Xue, L.; Zi-Xiao, Z.; Tian-Zhu, J. Optimization of quality standard of honey preparation process of Radix Asteris. Lishizhen Med. Mater. Med. Res. 2017, 28, 1350–1352. [Google Scholar]
- Guiyang, C.; Rui, Z.; Jinhai, H. Study on HPLC Fingerprint of Aster Medicinal Materials. Heilongjiang J. TCM 2015, 44, 69–70. [Google Scholar]
Title | Writer | Dynasty or Year | Characteristic and/or Indication | Dose |
---|---|---|---|---|
Shen-Nong-Ben-Cao-Jing | Many medical scientists in the Han Dynasty | Eastern Han Dynasty | It tastes bitter, is pungent and not toxic. | 2.5–15 g |
Ming-Yi-Bie-Lu | Hong-Jing Tao | Han Dynasty | It is pungent and non-toxic. It can treat asthma and pediatric epilepsy. | 2.5–15 g |
Wu-Pu-Ben-Cao | Pu Wu | Northern and Southern Dynasties | It is pungent and non-toxic. | 2.5–15 g |
Yao-Xing-Lun | Quan Zhen | Tang Dynasty | It is bitter in taste and flat in nature. Nourishes, treats heat deficiency | 2.5–15 g |
Qian-Jin-Yi-Fang | Si-Miao Sun | Tang Dynasty; 682 AD | It tastes bitter, is pungent and mild in nature, and is non-toxic. It can treat coughing, pus and blood, palpitations, asthma, and epilepsy in children. | 2.5–15 g |
Ri-Hua-Zi-Ben-Cao | Ri Hua Zi | Tang Dynasty | It can treat lung disease and vomiting of blood, reduce phlegm and quench thirst | 2.5–15 g |
Ben-Cao-Meng-Quan | Jia-Mo Chen | Ming Dynasty; 1565 AD | It tastes bitter and pungent, and is warm in nature. It mainly treats cough and asthma | 2.5–15 g |
Ben-Cao-Gang-Mu | Shi-Zhen Li | Ming Dynasty; 1578 AD | It tastes bitter, warm in nature, non-toxic, and mainly treats coughs | 2.5–15 g |
Jing-Yue-Quan-Shu | Jie-Bin Zhang | Ming Dynasty; 1624 AD | It is bitter and pungent, treats cough and asthma | 2.5–15 g |
Ben-Cao-Dong-Quan | Mu Shen | Qing Dynasty; 1661 AD | It tastes bitter, and is warm in nature, non-toxic, it regulates the spleen and stomach, relieves phlegm and relieves cough | 2.5–15 g |
Ben-Cao-Xiang-Jie | Yue Min | Qing Dynasty; 1681 AD | It tastes bitter and pungent, and mainly treats blood phlegm | 2.5–15 g |
Ben-Cao-Bei-Yao | Ang Wang | Qing Dynasty; 1694 AD | It is pungent and warm in nature, can nourish the lungs, mainly treats cough and blood in sputum | 2.5–15 g |
Ben-Cao-Bian-Du | Bing-Cheng Zhang | Qing Dynasty; 1887 AD | It is warm in nature and treats wind-cold cough | 2.5–15 g |
Preparation Name | Composition | Preparations | Route of Administration | Dosing Frequency | Clinic Use | Reference |
---|---|---|---|---|---|---|
Shegan Mahuang Soup | Belamcanda chinensis(L.) DC., Ephedra sinica Stapf, Zingiber officinale Rosc., Asarum sieboldii Miq., Aster tataricus L. f., Tussilago farfara L., Schisandra chinensis (Turcz.) Baill., Ziziphus jujuba Mill., Pinellia ternata (Thunb.) breit. | Decoction | Oral administration | b.i.d | cold phlegm stagnation lung and throat syndrome | Jin-Gui-Yao-Lve, Han Dynasty |
Ze Qi Soup | Pinellia ternata (Thunb.) Breit., Aster tataricus L. f., Euphorbia helioscopia L., Zingiber officinale Rosc., Cynanchum glaucescens (Decne.) Hand.-Mazz., Glycyrrhiza uralensis Fisch., Scutellaria baicalensis Georgi, Panax ginseng C. A. Mey., Cinnamomum cassia Presl | Decoction | Oral administration | b.i.d | Occasional wheezing and coughing, body swelling, restlessness | Jin-Gui-Yao-Lve, Han Dynasty |
