Cassia alata, Coriandrum sativum, Curcuma longa and Azadirachta indica: Food Ingredients as Complementary and Alternative Therapies for Atopic Dermatitis-A Comprehensive Review
Abstract
:1. Introduction
2. Current First-Line Therapy
3. Use of Complementary and Alternative Treatment (CAT) in AD
4. Cassia alata L. (Caesalpinaceae)
4.1. Anti-Inflammatory
4.2. Antimicrobial
4.3. Antioxidant
4.4. Wound Healing
5. Coriandrum sativum (Apiaceae)
5.1. Anti-Inflammatory
5.2. Anti-Microbial
5.3. Antioxidant
5.4. Wound Healing
6. Curcuma longa Linn (Zingiberaceae)
6.1. Anti-Inflammatory Activity
6.2. Anti-Microbial Activity
6.3. Antioxidants
6.4. Wound Healing
7. Azadirachta indica A. Juss. (Neem) (Meliaceae)
7.1. Anti-Inflammatory
7.2. Anti-Microbial
7.3. Antioxidant
7.4. Wound Healing
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanifin, J.; Gupta, A.K.; Rajagopalan, R. Intermittent dosing of fluticasone propionate cream for reducing the risk of relapse in atopic dermatitis patients. Br. J. Dermatol. 2002, 147, 528–537. [Google Scholar]
- Weissler, A. Atopic Dermatitis–A New Dawn. Physician Assist. Clin. 2016, 1, 661–682. [Google Scholar]
- Eichenfield, L.F.; Tom, W.L.; Chamlin, S.L.; Feldman, S.R.; Hanifin, J.M.; Simpson, E.L.; Berger, T.G.; Bergman, J.N.; Cohen, D.E.; Cooper, K.D.; et al. Guidelines of care for the management of atopic dermatitis: Section 1. Diagnosis and assessment of atopic dermatitis. J. Am. Acad. Dermatol. 2014, 70, 338–351. [Google Scholar]
- Reitamo, S.; Rustin, M.; Ruzicka, T.; Cambazard, F.; Kalimo, K.; Friedmann, P.S.; Schoepf, E.; Lahfa, M.; Diepgen, T.L.; Judodihardjo, H.; et al. Efficacy and safety of tacrolimus ointment compared with that of hydrocortisone butyrate ointment in adult patients with atopic dermatitis. J. Allergy Clin. Immunol. 2002, 109, 547–555. [Google Scholar]
- Chew, Y.-L.; Al-Nema, M.; Ong, V.W.-M. Management and treatment of atopic dermatitis with modern therapies, complementary and alternative medicines: A review. Orient. Pharm. Exp. Med. 2018, 18, 67–76. [Google Scholar]
- Kim, K.H. Overview of atopic dermatitis. Asia Pac. Allergy 2013, 3, 79–87. [Google Scholar]
- Guo, Y.; Sakulnarmrat, K.; Konczak, I. Anti-inflammatory potential of native Australian herbs polyphenols. Toxicol. Rep. 2014, 1, 385–390. [Google Scholar]
- Coondoo, A.; Phiske, M.; Verma, S.; Lahiri, K. Side-effects of topical steroids: A long overdue revisit. Indian Dermatol. Online J. 2014, 5, 416. [Google Scholar]
- Luger, T.A.; Lahfa, M.; Fölster-Holst, R.; Gulliver, W.P.; Allen, R.; Molloy, S.; Barbier, N.; Paul, C.; Bos, J.D. Long-term safety and tolerability of pimecrolimus cream 1% and topical corticosteroids in adults with moderate to severe atopic dermatitis. J. Dermatol. Treat. 2004, 15, 169–178. [Google Scholar]
- Koo, K.; Nagayah, R.; Begum, S.; Mahmood, T.M.T.; Shah, N.M. The use of complementary and alternative medicine in children with atopic eczema at a tertiary care centre in Malaysia. Complement. Ther. Med. 2020, 49, 102355. [Google Scholar]
- Goh, Y.-Y.; Keshavarzi, F.; Chew, Y.L. Prevalence of atopic dermatitis and pattern of drug therapy in malaysian children. Dermatitis 2018, 29, 151–161. [Google Scholar]
- Zubair, M.; Rizwan, K.; Rashid, U.; Saeed, R.; Saeed, A.A.; Rasool, N.; Riaz, M. GC/MS profiling, in vitro antioxidant, anti-microbial and haemolytic activities of Smilax macrophylla leaves. Arab. J. Chem. 2017, 10, S1460–S1468. [Google Scholar]
- Globinmed. Senna alata (L.) Roxb. 2016 [Updated 23 June 2020]. Available online: https://www.globinmed.com/index.php?option=com_content&view=article&id=106145:senna-alata-l-roxb&catid=286&Itemid=357 (accessed on 23 June 2021).
