Volatile Composition and Sensory Profile of Lactose-Free Kefir, and Its Acceptability by Elderly Consumers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proximate Composition
2.2. Profile of Volatile Compounds
2.3. Sensory Assessment of Kefir
2.4. Preferences of Lactose-Free Kefir by Elderly Consumers
3. Materials and Methods
3.1. Manufacturing Kefir
3.2. Proximate Composition and Physicochemical Measurements
3.3. Enumeration of Microorganisms
3.4. Determination of Carbohydrates
3.5. Analysis of Volatile Compound Profile
3.6. Sensory Estimation
3.7. Consumer Acceptance of Lactose-Free Kefir
3.8. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Glibowski, P.; Kowalska, A. Rheological, texture and sensory properties of kefir with high performance and native inulin. J. Food Eng. 2012, 111, 299–304. [Google Scholar] [CrossRef]
- Salari, A.; Ghodrat, S.; Gheflati, A.; Jarahi, L.; Hashemi, M. Effect of kefir beverage consumption on glycemic control: A systematic review and meta-analysis of randomized controlled clinical trials. Complement. Ther. Clin. Pract. 2021, 44, 101443. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, K.T.; Dragone, G.; Pereira, G.; Oliveira, J.M.; Domingues, L.; Teixeira, J.A.; Silva, J.B.A.; Schwan, R.F. Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir. Food Chem. 2011, 126, 249–253. [Google Scholar] [CrossRef]
- Rosa, D.D.; Dias, M.M.S.; Grzeskowiak, Ł.M.; Reis, S.A.; Conceição, L.L.; Peluzio do Carmo, M.G. Milk kefir: Nutritional, microbiological and health benefits. Nutr. Res. Rev. 2017, 30, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.M.O.; Miguel, M.A.L.; Peixoto, R.S.; Rosado, A.S.; Silva, J.T.; Paschoalin, V.M.F. Microbiological, technological and therapeutic properties of kefir: A natural probiotic beverage. Braz. J. Microbiol. 2013, 44, 341–349. [Google Scholar] [CrossRef]
- Gut, A.M.; Vasiljevic, T.; Yeager, T.; Donkor, O.N. Antimicrobial properties of traditional kefir: An in vitro screening for antagonistic effect on Salmonella typhimurium and Salmonella arizonae. Int. Dairy J. 2022, 124, 105180. [Google Scholar] [CrossRef]
- Zavala, L.; Golowczyc, M.A.; Van Hoorde, K.; Medrano, M.; Huys, G.; Vandamme, P.; Abraham, A.G. Selected Lactobacillus strains isolated from sugary and milk kefir reduce Salmonella infection of epithelial cells in vitro. Benef. Microbes. 2016, 7, 585–595. [Google Scholar] [CrossRef]
- Carasi, P.; Díaz, M.; Racedo, S.M.; De Antoni, G.; Urdaci, M.C.; Serradell, M.D.L.A. Safety characterization and antimicrobial properties of kefir-isolated lactobacillus kefiri. Biomed. Res. Int. 2014, 2014, 208974. [Google Scholar] [CrossRef]
- Azizi, N.F.; Kumar, M.R.; Yeap, S.K.; Abdullah, J.O.; Khalid, M.; Omar, A.R.; Osman, M.A.; Mortadza, S.A.S.; Alitheen, N.B. Kefir and its biological activities. Foods 2021, 10, 1210. [Google Scholar] [CrossRef]
- Plessas, S.; Nouska, C.; Mantzourani, I.; Kourkoutas, Y.; Alexopoulos, A.; Bezirtzoglou, E. Microbiological exploration of different types of kefir grains. Fermentation 2016, 3, 1. [Google Scholar] [CrossRef]