Zi Wan Soup | Glycyrrhiza uralensis Fisch., Aster tataricus L. f., Morus alba L., Platycodon grandiflorum (Jacq.) A.DC., Prunus armeniaca L.var.ansu Maxim., Asparagus cochinchinensis (Lour.) Merr., Bambusa tuldoides Munro | Decoction | Oral administration | b.i.d | Obstructed throat, shortness of breath | Sheng-Ji-Zong-Lu, Han Dynasty |
Bai Bu Powder | Stemona sessilifolia (Miq.) Miq., Fritilaria cirrhosa D.Don, Aster tataricus L. f., Pueraria lobata (Willd.) Ohwi, Gypsum | Decoction | Oral administration | b.i.d | Cough and fever in children | Tai-Ping-Sheng-Hui-Fang, Song Dynasty |
Zi Wan Pills | Aster tataricus L. f., Rubia cordifolia L. | Pill | Oral administration | b.i.d | Cough, hematemesis, hemoptysis due to lung injury | Ji-Feng-Pu-Ji-Fang, Song Dynasty |
Zi Wan Bai Hua Powder | Aster tataricus L. f., Tussilago farfara L., Stemona sessilifolia (Miq.) Miq. | Decoction | Oral administration | b.i.d | persistent cough | Tu-Jing-Ben-Cao, Song Dynasty |
Luo Shi Soup | Trachelos permum jasminoides (Lindl.) Lem., Aster tataricus L. f., Cimicifuga foetida L., Belamcanda chinensis (L.) DC., Platycodon grandiflorum (Jacq.) A.DC., Akebia quinata (Thunb.) Decne, Poria cocos (Schw.) Wolf. | Decoction | Oral administration | b.i.d | Choking in the throat | Zheng-He-Sheng-Ji-Zong-Lu, Yuan Dynasty |
Bu Fei Soup | Panax ginseng C. A. Mey., Astragalus membranaceus (Fisch.) Bge., Rehmannia glutinosa Libosch., Schisandra chinensis (Turcz.) Baill., Aster tataricus L. f., Morus alba L. | Decoction | Oral administration | b.i.d | Lung deficiency cough and asthma | Yong-Lei-Qian-Fang, Yuan Dynasty |
Zhi Sou Powder | Platycodon grandiflorum (Jacq.) A.DC., Schizonepeta tenuifolia Briq., Aster tataricus L. f., Stemona sessilifolia (Miq.) Miq., Cynanchum glaucescens (Decne.) Hand.-Mazz., Glycyrrhiza uralensis Fisch., Citrus reticulata Blanco | Powder | Oral administration | b.i.d | acute and chronic bronchitis | Yi-Xue-Xin-Wu, Qing Dynasty |
Er Zi Soup | Perilla frutescens (L.) Britt., Aster tataricus L. f., Platycodon grandiflorum (Jacq.) A.DC., Glycyrrhiza uralensis Fisch., Citrus aurantium L., Scutellaria baicalensis Georgi., Trichosanthes kirilowii Maxim. | Decoction | Oral administration | b.i.d | stuffy nose and cough | Bian-Zheng-Lu, Qing Dynasty |
No | Compound Name | Resource | References |
---|---|---|---|
Terpenes | |||
1 | Shionoside A | Roots | T. Nagao et al. [10] |
2 | Shionoside B | Roots | T. Nagao et al. [10] |
3 | Epifriedelinol | Roots | T. Nagao et al. [10] |
4 | Aster saponin A | Roots | T. Nagao et al. [11] |
5 | Aster saponin B | Roots | T. Nagao et al. [11] |
6 | Aster saponin C | Roots. | T. Nagao et al. [11] |
7 | Aster saponin D | Roots | T. Nagao et al. [11] |
8 | Aster saponin E | Roots | T. Nagao et al. [12] |
9 | Aster saponin F | Roots | T. Nagao et al. [12] |
10 | Aster saponin Ha | The ground part | T. Nagao et al. [13] |