- Palanichamy, S.; Nagarajan, S. Antifungal activity of Cassia alata leaf extract. J. Ethnopharmacol. 1990, 29, 337–340. [Google Scholar]
- Pieme, C.A.; Penlap, V.N.; Nkegoum, B.; Taziebou, P.C.L.; Tekwu, E.M.; Etoa, F.X.; Ngongang, J. Evaluation of acute and subacute toxicities of aqueous ethanolic extract of leaves of Senna alata (L.) Roxb (Ceasalpiniaceae). Afr. J. Biotechnol. 2006, 5, 283–289. [Google Scholar]
- Ajose, F.O. Some Nigerian plants of dermatologic importance. Int. J. Dermatol. 2007, 46, 48–55. [Google Scholar]
- Makinde, A.A.; Igoli, J.O.; Ta’Ama, L.; Shaibu, S.J.; Garba, A. Antimicrobial activity of Cassia alata. Afr. J. Biotechnol. 2007, 6, 1509–1510. [Google Scholar]
- Villaseñor, I.M.; Canlas, A.P.; Pascua, M.P.I.; Sabando, M.N.; Soliven, L.A.P. Bioactivity studies on Cassia alata Linn. leaf extracts. Phytother. Res. 2002, 16 (Suppl. S1), 93–96. [Google Scholar]
- Rahmawati, F.; Prihantini, N.N.; Hady, B.C. In vitro bioactivity test of Senna alata (L.) Roxb leaves extract. Int. J. Health Sci. Res. 2022, 12, 304–317. [Google Scholar]
- El-Mahmood, A.; Doughari, J. Phytochemical screening and antibacterial evaluation of the leaf and root extracts of Cassia alata Linn. Afr. J. Pharm. Pharmacol. 2008, 2, 124–129. [Google Scholar]
- Eliakim-Ikechukwu, C.F.; Edem, A.A.; William, U.; Okori, S.O.; Ihentuge, C.J. Phytochemical composition of Cassia alata leaf extract and its effect on the histology of the pancreas of diabetic wistar rats. IOSR J. Pharm. Biol. Sci. 2013, 5, 07–13. [Google Scholar]
- Sule, W.; Okonko, I.O.; Omo-Ogun, S.; Nwanze, J.; Ojezele, M.O.; Ojezele, O.J.; Adeolu, A.J.; Soyemi, E.T.; Olaonipekun, T.O. Phytochemical properties and in-vitro antifungal activity of Senna alata Linn. crude stem bark extract. J. Med. Plants Res. 2011, 5, 176–183. [Google Scholar]
- Hazni, H.; Ahmad, N.; Hitotsuyanagi, Y.; Takeya, K.; Choo, C.-Y. Phytochemical constituents from Cassia alata with inhibition against methicillin-resistant Staphylococcus aureus (MRSA). Planta Med. 2008, 74, 1802–1805. [Google Scholar]
- Jain, R.; Chitale, G.; Sharma, P.; Jain, S. Phytochemical and anti-microbial investigations of Cassia alata Linn. roots. J. Med. Aromat. Plant Sci. 2010, 32, 13–15. [Google Scholar]
- Mohammed, A.R.; Ali, A.M.; Aboul-Enein, S.M.; Mohamed, F.M.; Abou, E.; Magdy, M.D.; Mohammed, A.R.H. Phytochemical, cytotoxicity and antioxidant investigation of Cassia alata leaves growing in Egypt. J. Innov. Pharm. Biol. Sci. 2017, 4, 97–105. [Google Scholar]
- Riaz, A.; Rasul, A.; Hussain, G.; Zahoor, M.K.; Jabeen, F.; Subhani, Z.; Younis, T.; Ali, M.; Sarfraz, I.; Selamoglu, Z. Astragalin: A bioactive phytochemical with potential therapeutic activities. Adv. Pharmacol. Sci. 2018, 2018, 9794625. [Google Scholar]
- Lewis, A.; Levy, A. Anti-inflammatory activities of Cassia alata leaf extract in complete Freund’s adjuvant arthritis in rats. West Indian Med. J. 2011, 60, 615–621. [Google Scholar]
- Devi, K.P.; Malar, D.S.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Nabavi, S.M.; Daglia, M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol. Res. 2015, 99, 1–10. [Google Scholar]
- Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE 2018, 13, e0197563. [Google Scholar]
- Palanichamy, S.; Nagarajan, S. Anti-inflammatory activity of Cassia alata leaf extract and kaempferol 3-O-sophoroside. Fitoterapia 1990, 61, 44–47. [Google Scholar]
- Meenupriya, J.; Vinisha, A.S.; Priya, P. Cassia alata and Cassia auriculata–Review of their bioactive potential. World J. Pharm. Sci. 2014, 2, 1760–1769. [Google Scholar]
- Aziz, N.; Kim, M.-Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018, 225, 342–358. [Google Scholar]
- Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 119, 1–11. [Google Scholar]
- Jeon, I.H.; Kim, H.S.; Kang, H.J.; Lee, H.-S.; Jeong, S.I.; Kim, S.J.; Jang, S.I. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves. Molecules 2014, 19, 6941–6951. [Google Scholar]
- Ali, F.; Rahul Naz, F.; Jyoti, S.; Siddique, Y.H. Health functionality of apigenin: A review. Int. J. Food Prop. 2017, 20, 1197–1238. [Google Scholar]
- Kim, S.-G.; Choi, J.G.; Jang, Y.-A. Emodin Studies on Anti-inflammatory and Skin Barrier Improvement Activities. J. Korean Appl. Sci. Technol. 2021, 38, 1383–1392. [Google Scholar]
- Lu, Y.; Yang, J.H.; Li, X.; Hwangbo, K.; Hwang, S.-L.; Taketomi, Y.; Murakami, M.; Chang, Y.-C.; Kim, C.-H.; Son, J.-K.; et al. Emodin, a naturally occurring anthraquinone derivative, suppresses IgE-mediated anaphylactic reaction and mast cell activation. Biochem. Pharmacol. 2011, 82, 1700–1708. [Google Scholar]
- Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Lin, L.; Huyiligeqi; Ni, J. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother. Res. 2016, 30, 1207–1218. [Google Scholar]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.G.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019, 8, 35. [Google Scholar]
- Dong, X.; Zeng, Y.; Liu, Y.; You, L.; Yin, X.; Fu, J.; Ni, J. Aloe-emodin: A review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res. 2020, 34, 270–281. [Google Scholar]
- Park, M.-Y.; Kwon, H.-J.; Sung, M.-K. Evaluation of aloin and aloe-emodin as anti-inflammatory agents in aloe by using murine macrophages. Biosci. Biotechnol. Biochem. 2009, 73, 828–832. [Google Scholar]
- Hu, B.; Zhang, H.; Meng, X.; Wang, F.; Wang, P. Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264. 7 macrophages. J. Ethnopharmacol. 2014, 153, 846–853. [Google Scholar]
- Mar’ie, A.M.; Zamzani, I.; Nashihah, S. Antibacterial activity of Cassia alata stems ethanol extract against Staphylococcus aureus. Acta Pharm. Indones. 2022, 10, 5462. [Google Scholar]
- Chatterjee, S.; Chatterjee, S.; Dutta, S. Cassia alata-An useful anti-microbial agent. Med. Aromat. Plants 2013, 1, e143. [Google Scholar]
- Muhammad, S.L.; Wada, Y.; Mohammed, M.; Ibrahim, S.; Musa, K.Y.; Olonitola, O.S.; Ahmad, M.H.; Mustapha, S.; Rahman, Z.A.; Sha’aban, A. Bioassay-guided identification of bioactive compounds from Senna alata L. against methicillin-resistant Staphylococcus aureus. Appl. Microbiol. 2021, 1, 520–536. [Google Scholar]
- Breuer, K.; Häussler, S.; Kapp, A.; Werfel, T. Staphylococcus aureus: Colonising features and influence of an antibacterial treatment in adults with atopic dermatitis. Br. J. Dermatol. 2002, 147, 55–61. [Google Scholar]
- Chatterjee, S.; Chatterjee, S.; Dey, K.; Dutta, S. Study of antioxidant activity and immune stimulating potency of the ethnomedicinal plant, Cassia alata (L.) Roxb. Med. Aromat. Plants 2013, 2, 131. [Google Scholar] [CrossRef]
- Waris, M.A.A.; Farid, A.M. Antifungal activity of Cassia alata L. ethyl acetate and n-hexane leaves extract against Candida albicans. J. Public Health Pharm. 2021, 1, 27–29. [Google Scholar]
- Sivaranjani, N.; Rao, S.V.; Rajeev, G. Role of reactive oxygen species and antioxidants in atopic dermatitis. J. Clin. Diagn. Res. JCDR 2013, 7, 2683–2685. [Google Scholar]
- Chua, L.Y.W.; Figiel, A.; Chong, C.H.; Wojdyło, A.; Szumny, A.; Lech, K. Characterisation of the convective hot-air drying and vacuum microwave drying of Cassia alata: Antioxidant activity, essential oil volatile composition and quality studies. Molecules 2019, 24, 1625. [Google Scholar]
- Fatmawati, S.; Purnomo, A.S.; Bakar, M.F.A. Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon 2020, 6, e04396. [Google Scholar]
- Sagnia, B.; Fedeli, D.; Casetti, R.; Montesano, C.; Falcioni, G.; Colizzi, V. Antioxidant and anti-inflammatory activities of extracts from Cassia alata, Eleusine indica, Eremomastax speciosa, Carica papaya and Polyscias fulva medicinal plants collected in Cameroon. PLoS ONE 2014, 9, e103999. [Google Scholar]
- Casetti, F.; Bartelke, S.; Biehler, K.; Augustin, M.; Schempp, C.; Frank, U. Antimicrobial activity against bacteria with dermatological relevance and skin tolerance of the essential oil from Coriandrum sativum L. fruits. Phytother. Res. 2012, 26, 420–424. [Google Scholar]
- Sikora, B.C.; Wortzman, M.; Nelson, D.B.; Dover, J.S. A pilot study evaluating the efficacy and tolerability of a comprehensive, hydrating topical antioxidant developed specifically for men. J. Cosmet. Dermatol. 2021, 20, 2816. [Google Scholar]
- Midawa, S.; Ali, B.; Mshelia, B.; Johnson, J. Cutaneous wound healing activity of the ethanolic extracts of the leaf of Senna alata L. (fabaceae). J. Biol. Sci. Bioconserv. 2010, 2, 63. [Google Scholar]
- Kanedi, M. Healing effect of leaf extract of candlebush (Cassia alata L.) on cutaneous wound infected with Trichophyton rubrum. World J. Pharm. Life Sci. 2016, 2, 42–50. [Google Scholar]
- Palanichamy, S.; Bhaskar, E.A.; Bakthavathsalam, R.; Nagarajan, S. Wound healing activity of Cassia alata. Fitoterapia 1991, 62, 153–156. [Google Scholar]
- Iraqui, P.; Chakraborty, T.; Das, M.K.; Yadav, R. Herbal anti-microbial gel with leaf extract of Cassia alata L. J. Drug Deliv. Ther. 2019, 9, 82–94. [Google Scholar]
- Globinmed. Coriandrum sativum L. 2017 [Updated 13 March 2017]. Available online: https://globinmed.com/index.php?option=com_content&view=article&id=106139:coriandrum-sativum-l&catid=286&Itemid=357 (accessed on 28 June 2021).
