A Literature Review of Artocarpus lacucha Focusing on the Phytochemical Constituents and Pharmacological Properties of the Plant
Abstract
:1. Introduction
2. Results
3. Methods
3.1. Design
3.2. Article Criteria
3.3. Article Search
3.4. Study Selection
4. Discussion
4.1. Nutrient Content in A. lacucha
4.2. Antioxidant Activity of A. lacucha
4.3. Antimicrobial Activity of A. lacucha
4.4. Pharmacological Activity of A. lacucha
Sample | Activity | Method | Result | Reference |
---|---|---|---|---|
A. lacucha leaf methanol extract | Cytotoxic | Brine shrimp lethality bioassay | The extract has a strong toxic potential. LC50 value of the extract was 2.83 ± 0.11 μg/mL. | [59] |
Anti-inflammatory | Carrageenan-induced paw edema test in mice | The extract exhibited anti-inflammatory effects at a 200 mg/kg dose. | ||
Analgesic | Acetic acid-induced writhing test | The extract inhibited 29.63% and 57.41%. | ||
Antidiarrhoeal | Castor oil-induced diarrhea | The extract decreased castor oil-induced diarrhea of the test animals at both 100 and 200 mg/kg doses. | ||
A. lacucha fruit methanol extract | Hepatoprotective | In vivo-induced paracetamol in mice | The extract prevented increases in liver function tests and paracetamol-related histopathological alterations. | [68] |
A. lacucha heart wood aqueous extract | Neuroprotective | H2O2-induced oxidative stress in SH-SY5Y cells | The extract has neuroprotective activity. | [63] |
A. lacucha heart pericarp methanol extract | Cytotoxic | Brine shrimp lethality bioassay | The extract was found to be toxic with an LC50 of 427.74 μg/mL. | [25] |
A. lacucha crude aqueous extract | Schistosomicidal | In vivo mice infected with Schistosoma mansoni | The extract at a concentration of 250 μg/mL exhibited reduced motility. | [54] |
A. lacucha bark hydro-methanolic extract | Antinociceptive | Tail immersion, hot plate, acetic acid, formalin-induced nociception, and carrageenan-induced paw edema tests | The extract has antinociceptive activity. | [11] |
A. lacucha leaf methanol extract | Anticholesterol | In vivo, hyperlipidemia-induced rats were given an extract | The extract significantly lowered the serum total cholesterol, triglycerides, and low-density lipoprotein (LDL) levels, while effectively increasing serum high-density lipoprotein (HDL) levels. | [69] |
A. lacucha heart wood aqueous extract | Antiglycation | Bovine Serum Albumin (BSA) | The extract inhibited AGE-BSA. | [29] |
A. lacucha leaf ethanol extract | Proliferative and Wound healing | MTT assay and in vivo, NIH-3T3 cells in mice | The extract had a proliferative effect and wound-healing properties. | [44] |
4.5. A. lacucha Active Compound
Author Contributions
Funding
Conflicts of Interest
References
- Wongon, M.; Limpeanchob, N. Artocarpus lacucha Extract and Oxyresveratrol Inhibit Glucose Transporters in Human Intestinal Caco-2 Cells. Planta Med. 2021, 87, 709–715. [Google Scholar] [CrossRef]
- Hidayat, D.; Hardiansyah, G. Studi Keanekaragaman Jenis Tumbuhan Obat Di Kawasan IUPHHK PT. Sari Bumi Kusuma Camp Tontang Kabupaten Sintang. J. Vokasi 2012, 8, 61–68. [Google Scholar]
- Katili, A.S. Inventarisasi Tumbuhan Obat Dan Kearifan Lokal Masyarakat Etnis Bune Dalam Memanfaatkan Tumbuhan Obat Di Pinogu, Kabupaten Bonebolango, Provinsi Gorontalo. Pros. Sem. Nas. Masy. Biodiv. Indon. 2015, 1, 78–84. [Google Scholar] [CrossRef]
- Sudradjat, S.E. Mengenal Berbagai Obat Herbal Dan Penggunaannya. J. Kedokt. Meditek 2016, 22, 62–71. [Google Scholar]
- Parawansah, P.; Esso, A.; Saida, S. Sosialisasi Pemanfaatan Tanaman Obat Keluarga Sebagai Upaya Untuk Meningkatkan Imunitas Tubuh Ditengah Pandemi Di Kota Kendari. J. Community Engagem. Heal. 2020, 3, 2018–2021. [Google Scholar]
