2-(Nitroaryl)-5-Substituted-1,3,4-Thiadiazole Derivatives with Antiprotozoal Activities: In Vitro and In Vivo Study
Abstract
:1. Introduction
2. Results
2.1. In Vitro Activity against T. b. rhodesiense
2.2. Inhibitory Effect of Selected Compounds on T. cruzi and L. donovani
2.3. In Vivo Efficacy of the Selected Compounds
2.4. Prediction of Pharmacokinetic Profile
3. Materials and Methods
3.1. Chemistry
3.2. Biological Assays
3.2.1. In Vitro Antiparasitic and L6 Cytotoxicity Assays
3.2.2. In Vivo Trypanocidal Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Büscher, P.; Cecchi, G.; Jamonneau, V.; Priotto, G. Human african trypanosomiasis. Lancet 2017, 390, 2397–2409. [Google Scholar] [CrossRef]
- Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human african trypanosomiasis. Lancet 2010, 375, 148–159. [Google Scholar] [CrossRef]
- Franco, J.R.; Cecchi, G.; Priotto, G.; Paone, M.; Diarra, A.; Grout, L.; Mattioli, R.C.; Argaw, D. Monitoring the elimination of human African trypanosomiasis: Update to 2014. PLoS Negl. Trop. Dis. 2017, 11, e0005585. [Google Scholar] [CrossRef] [PubMed]
- Masocha, W.; Kristensson, K. Passage of parasites across the blood-brain barrier. Virulence 2012, 3, 202–212. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Parasites African Trypanosomiasis (also known as Sleeping Sickness), CDC-African Trypanosomiasis–Prevention & Control; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2022. [Google Scholar]
- Buguet, A.; Bourdon, L.; Bouteille, B.; Cespuglio, R.; Vincendeau, P.; Radomski, M.; Dumas, M. The duality of sleeping sickness: Focusing on sleep. Sleep Med. Rev. 2001, 5, 139–153. [Google Scholar] [CrossRef]
- Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need. Nat. Rev. Microbiol. 2017, 15, 217–231. [Google Scholar] [CrossRef]
- Dickie, E.A.; Giordani, F.; Gould, M.K.; Mäser, P.; Burri, C.; Mottram, J.C.; Rao, S.P.; Barrett, M.P. New drugs for human African trypanosomiasis: A twenty first century success story. Trop. Med. Infect. Dis. 2020, 5, 29. [Google Scholar] [CrossRef]
- Deeks, E.D. Fexinidazole: First global approval. Drugs 2019, 79, 215–220. [Google Scholar] [CrossRef]
- Priotto, G.; Kasparian, S.; Mutombo, W.; Ngouama, D.; Ghorashian, S.; Arnold, U.; Ghabri, S.; Baudin, E.; Buard, V.; Kazadi-Kyanza, S. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: A multicentre, randomised, phase III, non-inferiority trial. Lancet 2009, 374, 56–64. [Google Scholar] [CrossRef]
- Mesu, V.K.B.K.; Kalonji, W.M.; Bardonneau, C.; Mordt, O.V.; Tete, D.N.; Blesson, S.; Simon, F.; Delhomme, S.; Bernhard, S.; Mbembo, H.M. Oral fexinidazole for stage 1 or early stage 2 African Trypanosoma brucei gambiense trypanosomiasis: A prospective, multicentre, open-label, cohort study. Lancet Glob. Health 2021, 9, e999–e1008. [Google Scholar] [CrossRef]
- Nepali, K.; Lee, H.-Y.; Liou, J.-P. Nitro-group-containing drugs. J. Med. Chem. 2018, 62, 2851–2893. [Google Scholar] [CrossRef]