11 | Aster saponin Hb | The ground part | T. Nagao et al. [13] |
12 | Aster saponin Hc | The ground part | T. Nagao et al. [13] |
13 | Aster saponin Hd | The ground part | T. Nagao et al. [13] |
14 | Foetidissimoside A | The ground part | T. Nagao et al. [13] |
15 | Aster batanoside F | Roots | Y. Shao et al. [14] |
16 | Aster batanoside B | Roots | Y. Shao et al. [15] |
17 | Aster batanoside C | Roots | Y. Shao et al. [15] |
18 | Aster lingulatoside A | The whole plants | S. Yu et al. [16] |
19 | Aster lingulatoside B | The whole plants | S. Yu et al. [16] |
20 | Aster lingulatoside C | The whole plants | Y. Shao et al. [17] |
21 | Aster lingulatoside D | The whole plants | Y. Shao et al. [17] |
22 | Astertarone A | Roots | Akihisa et al. [18] |
23 | Shionone | Roots and rhizomes | Akihisa et al. [18] |
24 | Friedelin | Roots and rhizomes | Akihisa et al. [18] |
25 | Astertarone B | Roots | A. Toshihiro et al. [19] |
26 | Friedelan-3-ol | Roots | V. Lanzotti et al. [20] |
27 | Aster shionone A | Roots and rhizomes | W.B. Zhou et al. [21] |
28 | Aster shionone B | Roots and rhizomes | W.B. Zhou et al. [21] |
29 | Aster shionone C | Roots and rhizomes | W.B. Zhou et al. [21] |
30 | Aster shionone D | Roots and rhizomes | W.B. Zhou et al. [21] |
31 | Aster shionone E | Roots and rhizomes | W.B. Zhou et al. [21] |
32 | Aster shionone F | Roots and rhizomes | W.B. Zhou et al. [21] |
33 | Shion-22(30)-en-3,21-dione | Rhizomes | B.Z. Wen et al. [22] |
34 | Shion-22-methoxy-20(21)-en-3-one | Rhizomes | B.Z. Wen et al. [22] |
35 | Shion-22-methoxy-20(21)-en-3β-ol | Rhizomes | B.Z. Wen et al. [22] |
36 | 2,3,24-Trihydroxyolean-12-en-28-oic acid | Roots and rhizomes | S. Yupeng et al. [23] |
37 | 23-Hydroxybetulinic acid | Roots and rhizomes | S. Yupeng et al. [23] |
38 | Echinocystic acid | Roots and rhizomes | S. Yupeng et al. [23] |
39 | Betulinic acid | Roots and rhizomes | S. Yupeng et al. [23] |
40 | Oleanic acid | Roots and rhizomes | S. Yupeng et al. [23] |
41 | Taraxerol | Roots and rhizomes | S. Yupeng et al. [23] |
42 | Betulin | Roots and rhizomes | S. Yupeng et al. [23] |
43 | Taraxasterol | Roots and rhizomes | S. Yupeng et al. [23] |
44 | Beta-Amyrin | Roots and rhizomes | S. Yupeng et al. [23] |
45 | 3-O-α-L-arabinopyranosyl- (1→6)-β-D-trihydroxyolean-12-en-28-oic acid | The underground parts | X.D. Su et al. [6] |
46 | Aster saponin G | The underground parts | X.D. Su et al. [6] |
47 | Aster saponin C2 | The underground parts | X.D. Su et al. [6] |
48 | Aster saponin A2 | The underground parts | X.D. Su et al. [6] |
49 | Aster saponin G2 | The underground parts | X.D. Su et al. [6] |
50 | Aster saponin H | The underground parts | X.D. Su et al. [6] |
Organic acids | |||
51 | Pyrogallic acid | Roots and rhizomes | S. Yupeng et al. [23] |
52 | Protocatechuate | Roots and rhizomes | S. Yupeng et al. [23] |
53 | Chlorogenic acid | Roots and rhizomes | S. Yupeng et al. [23] |
54 | Caffeic acid | Roots and rhizomes | S. Yupeng et al. [23] |
55 | Ferulic acid | Roots and rhizomes | S. Yupeng et al. [23] |