- Raymond, T. Konsep Obat Modern Asli Indonesia (OMAI) Dalam Penggunaannya Di Fasilitas Kesehatan Formal. J. Perspect. 2020, 33, 1–11. [Google Scholar] [CrossRef]
- Dacosta, M.; Sudirga, S.K.; Muksin, I.K. Perbandingan Kandungan Minyak Atsiri Tanaman Sereh Wangi (Cymbopogon Nardus L. Rendle) Yang Ditanam Di Lokasi Berbeda. Simbiosis 2017, 1, 25. [Google Scholar] [CrossRef]
- Pumpaluk, P.; Sritularak, B.; Likhitwitayawuid, K.; Lapirattanakul, J. Antibacterial Effect of Herbal Plants against Three Cariogenic Microorganisms. Mahidol Dent. J. 2017, 37, 71–80. [Google Scholar]
- Gautam, P.; Patel, R. European Journal of Complementary and Alternative Medicine A. lacucha Roxb: An Overview. Eur. J. Complement. Altern. Med. 2014, 1, 10–14. [Google Scholar]
- Hossain, M.F.; Islam, M.A.; Akhtar, S.; Numan, S.M. Nutritional Value and Medicinal Uses of Monkey Jack Fruit (A. lacucha). Int. Res. J. Biol. Sci. 2016, 5, 60–63. [Google Scholar]
- Islam, S.; Shajib, M.S.; Rashid, R.B.; Khan, M.F.; Al-Mansur, M.A.; Datta, B.K.; Rashid, M.A. Antinociceptive Activities of Artocarpus lacucha Buch-Ham (Moraceae) and Its Isolated Phenolic Compound, Catechin, in Mice. BMC Complement. Altern. Med. 2019, 19, 214. [Google Scholar] [CrossRef] [Green Version]
- Povichit, N.; Phrutivorapongkul, A.; Suttajit, M.; Chaiyasut, C.; Leelapornpisid, P. Phenolic Content and In Vitro Inhibitory Effects on Oxidation and Protein Glycation of Some Thai Medicinal Plants. Pak. J. Pharm. Sci. 2010, 23, 403–408. [Google Scholar] [PubMed]
- Jagtap, U.B.; Bapat, V.A. Artocarpus: A Review of Its Traditional Uses, Phytochemistry and Pharmacology. J. Ethnopharmacol. 2010, 129, 142–166. [Google Scholar] [CrossRef] [PubMed]
- Phoolcharoen, W.; Sooampon, S.; Sritularak, B.; Likhitwitayawuid, K.; Kuvatanasuchati, J.; Pavasant, P. Anti-Periodontal Pathogen and Anti-Inflammatory Activities of Oxyresveratrol. Nat. Prod. Commun. 2013, 8, 613–616. [Google Scholar] [CrossRef] [Green Version]
- Saowakon, N.; Tansatit, T.; Wanichanon, C.; Chanakul, W.; Reutrakul, V.; Sobhon, P. Fasciola Gigantica: Anthelmintic Effect of the Aqueous Extract of A. lacucha. Exp. Parasitol. 2009, 122, 289–298. [Google Scholar] [CrossRef]
- Teanpaisan, R.; Senapong, S.; Puripattanavong, J. In Vitro Antimicrobial and Antibiofilm Activity of A. lacucha (Moraceae) Extract against Some Oral Pathogens. Trop. J. Pharm. Res. 2014, 13, 1149–1155. [Google Scholar] [CrossRef]
- Singhatong, S.; Leelarungrayub, D.; Chaiyasut, C. Antioxidant and Toxicity Activities of A. lacucha Roxb. Heartwood Extract. J. Med. Plants Res. 2010, 4, 947–953. [Google Scholar] [CrossRef]
- Noble, H.; Smith, J. Reviewing the Literature: Choosing a Review Design. Evid. Based. Nurs. 2018, 21, 39–41. [Google Scholar] [CrossRef] [Green Version]
- Bishnoi, S.; Shinder, R.; Sarkar, P. Monkey Jack (A. lacucha Roxb.): Hope for Sustaining Livelihood. Agrobios 2017, 199–213. [Google Scholar]
- Das, S.K.; Avasthe, R.K. Plant Nutrition Management Strategy: A Policy for Optimum Yield. Acta Sci. Agric. 2018, 2, 65–70. [Google Scholar]
- Verma, R.; Sharma, R.; Bhama, S. Standardization, Preparation and Evaluation of Dheu (A. lacucha) Based Toffee. Himachal J. Agric. Res. 2021, 47, 228–234. [Google Scholar]
- Silva, J.A.; Uchida, R.S. Plant Nutrient in Hawaii’s Soils Tropical and Subtropical Agriculture. Plant Nutr. Manag. Hawaii’s Soils Approaches Trop. Subtrop. Agric. 2000, 17, 31–55. [Google Scholar]
- Naumann, M.; Koch, M.; Thiel, H.; Gransee, A.; Pawelzik, E. The Importance of Nutrient Management for Potato Production Part II: Plant Nutrition and Tuber Quality. Potato Res. 2020, 63, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Rustiana, R.; Suwardji, S.; Suriadi, A. Pengelolaan Unsur Hara Terpadu Dalam Budidaya Tanaman Porang (Review). J. Agrotek Ummat 2021, 2, 99. [Google Scholar] [CrossRef]
