The Aroma Composition of Koryciński Cheese Ripened in Different Temperatures
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Cheesemaking
3.2. Moisture Content Analysis
3.3. GC/MS Analysis
3.4. Sensory Analysis
3.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Schlegel-Zawadzka, M.; Prusak, A.; Sikora, T. Food and Nutritional Globalization vs. Trends of Protection of Traditional Food Products in Poland. In Proceedings of the 57th EOQ Congress Quality Renaissance—Co-Creating a Viable Future, Tallinn, Estonia, 17–20 June 2013. [Google Scholar]
- Gąsiorek, P.; Kaus, I.; Pruszyńska, B. Przetwórstwo rolno-spożywcze w województwie podlaskim. In Analiza Kierunków Rozwoju i Aktualna Sytuacja w Rolnictwie Województwa Podlaskiego; ZNSGGW: Białystok, Poland, 2011; p. 93. [Google Scholar]
- Makała, H. Atrakcyjność Dziedzictwa Kulinarnego Podlasia. Zeszyty Naukowe. Tur. I Rekreac. 2014, 2, 81–90. [Google Scholar]
- Zrobek, J. Innovations in the Agricultural Sector. In Innovations and Knowledge Commercialization; Center for Technology Transfer UŁ: Łódź, Poland, 2015; p. 123. [Google Scholar]
- Bansal, V.; Veena, N. Understanding the role of pH in cheese manufacturing: General aspects of cheese quality and safety. J. Food Sci. Technol. 2022, 1–11. [Google Scholar] [CrossRef]
- Weng, S.; Ai, L.; Wang, G.; Wang, S.; Zhu, H.; Xiong, Z.; Zhang, H.; Xia, Y. Study on flavor characteristics of soft cheese fermented by Monascus. Food Ferment. Technol. 2019, 55, 43–58. [Google Scholar]
- Xia, Y.; Yuan, R.; Weng, S.; Wang, G.; Xiong, Z.; Zhang, H.; Song, X.; Liu, W.; Ai, L. Proteolysis, lipolysis, texture and sensory properties of cheese ripened by Monascus fumeus. Food Res. Int. 2020, 137, 109657. [Google Scholar] [CrossRef]
- Centeno, J.; Menéndez, S.; Rodriguez-Otero, J. Main microbial flora present as natural starters in Cebreiro raw cow’s-milk cheese (Northwest Spain). Int. J. Food Microbiol. 1996, 33, 307–313. [Google Scholar] [CrossRef]
- Kamilari, E.; Tsaltas, D.; Stanton, C.; Ross, R.P. Metataxonomic Mapping of the Microbial Diversity of Irish and Eastern Mediterranean Cheeses. Foods 2022, 11, 2483. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. Int. J. Food Microbiol. 2011, 150, 81–94. [Google Scholar] [CrossRef]
- Delgado, F.J.; González-Crespo, J.; Cava, R.; García-Parra, J.; Ramírez, R. Characterisation by spme–gc–ms of the volatile profile of a Spanish soft cheese PDO Torta del Casar during ripening. Food Chem. 2010, 118, 182–189. [Google Scholar] [CrossRef]
- Lee-Rangel, H.A.; Mendoza-Martinez, G.D.; Diaz de León-Martínez, L.; Relling, A.E.; Vazquez-Valladolid, A.; Palacios-Martínez, M.; Hernández-García, P.A.; Chay-Canul, A.J.; Flores-Ramirez, R.; Roque-Jiménez, J.A. Application of an electronic nose and HS-SPME/GC-MS to determine volatile organic compounds in fresh mexican cheese. Foods 2022, 11, 1887. [Google Scholar] [CrossRef]
- Tekin, A.; Hayaloglu, A.A. Understanding the mechanism of ripening biochemistry and flavour development in brine ripened cheeses. Int. Dairy J. 2022, 137, 105508. [Google Scholar] [CrossRef]
- Di Donato, F.; Biancolillo, A.; Mazzulli, D.; Rossi, L.; D’Archivio, A.A. hs-spme/gc–ms volatile fraction determination and chemometrics for the discrimination of typical Italian Pecorino cheeses. Microchem. J. 2021, 165, 106133. [Google Scholar] [CrossRef]