56 | Benzoic acid | Roots and rhizomes | S. Yupeng et al. [23] |
57 | Isoferulic acid | Roots and rhizomes | S. Yupeng et al. [23] |
58 | Methyl caffeate | Roots and rhizomes | S. Yupeng et al. [23] |
59 | Cynarin | Roots and rhizomes | S. Yupeng et al. [23] |
60 | Paeonol | Roots and rhizomes | S. Yupeng et al. [23] |
61 | Succinic acid | Roots and rhizomes | S. Yupeng et al. [23] |
62 | 2,2-dimethylsuccinic acid | Roots and rhizomes | S. Yupeng et al. [23] |
63 | 4-hydroxybenzoic acid | Roots and rhizomes | S. Yupeng et al. [23] |
64 | Cryptochlorogenic acid | Roots and rhizomes | S. Yupeng et al. [23] |
65 | 3,4-dicaffeoylquinic acid | Roots and rhizomes | S. Yupeng et al. [23] |
66 | 3,5-dicaffeoylquinic acid | Roots and rhizomes | S. Yupeng et al. [23] |
67 | 4,5-dicaffeoylquinic acid | Roots and rhizomes | S. Yupeng et al. [23] |
68 | Docosyl caffeate separately | Roots and rhizomes | S. Yupeng et al. [23] |
69 | Vanillic acid | Roots and rhizomes | S. Yupeng et al. [23] |
Peptides | |||
70 | Asterinin A | Roots | D. Cheng et al. [24] |
71 | Asterinin B | Roots | D. Cheng et al. [24] |
72 | Asterinin C | Roots | D. Cheng et al. [24] |
73 | Astin J | Roots | H. Morita et al. [25] |
74 | Asterinin D | Roots | D.L. Cheng et al. [26] |
75 | Asterinin E | Roots | D.L. Cheng et al. [26] |
76 | Astin H | Roots | H. Morita et al. [27] |
77 | Astin G | Roots | H. Morita et al. [27] |
78 | Astin E | Roots | H. Morita et al. [27] |
79 | Astin I | Roots | H. Morita et al. [27] |
80 | Astin F | Roots | H. Morita et al. [27] |
81 | Astin D | Roots | H. Morita et al. [27] |
82 | Astin A | Roots | H. Morita et al. [27] |
83 | Astin B | Roots | H. Morita et al. [27,28] |
84 | Astin C | Roots | H. Morita et al. [27] |
85 | Astin K | Roots and rhizomes | H. Xu et al. [29] |
86 | Astin M | Roots and rhizomes | H. Xu et al. [29] |
87 | Astin N | Roots and rhizomes | H. Xu et al. [29] |
88 | Astin O | Roots and rhizomes | H. Xu et al. [29] |
89 | Astin P | Roots and rhizomes | H. Xu et al. [29] |
90 | Astin L | Roots and rhizomes | S. Yupeng et al. [23] |
Flavonoids | |||
91 | Kaempferol | Roots and rhizomes | T.B. Ng et al. [30] |
92 | Quercetin | Roots and rhizomes | S. Yupeng et al. [23,30] |
93 | Dihydromyricetin | Roots and rhizomes | S. Yupeng et al. [23] |
94 | Schaftoside | Roots and rhizomes | S. Yupeng et al. [23] |
95 | Isoschaftoside | Roots and rhizomes | S. Yupeng et al. [23] |
96 | Apigenin-5- rhamnoside | Roots and rhizomes | S. Yupeng et al. [23] |
97 | Myrictrin | Roots and rhizomes | S. Yupeng et al. [23] |
98 | Hyperoside | Roots and rhizomes | S. Yupeng et al. [23] |
99 | Rutin | Roots and rhizomes | S. Yupeng et al. [23] |
100 | Isoquercitrin | Roots and rhizomes | S. Yupeng et al. [23] |
101 | Luteolin-7- galacturonide | Roots and rhizomes | S. Yupeng et al. [23] |
102 | Genistin | Roots and rhizomes | S. Yupeng et al. [23] |
103 | Isorhamnetin-3-O- neohespeidoside | Roots and rhizomes | S. Yupeng et al. [23] |
104 | Quercitrin | Roots and rhizomes | S. Yupeng et al. [23] |
105 | Kaempferol-7-O-β-D-glucopyranoside | Roots and rhizomes | S. Yupeng et al. [23] |