- Prashith Kekuda, T.R.; Raghavendra, H.L.; Mallikarjun, N.; Venugopal, T.M.; Anil Kumar, H.S. Elemental Composition, Anticariogenic, Pancreatic Lipase Inhibitory and Cytotoxic Activity of A. lacucha Roxb Pericarp. Int. J. Drug Dev. Res. 2012, 4, 330–336. [Google Scholar]
- Rana, S.; Sharma, D.K.; Paliwal, P.P. Ritual Plants Used by Indigenous and Ethnic Societies of District Banswara (South Rajasthan), India. Am. J. Ethnomedicine 2016, 3, 26–34. [Google Scholar]
- Gupta, A.K.; Pathak, U.; Medhi, M.; Mastinu, A.; Sikarwar, M.S.; Mishra, P. Botanical, Chemical and Pharmacological Properties of A. lacucha (Monkey Fruit): A Review. Agric. Rev. 2020, 41, 305–316. [Google Scholar] [CrossRef]
- Tariqul Islam Shajib, M.; Kawser, M.; Nuruddin Miah, M.; Begum, P.; Bhattacharjee, L.; Hossain, A.; Fomsgaard, I.S.; Islam, S.N. Nutritional Composition of Minor Indigenous Fruits: Cheapest Nutritional Source for the Rural People of Bangladesh. Food Chem. 2013, 140, 466–470. [Google Scholar] [CrossRef]
- Pandey, S.; Poonia, A. Monkey Jackfruit (Artocarpus lakoocha Roxb.): The Lesser-Known Fruit. Indian Food Ind. Mag. 2021, 6, 38–45. [Google Scholar]
- Arwansyah; Syam, A.; Arie, J.S. Penggunaan Algoritma FP-Growth Untuk Mengetahui Nutrisi Yang Tepat Pada Tanaman Padi. Pros. Semin. Ilm. Sist. Inf. Teknol. Inf. 2019, 2, 1–11. [Google Scholar]
- Wiraatmaja, W. Pergerakan Hara Mineral Dalam Tanaman. Denpasar: Fakultas Pertanian UNUD. 2016. Available online: https://simdos.unud.ac.id/uploads/file_pendidikan_1_dir/cab302690a210a3fcb6f8f38e4f68a20.pdf (accessed on 13 September 2022).
- Anbudhasan, P.; Surendraraj, A.; Karkuzhali, S.; Sathishkumaran, S. And Nutritional Sciences. Int. J. Food Nutr. Sci. 2014, 3, 225–232. [Google Scholar]
- Cui, K.; Luo, X.; Xu, K.; Ven Murthy, M.R. Role of Oxidative Stress in Neurodegeneration: Recent Developments in Assay Methods for Oxidative Stress and Nutraceutical Antioxidants. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2004, 28, 771–799. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Morshed, M.R.; Hossen, M.S.; Tanvir, E.M.; Kabir, A.; Islam, M.A.; Karim, N.; Alam, N.; Khalil, M.I.; Gan, S.H. Antioxidant Properties and Dose-Dependent Effects of Monkey Fruits (A. lacucha) against Paracetamol-Induced Hepato-Renal Toxicity in Rats. Am. J. Pharmacol. Toxicol. 2018, 13, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Rohmatussolihat, P.; Si, S. Antioksidan, Penyelamat Sel-Sel Tubuh Manusia. Biotrends 2009, 4, 5–9. [Google Scholar]
- Nazliniwaty; Hanafiah, O.A.; Pertiwi, D.; Satria, D.; Muhammad, M. Antioxidant Activity, Total Phenolic and Total Flavonoid Content of Hydroalcoholic Extract of Artocarpus lacucha Buch-Ham. Leaves. AIP Conf. Proc. 2021, 2342, 2–5. [Google Scholar] [CrossRef]
- Tarbiat, S. In Vitro Antioxidant, Anti-Inflammatory and Lipid Lowering Activities of A. lacucha Fruit Extract and Its Implication on Treatment of Dyslipidemia. Int. J. Pharm. Sci. Rev. Res. 2018, 52, 75–82. [Google Scholar]
- Ahamad, T.; Khan, M.A.; Ansari, W.A.; Khan, M.F. Antioxidant and Anticancer Activities of Selected Indian Medicinal Plant Viz., A. lacucha, Kigelia pinnata, and Amaranthus viridis. Era’s J. Med. Res. 2020, 7, 46–51. [Google Scholar] [CrossRef]
- Bhattacharya, E.; Dutta, R.; Chakraborty, S.; Mandal Biswas, S. Phytochemical Profiling of A. lacucha Roxb. Leaf Methanol Extract and Its Antioxidant, Antimicrobial and Antioxidative Activities. Asian Pac. J. Trop. Biomed. 2019, 9, 484. [Google Scholar] [CrossRef]
- Uddin, M.G.; Islam, M.M.; Ahmed, A.; Siddiqui, S.A.; Debnath, A. Evaluation of Anthelmintic, Antioxidant and Anti-Inflammatory Potential of Methanolic Extract of Artocarpus lacucha Leaves. Discov. Phytomedicine 2020, 1, 27. [Google Scholar] [CrossRef]