- Eikani, M.H.; Golmohammad, F.; Rowshanzamir, S. Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L.). J. Food Eng. 2007, 80, 735–740. [Google Scholar]
- Wangensteen, H.; Samuelsen, A.B.; Malterud, K.E. Antioxidant activity in extracts from coriander. Food Chem. 2004, 88, 293–297. [Google Scholar]
- Reuter, J.; Wölfle, U.; Weckesser, S.; Schempp, C. Which plant for which skin disease? Part 1: Atopic dermatitis, psoriasis, acne, condyloma and herpes simplex. J. Dtsch. Dermatol. Ges. 2010, 8, 788–796. [Google Scholar]
- Chahal, K.; Singh, R.; Kumar, A.; Bhardwaj, U. Chemical composition and biological activity of Coriandrum sativum L.: A review. Indian J. Nat. Prod. Resour. (IJNPR) [Former. Nat. Prod. Radiance (NPR)] 2018, 8, 193–203. [Google Scholar]
- Chawla, S.; Thakur, M. Coriandrum sativum: A promising functional and medicinal food. Med. Plants-Int. J. Phytomed. Relat. Ind. 2013, 5, 59–65. [Google Scholar]
- Rajeshwari, U.; Andallu, B. Medicinal benefits of coriander (Coriandrum sativum L). Spatula DD 2011, 1, 51–58. [Google Scholar]
- Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. [Google Scholar]
- Sonika, G.; Manubala, R.; Deepak, J. Comparative studies on anti-inflammatory activity of Coriandrum sativum, Datura stramonium and Azadirachta indica. Asian J. Exp. Biol. Sci. 2010, 1, 151–154. [Google Scholar]
- Park, G.; Kim, H.G.; Lim, S.; Lee, W.; Sim, Y.; Oh, M.S. Coriander alleviates 2, 4-dinitrochlorobenzene-induced contact dermatitis-like skin lesions in mice. J. Med. Food 2014, 17, 862–868. [Google Scholar]
- Malek Mahdavi, A.; Javadivala, Z. Systematic review of preclinical studies about effects of Coriandrum sativum L. on inflammatory mediators. Inflammopharmacology 2022, 30, 1131–1141. [Google Scholar]
- Trifan, A.; Luca, S.V.; Bostănaru, A.-C.; Brebu, M.; Jităreanu, A.; Cristina, R.-T.; Skalicka-Woźniak, K.; Granica, S.; Czerwińska, M.E.; Kruk, A.; et al. Apiaceae essential oils: Boosters of terbinafine activity against dermatophytes and potent anti-inflammatory effectors. Plants 2021, 10, 2378. [Google Scholar]
- Koppula, S.; Alluri, R.; Kopalli, S.R. Coriandrum sativum attenuates microglia mediated neuroinflammation and MPTP-induced behavioral and oxidative changes in Parkinson’s disease mouse model. EXCLI J. 2021, 20, 835. [Google Scholar]
- Yuan, R.; Liu, Z.; Zhao, J.; Wang, Q.-Q.; Zuo, A.; Huang, L.; Gao, H.; Xu, Q.; Khan, I.A.; Yang, S. Novel compounds in fruits of coriander (Coşkuner & Karababa) with anti-inflammatory activity. J. Funct. Foods 2020, 73, 104145. [Google Scholar]
- Nan, L.; Lee, C.-H.; Choi, Y.-N.; Choo, B.-K. Anti-oxidant and anti-inflammatory effects of ethanol extracts from aerial part of Coriandrum sativum L. Korean J. Org. Agric. 2019, 27, 513–528. [Google Scholar]
- Raveau, R.; Fontaine, J.; Verdin, A.; Mistrulli, L.; Laruelle, F.; Fourmentin, S.; Sahraoui, A.L.-H. Chemical composition, antioxidant and anti-inflammatory activities of clary sage and coriander essential oils produced on polluted and amended soils-phytomanagement approach. Molecules 2021, 26, 5321. [Google Scholar]
- Jia, H.; Wen, Y.; Aw, W.; Saito, K.; Kato, H. Ameliorating effects of coriander on gastrocnemius muscles undergoing precachexia in a rat model of rheumatoid arthritis: A proteomics analysis. Nutrients 2021, 13, 4041. [Google Scholar]
- Deepa, B.; Acharya, S.; Holla, R. Evaluation of antiarthritic activity of coriander seed essential oil in Wistar albino rats. Res. J. Pharm. Technol. 2020, 13, 761–766. [Google Scholar]
- Ouyang, L.; Dan, Y.; Shao, Z.; Yang, S.; Yang, C.; Liu, G.; Zhou, W.; Duan, D. Effect of umbelliferone on adjuvant-induced arthritis in rats by MAPK/NF-κB pathway. Drug Des. Devel. Ther. 2019, 13, 1163. [Google Scholar]
- Kükner, A.; Soyler, G.; Toros, P.; Dede, G.; Meriçli, F.; Işık, S.; Edebal, O.; Özoğul, C. Protective effect of Coriandrum sativum extract against inflammation and apoptosis in liver ischaemia/reperfusion injury. Folia Morphol. (Praha) 2021, 80, 363–371. [Google Scholar]
- Qosimah, D.; Widyarti, S.; Mag, B.; Rifa’i, M. Improved cellular immunity and increased insulin in streptozotos-ininduced mice using ethanol coriander (Coriandrum sativum) extract. Res. J. Pharm. Technol. 2021, 14, 3689–3694. [Google Scholar]