- Iranmanesh, M.; Ezzatpanah, H.; Akbari-Adergani, B.; Karimi Torshizi, M.A. SPME/GC-MS characterization of volatile compounds of Iranian traditional dried Kashk. Int. J. Food Prop. 2018, 21, 1067–1079. [Google Scholar] [CrossRef]
- Martín, I.; Rodríguez, A.; García, C.; Córdoba, J.J. Evolution of Volatile Compounds during Ripening and Final Sensory Changes of Traditional Raw Ewe’s Milk Cheese “Torta del Casar” Maturated with Selected Protective Lactic Acid Bacteria. Foods 2022, 11, 2658. [Google Scholar] [CrossRef] [PubMed]
- Sýkora, M.; Vítová, E.; Jeleń, H. Application of vacuum solid-phase microextraction for the analysis of semi-hard cheese volatiles. Eur. Food Res. Technol. 2020, 246, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, R.; Martignetti, A.; De Giulio, B.; Malorni, L.; Addeo, F.; Picariello, G. SPME GC-MS monitoring of volatile organic compounds to assess typicity of Pecorino di Carmasciano ewe-milk cheese. Int. J. Dairy Technol. 2021, 74, 383–392. [Google Scholar] [CrossRef]
- Demirci, S.; Öztürk, H.İ.; Atik, D.S.; Koçak, C.; Demirci, T.; Akın, N. Volatile profile evolution and sensory evaluation of traditional skinbag Tulum cheeses manufactured in Karaman mountainous region of Turkey during ripening. Eur. Food Res. Technol. 2021, 247, 2097–2108. [Google Scholar] [CrossRef]
- Cardinali, F.; Foligni, R.; Ferrocino, I.; Harasym, J.; Orkusz, A.; Milanović, V.; Franciosa, I.; Garofalo, C.; Mannozzi, C.; Mozzon, M.; et al. Microbiological, morpho-textural, and volatile characterization of Portuguese Queijo de Nisa PDO cheese. Food Res. Int. 2022, 162, 112011. [Google Scholar] [CrossRef]
- Jiao, J.; Zheng, Z.; Liu, Z.; You, C. Study of the compositional, microbiological, biochemical, and volatile profile of red-veined cheese, an internal monascus-ripened variety. Front. Nutr. 2021, 8, 649611. [Google Scholar] [CrossRef]
- Jin, Y.; Li, D.; Ai, M.; Tang, Q.; Huang, J.; Ding, X.; Wu, C.; Zhou, R. Correlation between volatile profiles and microbial communities: A metabonomic approach to study Jiang-flavor liquor Daqu. Food Res. Int. 2019, 121, 422–432. [Google Scholar] [CrossRef]
- Tomita, S.; Nomura, M.; Arakawa, Y.; Miura, T.; Hayashida, S.; Hagi, T.; Kobayashi, M.; Suzuki, S.; Yamashita, H.; Sato, K.; et al. Volatile and soluble metabolite profiles in surface-ripened cheeses with Aspergillus oryzae and Aspergillus sojae. Food Res. Int. 2022, 158, 111535. [Google Scholar] [CrossRef]
- Yerlikaya, O.; Akbulut, N. Potential use of probiotic Enterococcus faecium and Enterococcus durans strains in Izmir Tulum cheese as adjunct culture. J. Food Sci. Technol. 2019, 56, 2175–2185. [Google Scholar] [CrossRef]
- Wu, S.; Yu, H.; Liu, Z.; You, C. Influence of Monascus purpureus BD-M-4 on the physicochemical properties, proteolysis and volatile compounds of surface mould-ripened cheese. Food Sci. Biotechnol. 2019, 28, 129–138. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, T.; Zhang, Y.; Song, B.; Pang, X.; Lv, J. Effects of Monascus on Proteolysis, Lipolysis, and Volatile Compounds of Camembert-Type Cheese during Ripening. Foods 2022, 11, 1662. [Google Scholar] [CrossRef]
- Tulyaganovich, K.Z.; Boboniyozovich, R.K.; Abdurasul o’g’li, A.A.; Saydvaliyevich, P.O.R.; Sanjar o’g’li, M.S.; Komiljon o’g’li, M.D. Technological factors affecting the storage of the quality of semi-hard cheeses. Galaxy Int. Interdiscip. Res. J. 2022, 10, 355–358. [Google Scholar]