- Zaitun Hasibuan, P.A. Mardiana Antioxidant Activity of N-Hexane, Ethyl Acetate and Ethanol Extract from Lakoocha Leaves (Artocarpus lacucha Buch.-Ham) Using DPPH Method. Indones. J. Pharm. Clin. Res. 2018, 1, 41–47. [Google Scholar] [CrossRef]
- Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free Radical Scavenging Properties of Wheat Extracts. J. Agric. Food Chem. 2002, 50, 1619–1624. [Google Scholar] [CrossRef]
- Magfira. Analisis Penghambatan Ekstrak Etanol Batang Kembang Bulan (Tithonia Diversifolia) Terhadap Reaksi Oksidasi Dari Radikal Bebas Dengan Metode DPPH ABTS Dan FRAP (Skripsi). Univ. Hasanuddin. Makasar 2018, 1, 1–59. [Google Scholar]
- Nazliniwaty, N.; Hanafiah, O.A.; Pertiwi, D.; Muhammad, M.; Satria, D. The Activity of Combination of Ethanol Extract of Artocarpus lacucha Buch.-Ham and Anredera Cordifolia Steenis Leaves to Increase Wound Healing Process on NIH-3T3 Cell Line. Open Access Maced. J. Med. Sci. 2022, 10, 807–811. [Google Scholar] [CrossRef]
- Dalimunthe, A.; Hasibuan, P.A.Z.; Silalahi, J.; Satria, D. Antioxidant Activity of Alkaloid Fractions of Litsea cubeba Lour. Fruits. Asian J. Pharm. Clin. Res. 2018, 11, 31–32. [Google Scholar] [CrossRef] [Green Version]
- Ghasemzadeh, A.; Ghasemzadeh, N. Flavonoids and Phenolic Acids: Role and Biochemical Activity in Plants and Human. J. Med. Plant Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Amarowicz, R. Tannins: The New Natural Antioxidants? Eur. J. Lipid Sci. Technol. 2007, 109, 549–551. [Google Scholar] [CrossRef]
- El Gengaihi, S. Antioxidant Activity of Phenolic Compounds from Different Grape Wastes. J. Food Process. Technol. 2014, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- C Reygaert, W. An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Senapong, S.; Puripattanavong, J.; Teanpaisan, R. Anticandidal and Antibiofilm Activity of A. lacucha Extract. Songklanakarin J. Sci. Technol. 2014, 36, 451–457. [Google Scholar]
- Kaewkod, T.; Tragoolpua, K.; Tragoolpua, Y. Encapsulation of Artocarpus lacucha Roxb. Extract in Alginate Chitosan Nanoparticles for Inhibition of Methicillin Resistant Staphylococcus aureus and Bacteria Causing Skin Diseases. Chiang Mai J. Sci. 2016, 43, 946–958. [Google Scholar]
- Rodr, C.; Alonso-calleja, C.; Garc, C.; Carballo, J.; Capita, R. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes. Biology 2022, 6, 46. [Google Scholar]
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Silver Nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Preyavichyapugdee, N.; Sangfuang, M.; Chaiyapum, S.; Sriburin, S.; Pootaeng-on, Y.; Chusongsang, P.; Jiraungkoorskul, W.; Preyavichyapugdee, M.; Sobhon, P. Schistosomicidal Activity of the Crude Extract of A. lacucha. Southeast Asian J. Trop. Med. Public Health 2016, 47, 1–15. [Google Scholar] [PubMed]
- Kono, S.R.; Yamlean, P.V.Y.; Sudewi, S. Formulasi Sediaan Obat Kumur Herba Patikan Kebo (Euphorbia hirta) Dan Uji Antibakteri Prophyromonas Gingivalis. Pharmacon 2018, 7, 37–46. [Google Scholar]
- Hafidh, R.R. Inhibition of Growth of Highly Resistant Bacterial and Fungal Pathogens by a Natural Product. Open Microbiol. J. 2011, 5, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Compean, K.L.; Ynalvez, R.A. Antimicrobial Activity of Plant Secondary Metabolites: A Review. Res. J. Med. Plant 2014, 8, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Valentin Bhimba, B.; Meenupriya, J.; Joel, E.L.; Naveena, D.E.; Kumar, S.; Thangaraj, M. Antibacterial Activity and Characterization of Secondary Metabolites Isolated from Mangrove Plant Avicennia Officinalis. Asian Pac. J. Trop. Med. 2010, 3, 544–546. [Google Scholar] [CrossRef] [Green Version]