- Dertli, E.; Çon, A.H. Microbial diversity of traditional kefir grains and their role on kefir aroma. LWT-Food Sci. Technol. 2017, 85, 151–157. [Google Scholar] [CrossRef]
- Irigoyen, A.; Ortigosa, M.; Garcia, S.; Ibáňez, F.C.; Torre, P. Comparison of free amino acids and volatile components in three fermented milks. Int. J. Dairy Technol. 2012, 65, 578–584. [Google Scholar] [CrossRef]
- Beshkova, D.M.; Simova, E.D.; Frengova, G.I.; Simov, Z.I.; Dimitrov, Z.P. Production of volatile aroma compounds by kefir starter cultures. Int. Dairy J. 2003, 13, 529–535. [Google Scholar] [CrossRef]
- Duran, F.E.; Özdemir, N.; Güneşer, O.; Kök-Taş, T. Prominent strains of kefir grains in the formation of volatile compound profile in milk medium; the role of Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lentilactobacillus kefiri and Lentilactobacillus parakefiri. Eur. Food Res. Technol. 2022, 248, 975–989. [Google Scholar] [CrossRef]
- Dan, T.; Wang, D.; Jin, R.L.; Zhang, H.P.; Zhou, T.T.; Sun, T.S. Characterization of volatile compounds in fermented milk using solid-phase microextraction methods coupled with gas chromatography-mass spectrometry. J. Dairy Sci. 2017, 100, 2488–2500. [Google Scholar] [CrossRef]
- Ertekin, B.; Guzel-Seydim, Z.B. Effect of fat replacers on kefir quality. J. Sci. Food Agric. 2010, 90, 543–548. [Google Scholar] [CrossRef]
- Gul, O.; Atalar, I.; Mortas, M.; Dervisoglu, M. Rheological, textural, colour and sensorial properties of kefir produced with buffalo milk using kefir grains and starter culture: A comparison with cows’ milk kefir. Int. J. Dairy Technol. 2018, 71, 73–80. [Google Scholar] [CrossRef]
- Kälviäinen, N.; Roininen, K.; Tuorila, H. The relative importance of texture, taste and aroma on a yogurt-type snack food preference in the young and the elderly. Food Qual. Prefer. 2003, 14, 177–186. [Google Scholar] [CrossRef]
- De Graaf, C.; Polet, P.; van Staveren, W.A. Sensory perception and pleasantness of food flavors in elderly subjects. J. Gerontol. 1994, 49, 93–99. [Google Scholar] [CrossRef]
- Schiller, L.R. Maldigestion versus malabsorption in the elderly. Curr. Gastroenterol. Rep. 2020, 22, 33. [Google Scholar] [CrossRef]
- Lindkvist, B.; Nilsson, C.; Kvarnstrom, M.; Oscarsson, J. Importance of pancreatic exocrine dysfunction in patients with type 2 diabetes: A randomized crossover study. Pancreatology 2018, 18, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, G.; Leggio, F.; Vacante, M.; Motta, M.; Giordano, M.; Biondi, A.; Basile, F.; Mastrojeni, S.; Mistretta, A.; Malaguarnera, M.; et al. Probiotics in the gastrointestinal diseases of the elderly. J. Nutr. Health Aging. 2012, 16, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Roškar, I.; Švigelj, K.; Štempelj, M.; Volfand, J.; Štabuc, B.; Malovrh, Š.; Rogelj, I. Effects of a probiotic product containing Bifidobacterium animalis subsp. animalis IM386 and Lactobacillus plantarum MP2026 in lactose intolerant individuals: Randomized, placebo-controlled clinical trial. J. Funct. Foods 2017, 35, 1–8. [Google Scholar] [CrossRef]