- Khosrowshahi, A.; Madadlou, A.; Zadeh Mousavi, M.E.; Emam-Djomeh, Z. Monitoring the chemical and textural changes during ripening of Iranian White cheese made with different concentrations of starter. J. Dairy Sci. 2006, 89, 3318–3325. [Google Scholar] [CrossRef]
- Pinheiro, J.S.; Sudré, B.G.S.S.; Alexandre, A.C.S.; Campolina, G.A.; Correia, E.F.; Sobrinho, P.D.S.C. Influence of the starter cultures and ripening on the physicochemical and sensory characteristics of Serro artisanal cheese. Int. J. Gastron. Food Sci. 2021, 24, 100331. [Google Scholar] [CrossRef]
- D’Incecco, P.; Limbo, S.; Hogenboom, J.; Rosi, V.; Gobbi, S.; Pellegrino, L. Impact of extending hard-cheese ripening: A multiparameter characterization of Parmigiano reggiano cheese ripened up to 50 months. Foods 2020, 9, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei, A.; Alirezalu, K.; Damirchi, S.A.; Hesari, J.; Papademas, P.; Domínguez, R.; Lorenzo, J.M.; Yaghoubi, M. Effect of pasteurization and ripening temperature on chemical and sensory characteristics of traditional motal cheese. Fermentation 2020, 6, 95. [Google Scholar] [CrossRef]
- Walsh, E.A.; Diako, C.; Smith, D.M.; Ross, C.F. Influence of storage time and elevated ripening temperature on the chemical and sensory properties of white Cheddar cheese. J. Food Sci. 2020, 85, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Manzo, N.; Santini, A.; Pizzolongo, F.; Aiello, A.; Marrazzo, A.; Meca, G.; Durazzo, A.; Lucarini, M.; Romano, R. Influence of ripening on chemical characteristics of a traditional Italian cheese: Provolone del Monaco. Sustainability 2019, 11, 2520. [Google Scholar] [CrossRef] [Green Version]
- Mureşan, C.C.; Marc, R.A.; Anamaria Semeniuc, C.; Ancuţa Socaci, S.; Fărcaş, A.; Fracisc, D.; Pop, C.R.; Rotar, A.; Dodan, A.; Mureşan, V.; et al. Changes in physicochemical and microbiological properties, fatty acid and volatile compound profiles of Apuseni cheese during ripening. Foods 2021, 10, 258. [Google Scholar] [CrossRef]
- Łepecka, A.; Okoń, A.; Szymański, P.; Zielińska, D.; Kajak-Siemaszko, K.; Jaworska, D.; Neffe-Skocinska, K.; Sionek, B.; Trząskowska, M.; Kołożyn-Krajewska, D.; et al. The Use of Unique, Environmental Lactic Acid Bacteria Strains in the Traditional Production of Organic Cheeses from Unpasteurized Cow’s Milk. Molecules 2022, 27, 1097. [Google Scholar] [CrossRef]
- O’Mahony, J.A.; Sheehan, E.M.; Delahunty, C.M.; McSweeney, P.L. Lipolysis and sensory characteristics of Cheddar cheeses ripened using different temperature-time treatments. Le Lait 2006, 86, 59–72. [Google Scholar] [CrossRef]
- Sihufe, G.A.; Zorrilla, S.E.; Sabbag, N.G.; Costa, S.C.; Rubiolo, A.C. The influence of ripening temperature on the sensory characteristics of Reggianito Argentino cheese. J. Sens. Stud. 2010, 25, 94–107. [Google Scholar] [CrossRef]
- Esmaeilzadeh, P.; Ehsani, M.R.; Mizani, M.; Givianrad, M.H. Characterization of a traditional ripened cheese, Kurdish Kope: Lipolysis, lactate metabolism, the release profile of volatile compounds, and correlations with sensory characteristics. J. Food Sci. 2021, 86, 3303–3321. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; Di Francia, A.; Napolitano, F.; Braghieri, A.; Esposito, G.; Romano, R. Seasonal variation of chemical composition, fatty acid profile, and sensory properties of a mountain pecorino cheese. Foods 2020, 9, 1091. [Google Scholar] [CrossRef]