- Nesa, M.L.; Munira, S.; Bristy, A.S.; Islam, M.; Chayan, H.; Rashid, M. Cytotoxic, Anti-Inflammatory, Analgesic, CNS Depressant, Antidiarrhoeal Activities of the Methanolic Extract of the A. lacucha Leaves. World J. Pharm. Sci. 2015, 3, 167–174. [Google Scholar]
- Peace, K.E. Design and Analysis of Clinical Trials with Time-to-Event Endpoints, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009; ISBN 9780429191954. [Google Scholar]
- Hilal-Dandan, R.; Brunton, L. Goodman and Gilman Manual of Pharmacology and Therapeutics, 13th ed.; McGraw Hill Professional: New York, NY, USA, 2018. [Google Scholar]
- Iskandar, W.; Woro, O.; Handayani, K.; Cahyati, W.H. Analysis of Family Income Factors on Diarrhea Incidence through Behavior in Tapalang. Public Heal. Perspect. J. 2019, 4, 206–213. [Google Scholar]
- Hasriadi, M.W.O.; Lapphanichayakool, P.; Limpeanchob, N. Neuroprotective Effect of A. lacucha Extract and Oxyresveratrol against Hydrogen Peroxide-Induced Toxicity in Sh-Sy5Y Cells. Int. J. Pharm. Pharm. Sci. 2017, 11, 229. [Google Scholar] [CrossRef] [Green Version]
- Duangdee, N.; Chamboonchu, N.; Kongkiatpaiboon, S.; Prateeptongkum, S. Quantitative 1HNMR Spectroscopy for the Determination of Oxyresveratrol in Artocarpus lacucha Heartwood. Phytochem. Anal. 2019, 30, 617–622. [Google Scholar] [CrossRef]
- Rojsanga, P.; Sithisarn, P. Validated TLC-Densitometric Method for Determination of Oxyresveratrol Contents in Ma-Haad (A. lacucha) Heartwood Extracts. Mahidol. Univ. J. Pharm. Sci. 2016, 43, 91–96. [Google Scholar]
- Bahmani, M.; Shirzad, H.; Rafieian, S.; Rafieian-Kopaei, M. Silybum Marianum: Beyond Hepatoprotection. J. Evid.-Based Complement. Altern. Med. 2015, 20, 292–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, E. Damselflies of the Northeast. A Guide to the Species of Eastern Canada and the Northeastern United States; Biodiversity Books; Biodiversity Heritage Library: Washington, DC, USA, 2004; ISBN 9781617790485. [Google Scholar]
- Saleem, M.; Asif, A.; Akhtar, M.F.; Saleem, A. Hepatoprotective Potential and Chemical Characterization of A. lacucha Fruit Extract. Bangladesh J. Pharmacol. 2018, 13, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Shafaq; Akhtar, T.; Ishaq, H.M.; Shahzad, M. Pharmacological Effects of A. lacucha Methanol Extract on Inhibition of Squalene Synthase and Other Downstream Enzymes of the Cholesterol Synthesis Pathway. Pharm. Biol. 2022, 60, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Simorangkir, M.; Silaban, S.; Roza, D. Anticholesterol Activity of Ethanol Extract of Ranti Hitam (Solanum blumei Nees Ex Blume) Leaves: In Vivo and In Silico Study. Pharmacia 2022, 69, 485–492. [Google Scholar] [CrossRef]
- Basha, H.; Mamo, H. The Activity of Plant Crude Extracts against Schistosoma mansoni. J. Parasitol. Res. 2021, 2021, 4397053. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, S.; Pandey, A. A Systematic In Silico Investigation of Phytochemicals from Artocarpus Species against Plasmodium Falciparum Inhibitors. Med. Sci. Forum 2022, 12, 5. [Google Scholar]
- Prashanthi, P.; Rajamma, A.J.; Sateesha, S.B.; Chandan, K.; Tiwari, S.N.; Ghosh, S.K. Pharmacognostical and Larvicidal Evaluation of A. lacucha Roxb. from Western Ghats. Indian J. Nat. Prod. Resour. 2016, 7, 141–149. [Google Scholar]
- Pande, A.; Mundkur, L.; Pande, A.; Bani, S.; Majeed, M. Antiglycation Potential of Commercial Available Extracts of Two Indian Medicinal Plants: Pterocarpus marsupium and A. lacucha Using Advanced Glycation End Products (AGE) Competitive Fluorescence Assay. Cogent Food Agric. 2021, 7, 1914907. [Google Scholar] [CrossRef]
- Povichit, N.; Phrutivorapongkul, A.; Suttajit, M.; Leelapornpisid, P. Antiglycation and Antioxidant Activities of Oxyresveratrol Extracted from the Heartwood of A. lacucha Roxb. Maejo Int. J. Sci. Technol. 2010, 4, 454–461. [Google Scholar]