- Kajal, A.; Singh, R. Coriandrum sativum improve neuronal function via inhibition of oxidative/nitrosative stress and TNF-α in diabetic neuropathic rats. J. Ethnopharmacol. 2020, 263, 112959. [Google Scholar]
- Hassanen, N.H.; Eissa, A.; Hafez, S.; Mosa, E.A. Antioxidant and anti-microbial activity of celery (Apium graveolens) and coriander (Coriandrum sativum) herb and seed essential oils. Int. J. Curr. Microbiol. App. Sci. 2015, 4, 284–296. [Google Scholar]
- Afrin, S.; Goswami, B.; Rahman, S.; Bhuiyan, M.N.I.; Shamima, K.A.A.; Nandi, N.C. Anti-microbial potential of Coriandrum sativum, Lactuca sativa and Mentha spicata against antibiotic resistant microorganisms. J. Herbs Spices Med. Plants 2022, 28, 193–205. [Google Scholar]
- Mazaher Ghorbani, M.; Ahmady-Asbchin, S. Evaluation of antibacterial properties of coriander, oregano, fennel, thyme and parsley extracts, on pathogenic bacteria Staphylococcus aureus (ATCC 33591), Escherichia coli (ATCC 23591), Klebsiella (ATCC 10031) and Salmonella typhimurium. J. Sabzevar Univ. Med. Sci. 2018, 25, 591–598. [Google Scholar]
- de Almeida Melo, E.; Mancini Filho, J.; Guerra, N.B. Characterisation of antioxidant compounds in aqueous coriander extract (Coriandrum sativum L.). LWT-Food Sci. Technol. 2005, 38, 15–19. [Google Scholar]
- Guerra, N.B.; de Almeida Melo, E.; Mancini Filho, J. Antioxidant compounds from coriander (Coriandrum sativum L.) etheric extract. J. Food Compost. Anal. 2005, 18, 193–199. [Google Scholar]
- Kačániová, M.; Galovičová, L.; Ivanišová, E.; Vukovic, N.L.; Štefániková, J.; Valková, V.; Borotová, P.; Žiarovská, J.; Terentjeva, M.; Felšöciová, S.; et al. Antioxidant, antimicrobial and antibiofilm activity of coriander (Coriandrum sativum L.) essential oil for its application in foods. Foods 2020, 9, 282. [Google Scholar]
- Msaada, K.; Ben Jemia, M.; Salem, N.; Bachrouch, O.; Sriti, J.; Tammar, S.; Bettaieb, I.; Jabri, I.; Kefi, S.; Limam, F.; et al. Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arab. J. Chem. 2017, 10, S3176–S3183. [Google Scholar]
- Ashraf, I.; Zubair, M.; Rizwan, K.; Rasool, N.; Jamil, M.; Khan, S.A.; Tareen, R.B.; Ahmad, V.U.; Mahmood, A.; Riaz, M.; et al. Chemical composition, antioxidant and anti-microbial potential of essential oils from different parts of Daphne mucronata Royle. Chem. Cent. J. 2018, 12, 1–8. [Google Scholar]
- Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Kadri, M. Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination. Molecules 2021, 26, 3625. [Google Scholar]
- Shahwar, M.K.; El-Ghorab, A.H.; Anjum, F.M.; Butt, M.S.; Hussain, S.; Nadeem, M. Characterization of coriander (Coriandrum sativum L.) seeds and leaves: Volatile and non volatile extracts. Int. J. Food Prop. 2012, 15, 736–747. [Google Scholar]
- Zadeh, A.; Mahzooni, T.; Emami, S.A.; Akbari, H.; Fatemi, M.J.; Saberi, M.; Bagheri, T.; Niazi, M.; Araghi, S. The effect of Coriander cream on healing of superficial second degree burn wound. Tehran Univ. Med. J. 2015, 73, 646–652. [Google Scholar]
- Hwang, E.; Lee, D.-G.; Park, S.H.; Oh, M.S.; Kim, S.Y. Coriander leaf extract exerts antioxidant activity and protects against UVB-induced photoaging of skin by regulation of procollagen type I and MMP-1 expression. J. Med. Food 2014, 17, 985–995. [Google Scholar]
- Silva, J.R.; Burger, B.; Kühl, C.; Candreva, T.; Dos Anjos, M.B.; Rodrigues, H.G. Wound healing and omega-6 fatty acids: From inflammation to repair. Mediat. Inflamm. 2018, 2018, 2503950. [Google Scholar]
- Ashraf, K. A comprehensive review on Curcuma longa Linn.: Phytochemical, pharmacological, and molecular study. Int. J. Green Pharm. (IJGP) 2018, 11, S671–S685. [Google Scholar] [CrossRef]
- Afaq, F.; Adhami, V.M.; Ahmad, N.; Mukhtar, H. Botanical antioxidants for chemoprevention of photocarcinogenesis. Front Biosci. 2002, 7, d784–d792. [Google Scholar]
- Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014, 19, 20091–20112. [Google Scholar]
- Ashraf, K.; Mujeeb, M.; Ahmad, A.; Amir, M.; Mallick, M.N.; Sharma, D. Validated HPTLC analysis method for quantification of variability in content of curcumin in Curcuma longa L (turmeric) collected from different geographical region of India. Asian Pac. J. Trop. Biomed. 2012, 2, S584–S588. [Google Scholar]