- Lule, V.K.; Garg, S.; Tomar, S.K.; Khedkar, C.D.; Nalage, D.N. Food Intolerance: Lactose Intolerance, 1st ed.; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Encyclopedia of Food and Health; Elsevier: Waltham, MA, USA, 2016; ISBN 9780123849533. [Google Scholar]
- Ratajczak, A.E.; Rychter, A.M.; Zawada, A.; Dobrowolska, A.; Krela-Kaźmierczak, I. Lactose intolerance in patients with inflammatory bowel diseases and dietary management in prevention of osteoporosis. Nutrition 2021, 82, 111043. [Google Scholar] [CrossRef] [PubMed]
- Moreira, T.C.; Transfeld da Silva, A.; Fagundes, C.; Rodrigues Ferreira, S.M.; Bileski Căndido, L.M.; Passos, M.; Hecke Krüger, C.C. Elaboration of yogurt with reduced level of lactose added of carob (Ceratonia siliqua L.). LWT-Food Sci. Technol. 2017, 76, 326–329. [Google Scholar] [CrossRef]
- Irigoyen, A.; Arana, I.; Castiella, P.; Torre, P.; Ibáňez, F.C. Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chem. 2005, 90, 613–620. [Google Scholar] [CrossRef]
- Cais-Sokolińska, D.; Wójtowski, J.; Pikul, J.; Danków, R.; Majcher, M.; Teichert, J.; Bagnicka, E. Formation of volatile compounds in kefir made of goat and sheep milk with high polyunsaturated fatty acid content. J. Dairy Sci. 2015, 98, 6692–6705. [Google Scholar] [CrossRef]
- Güzel-Seydim, Z.B.; Seydim, A.C.; Greene, A.K.; Bodine, A.B. Determination of organic acids and volatile flavour substances in kefir during fermentation. J. Food Compos. Anal. 2000, 13, 35–43. [Google Scholar] [CrossRef]
- Muir, D.D.; Tamime, A.Y.; Wszolek, M. Comparison of the sensory profiles of kefir, buttermilk and yogurt. Int. J. Dairy Technol. 1999, 52, 129–134. [Google Scholar] [CrossRef]
- Leite, A.M.O.; Leite, D.C.A.; Del Aguila, E.M.; Alvares, T.S.; Peixoto, R.S.; Miguel, M.A.L.; Silva, J.T.; Paschoalin, V.M.F. Microbiological and chemical characteristics of Brazilian kefir during fermentation and storage processes. J. Dairy Sci. 2013, 96, 4149–4159. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, B.; Sharma, H.; Melekoglu, E.; Ozogul, F. Recent developments in dairy kefir-derived lactic acid bacteria and their health benefits. Food Biosci. 2022, 46, 101592. [Google Scholar] [CrossRef]
- Arslan, S. A review: Chemical, microbiological and nutritional characteristics of kefir. CYTA-J. Food 2015, 13, 340–345. [Google Scholar] [CrossRef]
- Ohlsson, J.A.; Johansson, M.; Hansson, H.; Abrahamson, A.; Byberg, L.; Smedman, A.; Lindmark-Månsson, H.; Lundh, A. Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk products. Int. Dairy J. 2017, 73, 151–154. [Google Scholar] [CrossRef]
- Grønnevik, H.; Falstad, M.; Narvhus, J.A. Microbiological and chemical properties of Norwegian kefir during storage. Int. Dairy J. 2011, 21, 601–606. [Google Scholar] [CrossRef]