- Suwannalert, P.; Povichit, N.; Puchadapirom, P.; Junking, M. Anti-Aging Activity and Non-Toxic Dose of Phytooxyresveratrol from A. lacucha Roxb. Trop. J. Pharm. Res. 2012, 11, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Hankittichai, P.; Buacheen, P.; Pitchakarn, P.; Takuathung, M.N.; Wikan, N.; Smith, D.R.; Potikanond, S.; Nimlamool, W. A. lacucha Extract Inhibits Lps-Induced Inflammatory Response in Raw 264.7 Macrophage Cells. Int. J. Mol. Sci. 2020, 21, 1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panichakul, T.; Rodboon, T.; Suwannalert, P.; Tripetch, C.; Rungruang, R.; Boohuad, N.; Youdee, P. Additive Effect of a Combination of A. lacucha and Glycyrrhiza Glabra Extracts on Tyrosinase Inhibition in Melanoma B16 Cells. Pharmaceuticals 2020, 13, 310. [Google Scholar] [CrossRef]
- Wongon, M.; Limpeanchob, N. Inhibitory Effect of A. lacucha Roxb and Oxyresveratrol on α-Glucosidase and Sugar Digestion in Caco-2 Cells. Heliyon 2020, 6, e03458. [Google Scholar] [CrossRef]
- Joshee, N.; Bastola, D.R.; Agrawal, V.P.; Yadav, A.K. Lakoocha: A Multipurpose Tree of Warm Climate. Perspect. New Crops New Uses Trends New Crops New Uses 2002, 405–406. [Google Scholar]
- Rajurkar, N.S.; Gaikwad, K. Evaluation of Phytochemicals, Antioxidant Activity and Elemental Content of Adiantum capillus Veneris Leaves. J. Chem. Pharm. Res. 2012, 4, 365–374. [Google Scholar]
- Singh, M.; Bhatti, S.; Verma, S.K. Improved Plant Regeneration Method of A. lacucha Roxb. from Immature Seeds. Vegetos 2019, 32, 269–274. [Google Scholar] [CrossRef]
- Namdaung, U.; Athipornchai, A.; Khammee, T.; Kuno, M.; Suksamrarn, S. 2-Arylbenzofurans from A. lacucha and Methyl Ether Analogs with Potent Cholinesterase Inhibitory Activity. Eur. J. Med. Chem. 2018, 143, 1301–1311. [Google Scholar] [CrossRef]
- Sritularak, B.; Tantrakarnsakul, K.; Lipipun, V.; Likhitwitayawuid, K. Flavonoids with Anti-HSV Activity from the Root Bark of A. lacucha. Nat. Prod. Commun. 2013, 8, 1079–1080. [Google Scholar] [CrossRef]
- Kumar, M.B.S.; Kumar, M.C.R.; Bharath, A.C.; Kumar, H.R.V.; Kekuda, T.R.P.; Nandini, K.C.; Rakshitha, M.N.; Raghavendra, H.L. Screening of Selected Biological Activities of. J. Basic Clin. Pharm. Screen. 2010, 1, 239–245. [Google Scholar]
- Krishnan, K.; Mathew, L.E.; Vijayalakshmi, N.R.; Helen, A. Anti-Inflammatory Potential of β-Amyrin, a Triterpenoid Isolated from Costus Igneus. Inflammopharmacology 2014, 22, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Marica Bakovic, N.H. Biologically Active Triterpenoids and Their Cardioprotective and Anti-Inflammatory Effects. J. Bioanal. Biomed. 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Chuanasa, T.; Phromjai, J.; Lipipun, V.; Likhitwitayawuid, K.; Suzuki, M.; Pramyothin, P.; Hattori, M.; Shiraki, K. Anti-Herpes Simplex Virus (HSV-1) Activity of Oxyresveratrol Derived from Thai Medicinal Plant: Mechanism of Action and Therapeutic Efficacy on Cutaneous HSV-1 Infection in Mice. Antiviral Res. 2008, 80, 62–70. [Google Scholar] [CrossRef]
- Puntumchai, A.; Kittakoop, P.; Rajviroongit, S.; Vimuttipong, S.; Likhitwitayawuid, K.; Thebtaranonth, Y. Lakoochins A and B, New Antimycobacterial Stilbene Derivatives from A. lacucha. J. Nat. Prod. 2004, 67, 485–486. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.H.; Tsai, Y.T.; Yen, M.H.; Lin, C.C.; Liang, C.J.; Yang, T.H.; Lee, C.W.; Yen, F.L. Norartocarpetin from a Folk Medicine Artocarpus Communis Plays a Melanogenesis Inhibitor without Cytotoxicity in B16F10 Cell and Skin Irritation in Mice. BMC Complement. Altern. Med. 2013, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, M.H.; Liu, J.F.; Chiang, Y.C.; Hu, S.C.S.; Hsu, L.F.; Lin, Y.C.; Lin, Z.C.; Lee, H.C.; Chen, M.C.; Huang, C.L.; et al. Artocarpin, an Isoprenyl Flavonoid, Induces P53-Dependent or Independent Apoptosis via ROS-Mediated MAPKs and Akt Activation in Non-Small Cell Lung Cancer Cells. Oncotarget 2017, 8, 28342–28358. [Google Scholar] [CrossRef] [Green Version]