- Pandeya, N. Old wives’ tales: Modern miracles—turmeric as traditional medicine in India. Trees Life J. 2005, 1, 3. [Google Scholar]
- Tilak, J.C.; Banerjee, M.; Mohan, H.; Devasagayam, T. Antioxidant availability of turmeric in relation to its medicinal and culinary uses. Phytother. Res. 2004, 18, 798–804. [Google Scholar]
- Govindarajan, V.; Stahl, W.H. Turmeric—chemistry, technology, and quality. Crit. Rev. Food Sci. Nutr. 1980, 12, 199–301. [Google Scholar]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin: Miniperspective. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar]
- Kapoor, L. CRC Handbook of Ayurvedic Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Kumar, N.; Sakhya, S.K. Ethnopharmacological properties of Curcuma longa: A review. Int. J. Pharm. Sci. Res. 2013, 4, 103. [Google Scholar]
- Bundy, R.; Walker, A.F.; Middleton, R.W.; Booth, J. Turmeric extract may improve irritable bowel syndrome symptomology in otherwise healthy adults: A pilot study. J. Altern. Complement. Med. 2004, 10, 1015–1018. [Google Scholar]
- Singh, S.; Aggarwal, B.B. Activation of Transcription Factor NF-κB Is Suppressed by Curcumin (Diferuloylmethane)(∗). J. Biol. Chem. 1995, 270, 24995–25000. [Google Scholar]
- Razavi, B.M.; Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. Phytother. Res. 2021, 35, 6489–6513. [Google Scholar]
- Choi, Y.; Park, K.Y.; Han, H.S.; Lee, M.-K.; Seo, S.J. Comparative Analysis of Cutaneous Fungi in Atopic Dermatitis Patients and Healthy Individuals. Ann. Dermatol. 2022, 34, 118. [Google Scholar]
- Rasmussen, H.B.; Christensen, S.B.; Kvist, L.P.; Karazmi, A. A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med. 2000, 66, 396–398. [Google Scholar]
- Khattak, S.; Shah, H.U.; Ahmad, W.; Ahmad, M. Biological effects of indigenous medicinal plants Curcuma longa and Alpinia galanga. Fitoterapia 2005, 76, 254–257. [Google Scholar]
- Parveen, Z.; Nawaz, S.; Siddique, S.; Shahzad, K. Composition and anti-microbial activity of the essential oil from leaves of Curcuma longa L. Kasur variety. Indian J. Pharm. Sci. 2013, 75, 117. [Google Scholar]
- Apisariyakul, A.; Vanittanakom, N.; Buddhasukh, D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J. Ethnopharmacol. 1995, 49, 163–169. [Google Scholar]
- Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C.R. Anti-microbial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics 2022, 11, 322. [Google Scholar]
- Chittasupho, C.; Manthaisong, A.; Okonogi, S.; Tadtong, S.; Samee, W. Effects of quercetin and curcumin combination on antibacterial, antioxidant, in vitro wound healing and migration of human dermal fibroblast cells. Int. J. Mol. Sci. 2021, 23, 142. [Google Scholar]
- Girish, C.; Koner, B.C.; Jayanthi, S.; Ramachandra Rao, K.; Rajesh, B.; Pradhan, S.C. Hepatoprotective activity of picroliv, curcumin and ellagic acid compared to silymarin on paracetamol induced liver toxicity in mice. Fundam. Clin. Pharmacol. 2009, 23, 735–745. [Google Scholar]
- Selvam, R.; Subramanian, L.; Gayathri, R.; Angayarkanni, N. The anti-oxidant activity of turmeric (Curcuma longa). J. Ethnopharmacol. 1995, 47, 59–67. [Google Scholar]
- Smitha, S.; Dhananjaya, B.; Dinesha, R.; Srinivas, L. Purification and characterisation of a∼ 34 kDa antioxidant protein (β-turmerin) from turmeric (Curcuma longa) waste grits. Biochimie 2009, 91, 1156–1162. [Google Scholar]
- Sugiyama, Y.; Kawakishi, S.; Osawa, T. Involvement of the β-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem. Pharmacol. 1996, 52, 519–525. [Google Scholar]
- Patel, N.A.; Patel, M.; Patel, R.P. Formulation and evaluation of polyherbal gel for wound healing. Int. Res. J. Pharm. 2011, 1, 15–20. [Google Scholar]
- Kulac, M.; Aktas, C.; Tulubas, F.; Uygur, R.; Kanter, M.; Erboga, M.; Ceber, M.; Topcu, B.; Ozen, O.A. The effects of topical treatment with curcumin on burn wound healing in rats. J. Mol. Histol. 2013, 44, 83–90. [Google Scholar]
- Maghimaa, M.; Alharbi, S.A. Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for anti-microbial applications and wound healing activity. J. Photochem. Photobiol. B Biol. 2020, 204, 111806. [Google Scholar]