- Setyawardani, T.; Sulistyowati, M.; Widayaka, K.; Rahardjo, A.H.D. The Physicochemical and Sensory Qualities of Goat Cheese with Indigenous Probiotic Starter at Different Temperatures and Storage Durations. Anim. Prod. 2018, 19, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Bertuzzi, A.S.; McSweeney, P.L.; Rea, M.C.; Kilcawley, K.N. Detection of volatile compounds of cheese and their contribution to the flavor profile of surface-ripened cheese. Compr. Rev. Food Sci. Food Saf. 2018, 17, 371–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atik, D.S.; Akın, N.; Akal, H.C.; Koçak, C. The determination of volatile profile during the ripening period of traditional Tulum cheese from Turkey, produced in Anamur in the Central Taurus region and ripened in goatskin. Int. Dairy J. 2021, 117, 104991. [Google Scholar] [CrossRef]
- Ceruti, R.J.; Zorrilla, S.E.; Sihufe, G.A. Volatile profile evolution of Reggianito cheese during ripening under different temperature–time combinations. Eur. Food Res. Technol. 2016, 242, 1369–1378. [Google Scholar] [CrossRef]
- Van Leuven, I.; Van Caelenberg, T.; Dirinck, P. Aroma characterisation of Gouda-type cheeses. Int. Dairy J. 2008, 18, 790–800. [Google Scholar] [CrossRef]
- Van Mastrigt, O.; Abee, T.; Lillevang, S.K.; Smid, E.J. Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates. Food Microbiol. 2018, 73, 216–226. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.J.; Xu, L.Y.; Wang, B.; Zhang, J.H.; Li, B.Z.; Cao, Y.; Tan, L. Key aroma compounds identified in Cheddar cheese with different ripening times by aroma extract dilution analysis, odor activity value, aroma recombination, and omission. J. Dairy Sci. 2021, 104, 1576–1590. [Google Scholar] [CrossRef]
- Yavuz, M.; Kasavi, C.; Öner, E.T. Developments in effective use of volatile organic compound analysis to assess flavour formation during cheese ripening. J. Dairy Res. 2021, 88, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Amárita, F.; De La Plaza, M.; De Palencia, P.F.; Requena, T.; Peláez, C. Cooperation between wild lactococcal strains for cheese aroma formation. Food Chem. 2006, 94, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Liu, Z.; Yu, H.; Lou, X.; Huang, J.; Yuan, H.; Wang, B.; Xu, Z.; Tian, H. Characterization of Six Lactones in Cheddar Cheese and Their Sensory Interactions Studied by Odor Activity Values and Feller’s Additive Model. J. Agric. Food Chem. 2021, 70, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Ianni, A.; Bennato, F.; Martino, C.; Grotta, L.; Martino, G. Volatile flavor compounds in cheese as affected by ruminant diet. Molecules 2020, 25, 461. [Google Scholar] [CrossRef] [Green Version]
- Izadi, Z.; Mohebbi, M.; Shahidi, F.; Varidi, M.; Salahi, M.R. Cheese powder production and characterization: A foam-mat drying approach. Food Bioprod. Process. 2020, 123, 225–237. [Google Scholar] [CrossRef]
- Özbek, B.; Dadali, G. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J. Food Eng. 2007, 83, 541–549. [Google Scholar] [CrossRef]
- Boylston, T.D.; Wang, H.; Reitmeier, C.A.; Glatz, B.A. Effects of processing treatment and sorbate addition on the flavor characteristics of apple cider. J. Agric. Food Chem. 2003, 51, 1924–1931. [Google Scholar] [CrossRef]
- NIST (National Institute of Standards and Technology). 2012. Available online: http://webbook.nist.gov/chemistry/name-ser.html (accessed on 12 January 2012).