- Trani, A.; Gambacorta, G.; Loizzo, P.; Cassone, A.; Fasciano, C.; Zambrini, A.V.; Faccia, M. Comparison of HPLC-RI, LC/MS-MS and enzymatic assays for the analysis of residual lactose in lactose-free milk. Food Chem. 2017, 233, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Tomar, O.; Akarca, G.; Çağlar, A.; Beykaya, M.; Gök, V. The effects of kefir grain and starter culture on kefir produced from cow and buffalo milk during storage periods. Food Sci. Technol. Campinas 2020, 40, 238–244. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.; Wyffels, J.T.; Seydim, A.C.; Greene, A.K. Turkish kefir and kefir grains: Microbial enumeration and electron microscobic observation. Int. J. Dairy Technol. 2005, 58, 25–29. [Google Scholar] [CrossRef]
- Garcia-Quintans, N.; Blancato, V.S.; Respizo, G.D.; Magni, C.; López, P. Citrate metabolism and aroma compound production in lactic acid bacteria. In Molecular Aspects of Lactic Acid Bacteria for Traditional and New Applications; Mayo, B., López, P., Pérez-Martínez, G., Eds.; Research Signpost: Thiruvananthapuram, India, 2008; ISBN 978-81-308-0250-3. [Google Scholar]
- Beirami-Serizkani, F.; Hojjati, M.; Jooyandeh, H. The effect of microbial transglutaminase enzyme and Persian gum on the characteristics of traditional kefir drink. Int. Dairy J. 2021, 112, 104843. [Google Scholar] [CrossRef]
- Widyastuti, Y.; Rohmatussolihat; Febrisiantosa, A. The role of lactic acid bacteria in milk fermentation. Food Nutr. Sci. 2014, 5, 435–442. [Google Scholar] [CrossRef]
- Bozoudi, D.; Kondyli, E.; Claps, S.; Hatzikamari, M.; Michaelidou, A.; Biliaderis, G.C.; Litopouloutzanetaki, E. Compositional characteristics and volatile organic compound of traditional PDO Feta cheese made in two different mountainous areas of Greece. Int. J. Dairy Technol. 2018, 71, 673–682. [Google Scholar] [CrossRef]
- Aghlara, A.; Mustafa, S.; Manap, Y.A.; Mohamad, R. Characterization of headspace volatile flavor compounds formed during kefir production: Application of solid phase microextraction. Int. J. Food Prop. 2009, 12, 808–818. [Google Scholar] [CrossRef]
- Ott, A.; Fay, L.B.; Chaintreau, A. Determination and origin of the aroma impact compounds of yogurt flavour. J. Agric. Food Chem. 1997, 45, 850–858. [Google Scholar] [CrossRef]
- Teter, A.; Barłowska, J.; Król, J.; Brodziak, A.; Rutkowska, J.; Litwińczuk, Z. Volatile compounds and amino acid profile of short-ripened farmhouse cheese manufactured from the milk of the White-Backed native cow breed. LWT-Food Sci. Technol. 2020, 129, 109602. [Google Scholar] [CrossRef]
- Boltar, I.; Čanžek, M.; Jarni, K.; Jug, T.; Kralj, M.B. Volatile compounds in Nanos cheese: Their formation during ripening and seasonal variation. J. Food Sci. Technol. 2015, 52, 608–623. [Google Scholar] [CrossRef]
- Kondyli, E.; Pappa, E.C.; Svarnas, C. Ripening changes of the chemical composition, proteolysis, volatile fraction and organoleptic characteristics of a white-brined goat milk cheese. Small Rumin. Res. 2016, 145, 1–6. [Google Scholar] [CrossRef]
- Wszolek, M.; Tamime, A.Y.; Muir, D.D.; Barclay, M.N.I. Properties of kefir made in Scotland and Poland using bovine, caprine and ovine milk with different starter cultures. LWT-Food Sci. Technol. 2001, 34, 251–261. [Google Scholar] [CrossRef]