- Bhutta, Z.A.; Ashar, A.; Mahfooz, A.; Khan, J.A.; Saleem, M.I.; Rashid, A.; Aqib, A.I.; Kulyar, M.F.-E.; Sarwar, I.; Shoaib, M.; et al. Enhanced wound healing activity of nano ZnO and nano Curcuma longa in third-degree burn. Appl. Nanosci. 2021, 11, 1267–1278. [Google Scholar]
- Benelli, G.; Caselli, A.; Di Giuseppe, G.; Canale, A. Control of biting lice, Mallophaga—A review. Acta Trop. 2018, 177, 211–219. [Google Scholar]
- Alzohairy, M.A. Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid. Based Complement. Altern. Med. 2016, 2016, 7382506. [Google Scholar]
- Asif, M. Antimicrobial potential of Azadirachta indica against pathogenic bacteria and fungi. J. Pharmacogn. Phytochem. 2012, 1, 78–83. [Google Scholar]
- Chattopadhyay, R. Possible biochemical mode of anti-inflammatory action of Azadirachta indica A. Juss. in rats. Indian J. Exp. Biol. 1998, 36, 418–420. [Google Scholar]
- Mosaddek, A.S.M.; Rashid, M.M.U. A comparative study of the anti-inflammatory effect of aqueous extract of neem leaf and dexamethasone. Bangladesh J. Pharmacol. 2008, 3, 44–47. [Google Scholar]
- Pandey, S.; Jha, A.; Kaur, V. Aqueous extract of neem leaves in treatment of Psoriasis vulgaris. Indian J. Dermatol. Venereol. Leprol. 1994, 60, 63–67. [Google Scholar]
- Kaur, G.; Sarwar Alam, M.; Athar, M. Nimbidin suppresses functions of macrophages and neutrophils: Relevance to its antiinflammatory mechanisms. Phytother. Res. 2004, 18, 419–424. [Google Scholar]
- Naik, M.R.; Bhattacharya, A.; Behera, R.; Agrawal, D.; Dehury, S.; Kumar, S. Study of anti-inflammatory effect of neem seed oil (Azadirachta indica) on infected albino rats. J. Health Res. Rev. 2014, 1, 66. [Google Scholar]
- Ilango, K.; Maharajan, G.; Narasimhan, S. Anti-nociceptive and anti-inflammatory activities of Azadirachta indica fruit skin extract and its isolated constituent azadiradione. Nat. Prod. Res. 2013, 27, 1463–1467. [Google Scholar]
- Raut, R.R.; Sawant, A.R.; Jamge, B.B. Anti-microbial activity of Azadirachta indica (Neem) against pathogenic microorganisms. J. Acad. Ind. Res. 2014, 3, 327–329. [Google Scholar]
- Patankar, R.S.; Chandak, N. Formulation of herbal sanitisers and determining their anti-microbial activities against skin pathogens. Int. J. Innov. Sci. Res. Technol. 2018, 3, 169–177. [Google Scholar]
- Lakshmi, T.; Krishnan, V.; Rajendran, R.; Madhusudhanan, N. Azadirachta indica: A herbal panacea in dentistry–An update. Pharmacogn. Rev. 2015, 9, 41. [Google Scholar]
- Airaodion, A.I.; Olatoyinbo, P.O.; Ogbuagu, U.; Ogbuagu, E.O.; Akinmolayan, J.D.; Adekale, O.A.; Awosanya, O.O.; Agunbiade, A.P.; Oloruntoba, A.P.; Obajimi, O.O.; et al. Comparative assessment of phytochemical content and antioxidant potential of Azadirachta indica and Parquetina nigrescens leaves. Asian Plant Res. J. 2019, 2, 1–14. [Google Scholar]
- Bertino, L.; Guarneri, F.; Cannavò, S.P.; Casciaro, M.; Pioggia, G.; Gangemi, S. Oxidative stress and atopic dermatitis. Antioxidants 2020, 9, 196. [Google Scholar]
- Pokhrel, B.; Rijal, S.; Raut, S.; Pandeya, A. Investigations of antioxidant and antibacterial activity of leaf extracts of Azadirachta indica. Afr. J. Biotechnol. 2015, 14, 3159–3163. [Google Scholar]
- Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem. 2007, 104, 1106–1114. [Google Scholar]
- Barua, C.; Talukdar, A.; Barua, A.; Chakraborty, A.; Sarma, R.; Bora, R. Evaluation of the wound healing activity of methanolic extract of Azadirachta indica (Neem) and Tinospora cordifolia (Guduchi) in rats. Pharmacologyonline 2010, 1, 70–77. [Google Scholar]
- Manca, M.; Manconi, M.; Meloni, M.; Marongiu, F.; Allaw, M.; Usach, I.; Peris, J.; Escribano-Ferrer, E.; Tuberoso, C.; Gutierrez, G.; et al. Nanotechnology for natural medicine: Formulation of neem oil loaded phospholipid vesicles modified with argan oil as a strategy to protect the skin from oxidative stress and promote wound healing. Antioxidants 2021, 10, 670. [Google Scholar]
- Osunwoke Emeka, A.; Olotu Emamoke, J.; Allison Theodore, A.; Onyekwere Julius, C. The wound healing effects of aqueous leave extracts of Azadirachta indica on wistar rats. J. Nat. Sci. Res. 2013, 3, 181–186. [Google Scholar]
Types of CAM | Percentages (%) |
---|---|
CAM user | 46.8 |
Traditional Malay Medicine | |
Malay herbs | 13.9 |
Malay massage | 0.6 |
Malay cupping | 0.6 |
Traditional Chinese Medicine | |