- Blair, H.A.; Scott, L.J. Delamanid: A review of its use in patients with multidrug-resistant tuberculosis. Drugs 2015, 75, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Gils, T.; Lynen, L.; de Jong, B.C.; Van Deun, A.; Decroo, T. Pretomanid for tuberculosis: A systematic review. Clin. Microbiol. Infect. 2021, 28, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Tapia, R.A.; Carrasco, C.; Ojeda, S.; Salas, C.; Valderrama, J.A.; Morello, A.; Repetto, Y. Synthesis of indazol-4, 7-dione derivatives as potential trypanocidal agents. J. Heterocycl. Chem. 2002, 39, 1093–1096. [Google Scholar] [CrossRef]
- Shiri, P. Novel hybrid molecules based on triazole-β-lactam as potential biological agents. Mini Rev. Med. Chem. 2021, 21, 536–553. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Viana, J.; Monteiro, A.F.; Scotti, L.; Scotti, M.T. The azoles in pharmacochemistry: Perspectives on the synthesis of new compounds and chemoinformatic contributions. Curr. Pharm. Des. 2019, 25, 4702–4716. [Google Scholar] [CrossRef]
- Shiri, P.; Amani, A.M.; Mayer-Gall, T. A recent overview on the synthesis of 1, 4, 5-trisubstituted 1, 2, 3-triazoles. Beilstein J. Org. Chem. 2021, 17, 1600–1628. [Google Scholar] [CrossRef]
- De Vita, D.; Moraca, F.; Zamperini, C.; Pandolfi, F.; Di Santo, R.; Matheeussen, A.; Maes, L.; Tortorella, S.; Scipione, L. In vitro screening of 2-(1H-imidazol-1-yl)-1-phenylethanol derivatives as antiprotozoal agents and docking studies on Trypanosoma cruzi CYP51. Eur. J. Med. Chem. 2016, 113, 28–33. [Google Scholar] [CrossRef]
- Trunz, B.B.; Jędrysiak, R.; Tweats, D.; Brun, R.; Kaiser, M.; Suwiński, J.; Torreele, E. 1-Aryl-4-nitro-1H-imidazoles, a new promising series for the treatment of human African trypanosomiasis. Eur. J. Med. Chem. 2011, 46, 1524–1535. [Google Scholar] [CrossRef]
- Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Kaiser, M. The antitrypanosomal and antitubercular activity of some nitro (triazole/imidazole)-based aromatic amines. Eur. J. Med. Chem. 2017, 138, 1106–1113. [Google Scholar] [CrossRef]
- Thompson, A.M.; Marshall, A.J.; Maes, L.; Yarlett, N.; Bacchi, C.J.; Gaukel, E.; Wring, S.A.; Launay, D.; Braillard, S.; Chatelain, E. Assessment of a pretomanid analogue library for African trypanosomiasis: Hit-to-lead studies on 6-substituted 2-nitro-6,7-dihydro-5H-imidazo [2,1-b][1,3] thiazine 8-oxides. Bioorgan. Med. Chem. Lett. 2018, 28, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Fersing, C.; Boudot, C.; Castera-Ducros, C.; Pinault, E.; Hutter, S.; Paoli-Lombardo, R.; Primas, N.; Pedron, J.; Seguy, L.; Bourgeade-Delmas, S. 8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi. Eur. J. Med. Chem. 2020, 202, 112558. [Google Scholar] [CrossRef] [PubMed]
- Jarrad, A.M.; Ang, C.W.; Debnath, A.; Hahn, H.J.; Woods, K.; Tan, L.; Sykes, M.L.; Jones, A.J.; Pelingon, R.; Butler, M.S. Design, synthesis, and biological evaluation of 2-nitroimidazopyrazin-one/-es with antitubercular and antiparasitic activity. J. Med. Chem. 2018, 61, 11349–11371. [Google Scholar] [CrossRef] [PubMed]