- Farag, M.A.; Jomaa, S.A.; El-Wahed, A.A.; El-Seedi, H.R. The many faces of kefir fermented dairy products: Quality characteristics, flavour chemistry, nutritional value, health benefits, and safety. Nutrients 2020, 12, 346. [Google Scholar] [CrossRef] [PubMed]
- Harju, M.; Kallioinen, H.; Tossavainen, O. Lactose hydrolysis and other conversions in dairy products: Technological aspects. Int. Dairy J. 2012, 22, 104–109. [Google Scholar] [CrossRef]
- Kaczyński, Ł.K.; Cais-Sokolińska, D. Effect of enzymatic conversion of lactose on the flavour profile of goat milk kefir and its permeate after microfiltration. Acta Aliment. 2018, 47, 425–432. [Google Scholar] [CrossRef]
- Cais-Sokolińska, D.; Danków, R.; Pikul, J. Physicochemical and sensory characteristics of sheep kefir during storage. Acta Sci. Pol. Technol. Aliment. 2008, 7, 63–73. [Google Scholar]
- Chen, C.; Shanshan, Z.; Guangfei, H.; Haiyan, Y.; Huaixiang, T.; Guozhong, Z. Role of lactic acid bacteria on the yogurt flavour: A review. Int. J. Food Prop. 2017, 20, S316–S330. [Google Scholar] [CrossRef]
- Gonzalez, N.J.; Adhikari, K.; Sancho-Madriz, M.F. Sensory characteristics of peach-flavored yogurt drinks containing prebiotics and synbiotics. LWT-Food Sci. Technol. 2011, 44, 158–163. [Google Scholar] [CrossRef]
- Sergi, G.; Bano, G.; Pizzato, S.; Veronese, N.; Manzato, E. Taste loss in the elderly: Possible implications for dietary habits. Crit. Rev. Food Sci. Nutr. 2017, 57, 3684–3689. [Google Scholar] [CrossRef] [PubMed]
- Xiuli, D.; Wechter, N.; Gray, S.; Mohanty, J.G.; Croteau, D.L.; Bohr, V.A. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res. Rev. 2021, 70, 101416. [Google Scholar]
- Bayarri, S.; Carbonell, I.; Barrios, E.X.; Costell, E. Impact of sensory differences on consumer acceptability of yoghurt and yoghurt-like products. Int. Dairy J. 2011, 21, 111–118. [Google Scholar] [CrossRef]
- Tourila, H.; Sommardahl, C.; Hyvonen, L.; Leporanta, K.; Merimaa, P. Sensory attributes and acceptance of sucrose and fat in strawberry yogurts. Int. J. Food Sci. Technol. 1993, 28, 359–369. [Google Scholar] [CrossRef]
- Chollet, M.; Gille, D.; Schmid, A.; Walther, B.; Piccinali, P. Acceptance of sugar reduction in flavored yogurt. J. Dairy Sci. 2013, 96, 5501–5511. [Google Scholar] [CrossRef]
- Markey, O.; Lovegrove, J.A.; Methven, L. Sensory profiles and consumer acceptability of a range of sugar-reduced products on the UK market. Food Res. Int. 2015, 72, 133–139. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Horwitz, W., Latimer, G., Eds.; AOAC: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Ibacache-Quiroga, C.; González-Pizarro, K.; Charifeh, M.; Canales, C.; Díaz-Viciedo, R.; Schmachtenberg, O.; Dinamarca, M.A. Metagenomic and functional characterization of two Chilean kefir beverages reveals a dairy beverage containing active enzymes, short-chain fatty acids, microbial β-amyloids, and bio-film inhibitors. Foods 2022, 11, 900. [Google Scholar] [CrossRef]