106 | Isorhamnetin-3-O- glucoside | Roots and rhizomes | S. Yupeng et al. [23] |
107 | Myricetin | Roots and rhizomes | S. Yupeng et al. [23] |
108 | Hesperidin | Roots and rhizomes | S. Yupeng et al. [23] |
109 | Liquiritigenin | Roots and rhizomes | S. Yupeng et al. [23] |
110 | Baicalin | Roots and rhizomes | S. Yupeng et al. [23] |
111 | Luteolin | Roots and rhizomes | S. Yupeng et al. [23] |
112 | Biorobin | Roots and rhizomes | S. Yupeng et al. [23] |
113 | Naringenin | Roots and rhizomes | S. Yupeng et al. [23] |
114 | Genistein | Roots and rhizomes | S. Yupeng et al. [23] |
115 | Apigenin | Roots and rhizomes | S. Yupeng et al. [23] |
116 | Diosmetin | Roots and rhizomes | S. Yupeng et al. [23] |
117 | Isorhamnetin | Roots and rhizomes | S. Yupeng et al. [23] |
118 | Baicalein | Roots and rhizomes | S. Yupeng et al. [23] |
119 | Wogonin | Roots and rhizomes | S. Yupeng et al. [23] |
120 | Acacetin | Roots and rhizomes | S. Yupeng et al. [23] |
121 | Genkwanin | Roots and rhizomes | S. Yupeng et al. [23] |
Other compounds | |||
122 | Scopoletin | Roots and rhizomes | T.B. Ng et al. [30] |
123 | Emodin | Roots and rhizomes | T.B. Ng et al. [30] |
124 | Esculin | Roots and rhizomes | S. Yupeng et al. [23] |
125 | Esculetin | Roots and rhizomes | S. Yupeng et al. [23] |
126 | Fraxetin | Roots and rhizomes | S. Yupeng et al. [23] |
127 | Isoscopoletin | Roots and rhizomes | S. Yupeng et al. [23] |
128 | Psoralen | Roots and rhizomes | S. Yupeng et al. [23] |
129 | Xanthotoxin | Roots and rhizomes | S. Yupeng et al. [23] |
130 | Bergapten | Roots and rhizomes | S. Yupeng et al. [23] |
131 | Rhein | Roots and rhizomes | S. Yupeng et al. [23] |
132 | Emodin anthrone | Roots and rhizomes | S. Yupeng et al. [23] |
133 | 5-Hydroxymethyl-2- furaldehyde | Roots and rhizomes | S. Yupeng et al. [23] |
134 | Benzaldehyde | Roots and rhizomes | S. Yupeng et al. [23] |
135 | p-Hydroxybenzaldehyde | Roots and rhizomes | S. Yupeng et al. [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.-J.; Liu, Y.-Y.; Wang, D.; Yan, P.-Z.; Lu, D.-C.; Zhao, D.-S. Radix Asteris: Traditional Usage, Phytochemistry and Pharmacology of An Important Traditional Chinese Medicine. Molecules 2022, 27, 5388. https://doi.org/10.3390/molecules27175388
Li K-J, Liu Y-Y, Wang D, Yan P-Z, Lu D-C, Zhao D-S. Radix Asteris: Traditional Usage, Phytochemistry and Pharmacology of An Important Traditional Chinese Medicine. Molecules. 2022; 27(17):5388. https://doi.org/10.3390/molecules27175388
Chicago/Turabian StyleLi, Ke-Jie, Yang-Yang Liu, Dong Wang, Pei-Zheng Yan, De-Chao Lu, and Dong-Sheng Zhao. 2022. "Radix Asteris: Traditional Usage, Phytochemistry and Pharmacology of An Important Traditional Chinese Medicine" Molecules 27, no. 17: 5388. https://doi.org/10.3390/molecules27175388
APA StyleLi, K. -J., Liu, Y. -Y., Wang, D., Yan, P. -Z., Lu, D. -C., & Zhao, D. -S. (2022). Radix Asteris: Traditional Usage, Phytochemistry and Pharmacology of An Important Traditional Chinese Medicine. Molecules, 27(17), 5388. https://doi.org/10.3390/molecules27175388