- SAFC (Sigma-Aldrich Flavors & Fragances). 2011. Available online: http://www.sigmaaldrich.com/safcglobal/en-us/home.html (accessed on 17 March 2011).
- Barukčić, I.; Ščetar, M.; Marasović, I.; Lisak Jakopović, K.; Božanić, R. Evaluation of quality parameters and shelf life of fresh cheese packed under modified atmosphere. J. Food Sci. Technol. 2020, 57, 2722–2731. [Google Scholar] [CrossRef] [PubMed]
- Delahunty, C.; Drake, M. Sensory character of cheese and its evaluation. Cheese Chem. Phys. Microbiol. 2004, 1, 455–487. [Google Scholar]
- Ropars, J.; Didiot, E.; de la Vega, R.C.R.; Bennetot, B.; Coton, M.; Poirier, E.; Giraud, T. Domestication of the emblematic white cheese-making fungus Penicillium camemberti and its diversification into two varieties. Curr. Biol. 2020, 30, 4441–4453. [Google Scholar] [CrossRef] [PubMed]
Compound Name | KI Exp | KI Lit | 5 °C | 10 °C | 15 °C |
---|---|---|---|---|---|
Pentanoic acid | 858 | 858 | 1.30 a | 4.60 b | 27.08 c |
Heptenal (4Z) | 899 | 901 | 1.60 a | 2.10 a | 1.94 a |
Hexanoic acid | 996 | 996 | 26.23 a | 69.70 b | 108.94 c |
Hexanoic acid, ethyl ester | 1000 | 1000 | 17.28 a | 5.40 b | 10.79 a |
Hexyl acetate | 1015 | 1007 | 1.35 b | 1.54 b | 0.87 a |
Nonane, 2,6–dimethyl- | 1025 | 1025 | 2.48 c | 1.18 b | 0.61 a |
Limonene | 1032 | 1033 | 2.45 c | 1.09 b | 0.42 a |
4–Hexanolide | 1059 | 1057 | 6.68 c | 3.57 b | 2.28 a |
2–Nonanone | 1092 | 1092 | 3.48 b | 1.33 a | 6.15 c |
n–Undecane | 1100 | 1100 | 2.87 b | 3.34 c | 0.53 a |
2–Nonen–1– al | 1140 | 1144 | 2.94 b | 3.57 b | 1.60 a |
Octanoic acid | 1183 | 1180 | 43.91 a | 84.90 b | 103.54 c |
Octanoic acid, ethyl ester | 1197 | 1198 | 6.28 c | 2.89 a | 5.47 b |
n–Dodecane | 1200 | 1200 | 16.35 c | 8.33 b | 4.37 a |
Undecane, 2,6–dimethyl– | 1214 | 1210 | 1.96 b | 1.45 b | 0.04 a |
Methyl nonanoate | 1223 | 1224 | 1.14 c | 0.65 b | 0.04 a |
Hexadienol butanoate <(2E,4E)–> | 1243 | 1248 | 1.42 c | 0.74 b | 0.04 a |
Unknown | 1264 | 2.43 c | 1.27 b | 0.04 a | |
Dodecane, 2,6,11–trimethyl– | 1276 | 1275 | 6.66 c | 3.42 b | 1.86 a |
2–Undecanone | 1293 | 1293 | 29.29 a | 29.29 a | 29.29 a |
Nonadienol acetate <(2E,6Z)–> | 1304 | 1304 | 1.54 b | 1.06 b | 0.04 a |