- Sritularak, B.; Tantrakarnsakul, K.; Likhitwitayawuid, K.; Lipipun, V. New 2-Arylbenzofurans from the Root Bark of A. lacucha. Molecules 2010, 15, 6548–6558. [Google Scholar] [CrossRef]
- Sikarwar, M.S.; Hui, B.J.; Subramaniam, K.; Valeisamy, B.D.; Yean, L.K.; Balaji, K. A Review on Artocarpus Altilis (Parkinson) Fosberg (Breadfruit). J. Appl. Pharm. Sci. 2014, 4, 91–97. [Google Scholar] [CrossRef]
Constituents | Levels |
---|---|
Water (%) | 82.1 |
Carbohydrate (%) | 13.1 |
Protein (%) | 0.7 |
Lipid (%) | 1.1 |
Fibre (%) | 2.0 |
Vitamin A (IU) | 423 |
Thiamin (μg %) | 0.02 |
Riboflavin (μg %) | 0.15 |
Niacin (μg %) | 0.3 |
Ascorbic acid (mg/100 g) | 135 |
Potassium (mg/100 g) | 13.50 |
Magnesium (mg/100 g) | 23.60 |
Phosphorus (mg/100 g) | 22.10 |
Calcium (mg/100 g) | 66.60 |
Iron (mg/100 g) | 0.77 |
Zinc (mg/100 g) | 3.98 |
Manganese (mg/100 g) | 2.02 |
Copper (mg/100 g) | 7.97 |
Sample | Method | Result | Reference |
---|---|---|---|
A. lacucha leaf ethanol extract | DPPH | IC50 value 48.23 ± 0.46 μg/mL | [36] |
A. lacucha leaf methanol extract | DPPH | IC50 value 6.72 ± 4.70 mg Ascorbic acid/gm | [37] |
ABTS | IC50 value 2.32 ± 1.27 mg Ascorbic acid/gm | ||
Hydroxyl | IC50 value 41.35 ± 11.75 mg BHT/gm | ||
Superoxide anion | IC50 value 0.47 ± 0.13 mg ascorbic acid/gm | ||
A. lacucha seed methanol extract | DPPH | IC50 value 18.28 ± 4.22 μg/mL | [38] |
FRAP | IC50 value 31.22 ± 0.89 μg/mL | ||
A. lacucha seed methanol fraction | DPPH | IC50 value 111.98 ± 34.20 μg/mL | [39] |
ABTS | IC50 value 138.26 ± 0.66 μg/mL | ||
FRAP | IC50 value 316.81 ± 2.96 μg/mL | ||
A. lacucha leaf methanol extract | DPPH | IC50 value 26.95 ± 0.009 μg/mL | [40] |
A. lacucha leaf n-hexane, ethyl acetate, and ethanol extract | DPPH | IC50 value n-hexane (1062.03 ± 1.42 μg/mL); ethyl acetate (323.18 ± 0.02 μg/mL); ethanol (99.23 ± 0.07 μg/mL) | [41] |
Sample | Bacteria/Fungi | Method | Inhibition Zone (mm) | Reference |
---|---|---|---|---|
A. lacucha leaf aqueous extract | Streptococcus mutans | MIC/MBC | 30.5 ± 0.00 | [16] |
Streptococcus sobrinus | 16.0 ± 0.35 | |||
Enterococcus faecalis | 18.2 ± 0.00 | |||
Lactobacillus fermentum | 17.7 ± 0.35 | |||
Lactobacillus salivarius | 15.0 ± 1.41 | |||
Aggregatibacter actinomycetemcomitans | 29.5 ± 2.12 | |||
Porphyromonas gingivalis | 21.0 ± 1.41 | |||
Prevotella intermedia | 30.5 ± 0.70 | |||
Prevotella nigrescens | 25.5 ± 0.70 | |||
Fusobacterium nucleatum | 30.7 ± 0.35 | |||
Tanerella forsythia | 29.0 ± 0.00 | |||
A. lacucha bark aqueous extract | Candida albicans ATCC 90028 | MIC/MBC | 20 ± 0.13 | [50] |
Candida albicans ATCC 10231 | 15 ± 0.14 | |||
Candida dubliniensis MYA-577, | 15 ± 0.21 | |||
Candida dubliniensis MYA-646, | 20 ± 0.15 | |||
Candida glabrata ATCC 66032 | 20 ± 0.13 | |||
Candida glabrata ATCC 90030 | 18 ± 0.06 | |||
Candida krusei ATCC 34135 | 13 ± 0.06 | |||
Candida krusei ATCC 6258 | 14 ± 0.10 | |||
Candida tropicalis ATCC 66029 | 28 ± 0.05 | |||
Candida tropicalis ATCC 750 | 19 ± 0.15 | |||
Candida tropicalis ATCC 13803 | 20 ± 0.06 | |||
A. lacucha heartwood ethanol extract | Corynebacterium sp. | MIC/MBC | 20.3 ± 0.6 | [51] |
Staphylococcus aureus | 16 ± 0 | |||
Staphylococcus epidermidis | 20.7 ± 0.6 | |||
Bacillus sp. | 16 ± 0 | |||
Micrococcus luteus | 23.3 ± 0.6 | |||
Pseudomonas aeruginosa | 11.7 ± 0.6 | |||
Methicillin-Resistant Staphylococcus aureus | 16.7 ± 0.6 | |||
Propionibacterium acnes | 15.7 ± 0.6 | |||
A. lacucha wood aqueous extract | Corynebacterium sp. | 24.0 ± 0 | ||
Staphylococcus aureus | 15.7 ± 0.6 | |||
Staphylococcus epidermidis | 18.3 ± 0.6 | |||