- Adamska, A.; Rutkowska, J.; Tabaszewska, M.; Białek, M. Milk of Polish Red and White cows as a source of nutritionally valuable fatty acids. Arch. Tierz. 2014, 57, 1–10. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 19th ed.; Nitrogen (Total) in Milk. Kjeldahl Method. 2000, 20; AOAC: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Cataldi, T.R.I.; Angellotti, M.; Bianco, G. Determination of mono-and disaccharides in milk and milk products by high-performance anion-exchange chromatography with pulsed amperometric detection. Anal. Chim. Acta 2003, 485, 43–49. [Google Scholar] [CrossRef]
- Van Scheppingen, W.B.; Van Hilten, P.H.; Vijverberg, M.P.; Duchateau, A.L.L. Selective and sensitive determination of lactose in low-lactose dairy products with HPAEC-PAD. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1060, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska, B.; Kołakowski, P.; Pawlikowska, K.; Troszyńska, A.; Kaliszewska, A. Influence of the addition of transglutaminase on the immunoreactivity of milk proteins and sensory quality of kefir. Food Hydrocoll. 2009, 23, 2434–2445. [Google Scholar] [CrossRef]
- Baryłko-Pikielna, N.; Matuszewska, I. Sensory Testing of Food. Fundamentals, Methods, Applications, 2nd ed.; PTTŻ: Cracow, Poland, 2014; ISBN 978-83-935421-3-0. [Google Scholar]
- Gacula, M.J.R.; Rutenbeck, S.; Pollack, L.; Resurreccion, A.V.A.; Moskowitz, H.R. The just-about-right intensity scale: Functional analyses and relation to hedonics. J. Sens. Stud. 2007, 22, 194–211. [Google Scholar] [CrossRef]
Component, g/100 mL | Lactose-Free Kefir | Traditional Kefir |
---|---|---|
Proteins | 3.20 ± 0.05 | 3.16 ± 0.03 |
Lipids | 1.52 ± 0.02 | 1.55 ± 0.03 |
Lactose | 0.01 ± 0.01 | 3.12 ± 0.10 * |
Glucose | 1.72 ± 0.10 | 0.35 ± 0.12 * |
Galactose | 2.47 ± 0.21 | 0.62 ± 0.09 * |
Total acidity, % of LA | 0.62 ± 0.08 | 0.86 ± 0.01 * |
pH | 4.82 ± 0.10 | 4.45 ± 0.03 * |
Ash, % | 0.62 ± 0.04 | 0.75 ± 0.02 * |
Microbial enumeration, log CFU/mL | ||
Lactobacillus spp. | 7.83 ± 0.09 | 8.06 ± 0.13 |
Lactococcus spp. | 8.35 ± 0.10 | 7.96 ± 0.24 * |
Leuconostoc spp. | 5.64 ± 0.16 | 5.82 ± 0.08 |
LAB | 8.21 ± 0.13 | 8.65 ± 0.20 * |
Yeast | 3.70 ± 0.08 | 4.34 ± 0.12 * |
Compounds | Peak Relative Abundance (%) | ||
---|---|---|---|
Rt | Lactose-Free Kefir | Traditional Kefir | |
Alcohols | |||
Ethanol | 1.67 | 1.52 ± 0.11 | 2.20 ± 0.16 * |
Ethanethiol | 1.85 | 1.83 ± 0.36 | 2.37 ± 0.24 * |
1-Pentanol | 4.30 | 0.44 ± 0.18 | 1.69 ± 0.05 * |
3-Methyl-1-butanol | 4.41 | nd | 1.17 ± 0.02 |
2,3-Butanediol | 6.27 | 1.08 ± 0.33 | 5.94 ± 0.51 * |
2-Pentanol | 7.07 | nd | 0.35 ± 0.05 |
1-Hexanol | 11.39 | nd | 0.25 ± 0.00 |
2-Heptanol | 13.47 | 0.61 ± 0.00 | 0.27 ± 0.02 * |
Total | 5.49 ± 0.17 | 14.23 ± 0.20 * | |
Acids | |||
Acetic acid | 2.58 | 24.99 ± 1.28 | 43.30 ± 1.56 * |
Butanoic acid | 6.78 | 1.27 ± 0.23 | 1.27 ± 0.39 |
Hexanoic acid | 19.37 | 3.57 ± 0.39 | 4.10 ± 0.21 |
Octanoic acid | 26.86 | 0.48 ± 0.05 | 0.52 ± 0.06 |
Total | 30.30 ± 0.49 | 49.18 ± 0.84 * | |
Aldehydes | |||
Acetaldehyde | 1.49 | 0.47 ± 0.05 | 0.22 ± 0.03 * |
3-Methylbutanal | 2.81 | 1.09 ± 0.12 | 2.59 ± 0.11 * |
Benzaldehyde | 16.80 | 0.08 ± 0.03 | 0.02 ± 0.02 * |
Nonanal | 23.86 | 0.39 ± 0.02 | 0.12 ± 0.02 * |