methyl Decanoate | 1322 | 1322 | 1.68 b | 0.00 a | 0.04 a |
n–Decanoic acid | 1372 | 1363 | 10.53 a | 28.13 b | 40.00 c |
n–Decanoic acid, ethyl ester | 1395 | 1410 | 4.88 b | 2.57 a | 2.96 a |
Tetradecane | 1400 | 1400 | 4.62 b | 4.61 b | 1.82 a |
Dodecanal | 1411 | 1408 | 0.02 a | 1.86 b | 3.57 c |
Benzyl acetalacetate | 1488 | 1486 | 1.03 b | 1.48 b | 0.04 a |
Pentadecane | 1494 | 1500 | 0.02 a | 6.17 b | 7.10 b |
Dodecanoic acid, ethyl ester | 1595 | 1594 | 2.20 b | 0.89 a | 0.99 a |
Hexadecane | 1599 | 1600 | 0.61 a | 0.80 a | 0.49 a |
Camphoric acid | 1634 | 1634 | 0.02 a | 0.38 b | 0.53 b |
Heptadecane | 1699 | 1700 | 0.02 a | 0.12 a | 0.30 a |
δ–Dodecalactone | 1712 | 1719 | 0.02 a | 0.53 b | 2.28 c |
n–Pentadecanol | 1786 | 1773 | 7.43 b | 3.25 a | 4.44 a |
1–Decanol, 2–hexyl– | 1793 | 1795 | 1.40 a | 7.76 b | 0.46 a |
n–Octadecane | 1799 | 1800 | 0.77 a | 0.77 a | 0.46 a |
Hexadecanal | 1807 | 1815 | 0.02 a | 0.27 b | 0.27 b |
Tetradecanal | 1819 | 1819 | 1.17 a | 1.09 a | 0.87 a |
2–Hexadecene, 2,6,10,14–tetramethyl– | 1844 | 1849 | 2.73 b | 2.78 b | 1.63 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kliks, J.; Białobrzycka, Z.; Krzyszkowska, M.; Korycka-Korwek, J.; Ciepliński, M.; Kasprzak, M. The Aroma Composition of Koryciński Cheese Ripened in Different Temperatures. Molecules 2022, 27, 8745. https://doi.org/10.3390/molecules27248745
Kliks J, Białobrzycka Z, Krzyszkowska M, Korycka-Korwek J, Ciepliński M, Kasprzak M. The Aroma Composition of Koryciński Cheese Ripened in Different Temperatures. Molecules. 2022; 27(24):8745. https://doi.org/10.3390/molecules27248745
Chicago/Turabian StyleKliks, Jarosław, Zuzanna Białobrzycka, Martyna Krzyszkowska, Justyna Korycka-Korwek, Mateusz Ciepliński, and Mariusz Kasprzak. 2022. "The Aroma Composition of Koryciński Cheese Ripened in Different Temperatures" Molecules 27, no. 24: 8745. https://doi.org/10.3390/molecules27248745
APA StyleKliks, J., Białobrzycka, Z., Krzyszkowska, M., Korycka-Korwek, J., Ciepliński, M., & Kasprzak, M. (2022). The Aroma Composition of Koryciński Cheese Ripened in Different Temperatures. Molecules, 27(24), 8745. https://doi.org/10.3390/molecules27248745