Bacillus sp. | 15.7 ± 0.6 | |||
Micrococcus luteus | 21.7 ± 0.6 | |||
Pseudomonas aeruginosa | 9.7 ± 0.6 | |||
Methicillin-Resistant Staphylococcus aureus | 17.3 ± 0.6 | |||
Propionibacterium acne | 12.7 ± 0.6 |
Active Compound | Activity | Reference |
---|---|---|
Cycloartenone (1) | Antihyperglycemic, hypolipidemic, and antiatherosclerotic | [85] |
α-amyrin acetate (2) | Anti-inflammatory activity; helps to decrease mechanical sensitization, hypersensitivity, and edema; radical scavenging and antihyperlipidemic activity | [86] |
β-amyrin acetate (3) | Anti-inflammatory activity; helps to decrease mechanical sensitization, hypersensitivity, and edema; radical scavenging and antihyperlipidemic activity | [86] |
Lupeol acetate (4) | Antioxidant activity; decreases cholesterol, phospholipid, and triglyceride levels; and interrupts cardiovascular disease | [87] |
Oxyresveratrol (5) | Significantly delays the development of skin lesions and is antiviral, cytotoxic, anti-HSV, anti-HIV | [88] |
Lakoochin B (6) | Anti-mycobacterial activity, cytotoxic against nasopharyngeal carcinoma and breast cancer | [89] |
Lakoochin A (7) | Anti-mycobacterial activity, cytotoxic against breast cancer | [89] |
Norartocarpin (8) | Antioxidant and antityrosinase activity, skin-whitening agent | [90] |
Artocarpin (9) | Cytotoxic in lung cancer cells | [91] |
Cycloartolakoochol (10) | Moderate activity against herpes simplex virus (HSV-1 and 2) | [92] |
4-hydroxyartolakoochol (11) | Both compounds have inhibitory activity against acetylcholinesterase and butyrylcholinesterase | [92] |
Cycloartocarpin (12) | Significant antiplasmodial and antitubercular properties and relative cytotoxic activity for breast cancer and human oral epidermoid cancer | [93] |
Cudraflavone C (13) | Significant antiplasmodial and antitubercular activities and relative cytotoxic activity for breast cancer and human oral epidermoid cancer | [93] |
Diethyl phthalate (14) | Antioxidant activity | [39] |
3,4-Dihydroxymandelic acid (15) | Antioxidant and antimicrobial activity | [39] |
7,8-Didehydro-3-methoxy-17-methyl-6-methylene, morphinan (16) | Antioxidant and antimicrobial activity | [39] |
C30H50O MW = 426.7 (1) | C32H52O2 MW = 468.8 (2) | C32H52O2 MW = 468.8 (3) |
C32H52O2 MW = 468.8 (4) | C14H12O4 MW = 244.24 (5) | C29H34O4 MW = 446.6 (6) |
C26H30O4 MW = 406.5 (7) | C25H26O6 MW = 422.5 (8) | C26H28O6 MW = 436.5 (9) |
C29H32O4 MW = 444.23 (10) | C29H32O5 MW = 460.22 (11) | C26H26O6 MW = 434.5 (12) |
C25H26O6 MW = 422.5 (13) | C12H14O4 MW = 222.24 (14) | C8H8O5 MW = 184.15 (15) |
C19H23NO MW = 281.4 (16) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitorus, P.; Keliat, J.M.; Asfianti, V.; Muhammad, M.; Satria, D. A Literature Review of Artocarpus lacucha Focusing on the Phytochemical Constituents and Pharmacological Properties of the Plant. Molecules 2022, 27, 6940. https://doi.org/10.3390/molecules27206940
Sitorus P, Keliat JM, Asfianti V, Muhammad M, Satria D. A Literature Review of Artocarpus lacucha Focusing on the Phytochemical Constituents and Pharmacological Properties of the Plant. Molecules. 2022; 27(20):6940. https://doi.org/10.3390/molecules27206940
Chicago/Turabian StyleSitorus, Panal, Jane Melita Keliat, Vivi Asfianti, Mahatir Muhammad, and Denny Satria. 2022. "A Literature Review of Artocarpus lacucha Focusing on the Phytochemical Constituents and Pharmacological Properties of the Plant" Molecules 27, no. 20: 6940. https://doi.org/10.3390/molecules27206940
APA StyleSitorus, P., Keliat, J. M., Asfianti, V., Muhammad, M., & Satria, D. (2022). A Literature Review of Artocarpus lacucha Focusing on the Phytochemical Constituents and Pharmacological Properties of the Plant. Molecules, 27(20), 6940. https://doi.org/10.3390/molecules27206940