Total | 2.02 ± 0.06 | 2.97 ± 0.04 * | |
Ketones | |||
2-Propanone | 1.77 | 4.35 ± 0.40 | 8.96 ± 0.55 * |
2,3-Butanedione | 2.19 | 7.05 ± 0.86 | 2.23 ± 0.23 * |
2-Butanone | 2.25 | 7.45 ± 0.05 | 10.93 ± 0.78 * |
3-Hydroxy-2-butanone | 3.73 | 39.26 ± 2.27 | 6.95 ± 0.40 * |
2-Heptanone | 12.74 | 0.69 ± 0.18 | 0.78 ± 0.06 |
2-Nonanone | 23.35 | 0.96 ± 0.00 | 0.36 ± 0.02 * |
Total | 59.75 ± 0.80 | 30.22 ± 0.47 * | |
Terpenes | |||
α-Pinene | 15.14 | 0.18 ± 0.01 | 0.35 ± 0.18 * |
β-Pinene | 17.54 | 0.29 ± 0.02 | 0.40 ± 0.21 |
3-Carene | 19.37 | 0.22 ± 0.02 | 0.32 ± 0.16 |
m-Cymene | 20.10 | 0.08 ± 0.02 | 0.15 ± 0.06 * |
D-Limonene | 20.30 | 0.33 ± 0.00 | 0.52 ± 0.37 * |
Copaene | 33.81 | 0.07 ± 0.01 | 0.12 ± 0.02 |
Total | 1.17 ± 0.02 | 1.86 ± 0.15 * | |
Other compounds | |||
Toluene | 5.23 | 0.11 ± 0.03 | 0.16 ± 0.01 |
Dimethyl disulfide | 4.54 | 0.91 ± 0.35 | 0.82 ± 0.20 * |
2-Methyltetrahydro-thiophen-3-one | 18.21 | 0.24 ± 0.07 | 0.56 ± 0.25 |
Total | 1.27 ± 0.18 | 1.54 ± 0.40 |
Attributes | Lactose-Free Kefir | Traditional Kefir |
---|---|---|
Aroma | ||
Fermented | 2.62 ± 0.18 | 3.78 ± 0.25 * |
Creamy | 7.29 ± 0.32 | 2.41 ± 0.13 * |
Sour | 1.80 ± 0.16 | 4.55 ± 0.27 * |
Yeasty | 0.74 ± 0.11 | 1.63 ± 0.13 * |
Sweet | 2.88 ± 0.26 | 0.42 ± 0.09 * |
Fruity | 4.47 ± 0.35 | 1.36 ± 0.11 * |
Taste | ||
Sour | 2.81 ± 0.24 | 7.33 ± 0.41 * |
Milky | 6.19 ± 0.33 | 3.61 ± 0.23 * |
Sweet | 4.78 ± 0.36 | 0.67 ± 0.10 * |
Bitter | 0.42 ± 0.08 | 2.14 ± 0.12 * |
Refreshing | 4.67 ± 0.21 | 5.28 ± 0.35 * |
Mouthfeel | ||
Mouthcoat | 6.95 ± 0.40 | 4.73 ± 0.26 * |
Airy | 3.22 ± 0.19 | 5.60 ± 0.31 * |
Astringent | 2.16 ± 0.14 | 4.38 ± 0.24 * |
Intensity | Attribute | ||
---|---|---|---|
Sweet Taste | Acid Taste | Refreshing Effect | |
Much too little—1 | 7.4 | 13.3 | 11.7 |
Too little—2 | 19.5 | 11.3 | 29.7 |
Just about right—3 | 60.9 | 70.7 | 43.8 |
Too much—4 | 9.0 | 4.7 | 10.5 |
Much too much—5 | 3.1 | 0 | 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutkowska, J.; Antoniewska-Krzeska, A.; Żbikowska, A.; Cazón, P.; Vázquez, M. Volatile Composition and Sensory Profile of Lactose-Free Kefir, and Its Acceptability by Elderly Consumers. Molecules 2022, 27, 5386. https://doi.org/10.3390/molecules27175386
Rutkowska J, Antoniewska-Krzeska A, Żbikowska A, Cazón P, Vázquez M. Volatile Composition and Sensory Profile of Lactose-Free Kefir, and Its Acceptability by Elderly Consumers. Molecules. 2022; 27(17):5386. https://doi.org/10.3390/molecules27175386
Chicago/Turabian StyleRutkowska, Jaroslawa, Agata Antoniewska-Krzeska, Anna Żbikowska, Patricia Cazón, and Manuel Vázquez. 2022. "Volatile Composition and Sensory Profile of Lactose-Free Kefir, and Its Acceptability by Elderly Consumers" Molecules 27, no. 17: 5386. https://doi.org/10.3390/molecules27175386
APA StyleRutkowska, J., Antoniewska-Krzeska, A., Żbikowska, A., Cazón, P., & Vázquez, M. (2022). Volatile Composition and Sensory Profile of Lactose-Free Kefir, and Its Acceptability by Elderly Consumers. Molecules, 27(17), 5386. https://doi.org/10.3390/molecules27175386