Chinese herbs | 5.8 |
Islamic Medical Practice | |
Ruqyah | 16.2 |
Homoeopathy | 9.2 |
Chiropractic | 0.6 |
Complementary Therapy | |
Spa therapy | 0.6 |
Aromatherapy | 1.7 |
Nutritional therapy b | 9.8 |
Others | 35.3 |
Virgin coconut oil | 11.0 |
Vitamin C | 9.2 |
Olive oil | 6.4 |
Prebiotic/Probiotic | 2.3 |
Remdii™ c | 2.3 |
Oiling d | 1.7 |
Multivitamin | 1.2 |
Omega oil | 1.2 |
Blackseed oil | 1.2 |
Redoxamin e | 1.2 |
Cetaphil® f | 1.2 |
Honey | 1.2 |
Others g | 11.6 |
Assays | Organism Tested | Dose/Concentration | Molecular Targets |
---|---|---|---|
LPS-induced mouse mastitis | Mouse mastitis | 10, 25 and 50 mg/kg | TNF-α ↓, IL-1β ↓, IL-6 ↓, p65 ┴, and IκBα ┴ |
LPS-induced endotozemia and lung injury in mice | Mice (lung) | 25, 50, and 75 mg/kg | TNF-α ┴, IL-1β ┴, and IL-6 ┴ |
LPS-induced macrophages in mice | Mouse cells | 1–100 μg/mL | IL-6 ↓, MIP-1α ↓, MCP-1 ↓, NF-κB p65 ┴, IκBα ┴, and NO ┴ |
LPS-induced RAW 264.7 cells | Mice (RAW 264.7 cells) | 1, 10, and 100 μM | NO ↓ and TNF-α ↓ |
Inhibitory activity on the histamine release by KU812 cells | KU812 cells | 10 to 30 μmol/L | IL-4 ↓, IL-13 ↓, and (IFN- γ) no effect |
LPS-induced Inflammation in RAW 264.7 cells | Mice (RAW 264.7 cells) | NO ┴, IL-6 ┴, and PGE2 ┴ | |
Porphyromonasgingivalis-induced human gingival epithelial (HGE) cells | Human gingival epithelial cells | COX-2 ┴, IL-6 ┴, IL-8 ┴, MMP-1 ┴, MMP-3 ┴, PGE-2 ┴, and IL-4 ┴ | |
Anti-inflammatory effects on Leptospira interrogans-induced inflammatory response | Uterine and endometrial epithelial cells of mice | 100 μg/mL | p38 ┴, p-p38 MAPK ↓, ERK ┴, JNK ┴, and p-p65 ↓ |
Protective effects against ovalbumin- (OVA-) induced allergic inflammation | Mouse model of allergic asthma | 0.5 mg/kg and 1 mg/kg | SOCS-3 ┴, SOCS-5 ┴, and IFN- γ ↑ |
Alleviation in hepatic fibrosis function | Diabetic rats and nondiabetic | PAR2 ┴, IL-1β ↓, IL-6 ↓, TNF-α ↓, and TGF-β1 ┴ | |
Prevention of atopic dermatitis | NC/Nga mice | 1.5 mg/kg | IgE ↓ |
Plant Parts | Compounds | Percentage Composition |
---|---|---|
Seeds | Linalool | 58.0–80.3 |
γ-terpinene | 0.3–11.2 | |
α-pinene | 0.2–10.9 | |
p-cymene | 0.1–8.1 | |
Camphor | 3.0–5.1 | |
Geranyl acetate | 0.2–5.4 | |
Flower | Benzofuran,2,3-dihydro | 15.4 |
Hexadecanoic acid, methyl ester | 10.32 | |
2,4a-epioxy-3,4,5,6,7,8,-hexahydro-2,5,5,8a-tetramethyl-2h-1-benzofuran | 9.35 | |
2-methoxy-4-vinylphenol | 8.8 | |
2,3,5,6-tetrafluroanisole | 8.62 | |
2,6-dimethyl-3- aminobenzoquinone | 6.81 | |
Dodecanoic acid | 5% | |
Leaves | Decanal | 19.09 |
Trans-2-decenal | 17.54 | |
2-decen-1-ol | 12.33 | |
Cyclodecane | 12.15 | |
Cis-2-dodecena | 10.72 | |
Dodecanal | 4.1 | |
Dodecan-1-ol | 3.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chew, Y.-L.; Khor, M.-A.; Xu, Z.; Lee, S.-K.; Keng, J.-W.; Sang, S.-H.; Akowuah, G.A.; Goh, K.W.; Liew, K.B.; Ming, L.C. Cassia alata, Coriandrum sativum, Curcuma longa and Azadirachta indica: Food Ingredients as Complementary and Alternative Therapies for Atopic Dermatitis-A Comprehensive Review. Molecules 2022, 27, 5475. https://doi.org/10.3390/molecules27175475
Chew Y-L, Khor M-A, Xu Z, Lee S-K, Keng J-W, Sang S-H, Akowuah GA, Goh KW, Liew KB, Ming LC. Cassia alata, Coriandrum sativum, Curcuma longa and Azadirachta indica: Food Ingredients as Complementary and Alternative Therapies for Atopic Dermatitis-A Comprehensive Review. Molecules. 2022; 27(17):5475. https://doi.org/10.3390/molecules27175475
Chicago/Turabian StyleChew, Yik-Ling, Mei-Ann Khor, Zhao Xu, Sue-Kei Lee, Jing-Wen Keng, Sze-Huey Sang, Gabriel Akyirem Akowuah, Khang Wen Goh, Kai Bin Liew, and Long Chiau Ming. 2022. "Cassia alata, Coriandrum sativum, Curcuma longa and Azadirachta indica: Food Ingredients as Complementary and Alternative Therapies for Atopic Dermatitis-A Comprehensive Review" Molecules 27, no. 17: 5475. https://doi.org/10.3390/molecules27175475
APA StyleChew, Y. -L., Khor, M. -A., Xu, Z., Lee, S. -K., Keng, J. -W., Sang, S. -H., Akowuah, G. A., Goh, K. W., Liew, K. B., & Ming, L. C. (2022). Cassia alata, Coriandrum sativum, Curcuma longa and Azadirachta indica: Food Ingredients as Complementary and Alternative Therapies for Atopic Dermatitis-A Comprehensive Review. Molecules, 27(17), 5475. https://doi.org/10.3390/molecules27175475