- Ang, C.W.; Tan, L.; Sykes, M.L.; AbuGharbiyeh, N.; Debnath, A.; Reid, J.C.; West, N.P.; Avery, V.M.; Cooper, M.A.; Blaskovich, M.A. Antitubercular and antiparasitic 2-nitroimidazopyrazinones with improved potency and solubility. J. Med. Chem. 2020, 63, 15726–15751. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.L.; Bueno, G.J.; Baliani, A.; Klenke, B.; Brun, R.; Brock, J.M.; Gilbert, I.H.; Barrett, M.P. Trypanocidal activity of melamine-based nitroheterocycles. Antimicrob. Agents Chemother. 2004, 48, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Bot, C.; Hall, B.S.; Álvarez, G.; Di Maio, R.; González, M.; Cerecetto, H.; Wilkinson, S.R. Evaluating 5-nitrofurans as trypanocidal agents. Antimicrob. Agents Chemother. 2013, 57, 1638–1647. [Google Scholar] [CrossRef]
- Zhou, L.; Stewart, G.; Rideau, E.; Westwood, N.J.; Smith, T.K. A class of 5-nitro-2-furancarboxylamides with potent trypanocidal activity against Trypanosoma brucei in vitro. J. Med. Chem. 2013, 56, 796–806. [Google Scholar] [CrossRef]
- Foscolos, A.-S.; Papanastasiou, I.; Foscolos, G.B.; Tsotinis, A.; Kellici, T.F.; Mavromoustakos, T.; Taylor, M.C.; Kelly, J.M. New hydrazones of 5-nitro-2-furaldehyde with adamantanealkanohydrazides: Synthesis and in vitro trypanocidal activity. MedChemComm 2016, 7, 1229–1236. [Google Scholar] [CrossRef]
- Delmas, F.; Gasquet, M.; Timon-David, P.; Madadi, N.; Vanelle, P.; Vaille, A.; Maldonado, J. Synthesis and in vitro anti-protozoan activity of new 5-nitrothiophene oxime ether derivatives. Eur. J. Med. Chem. 1993, 28, 23–27. [Google Scholar] [CrossRef]
- Toro, P.; Suazo, C.; Acuña, A.; Fuentealba, M.; Artigas, V.; Arancibia, R.; Olea-Azar, C.; Moncada, M.; Wilkinson, S.; Klahn, A.H. Cyrhetrenylaniline and new organometallic phenylimines derived from 4-and 5-nitrothiophene: Synthesis, characterization, X-Ray structures, electrochemistry and in vitro anti-T. brucei activity. J. Organomet. Chem. 2018, 862, 13–21. [Google Scholar] [CrossRef]
- Foroumadi, A.; Pournourmohammadi, S.; Soltani, F.; Asgharian-Rezaee, M.; Dabiri, S.; Kharazmi, A.; Shafiee, A. Synthesis and in vitro leishmanicidal activity of 2-(5-nitro-2-furyl) and 2-(5-nitro-2-thienyl)-5-substituted-1,3,4-thiadiazoles. Bioorgan. Med. Chem. Lett. 2005, 15, 1983–1985. [Google Scholar] [CrossRef] [PubMed]
- Foroumadi, A.; Emami, S.; Pournourmohammadi, S.; Kharazmi, A.; Shafiee, A. Synthesis and in vitro leishmanicidal activity of 2-(1-methyl-5-nitro-1H-imidazol-2-yl)-5-substituted-1,3,4-thiadiazole derivatives. Eur. J. Med. Chem. 2005, 40, 1346–1350. [Google Scholar] [CrossRef] [PubMed]
- Nwaka, S.; Ramirez, B.; Brun, R.; Maes, L.; Douglas, F.; Ridley, R. Advancing drug innovation for neglected diseases—Criteria for lead progression. PLoS Negl. Trop. Dis. 2009, 3, e440. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
Compound | Z | T. b. rhodesiense a IC50 (µM) e | Cytotox. L6 b IC50 (µM) e | SI c | clogP d |
---|---|---|---|---|---|
16a | CH2 | 0.242 | 2.49 | 10 | 2.19 |
16b | O | 0.914 | 5.67 | 6 | 1.34 |
16c | NH | 0.060 | 1.06 | 18 | 1.04 |
16d | NCH3 | 0.241 | 1.36 | 6 | 1.13 |
16e | NPh | 0.540 | 6.43 | 12 | 2.48 |
16f | NCOCH3 | 0.081 | 2.49 | 31 | 0.90 |
16g | NCOPh | 0.348 | 1.56 | 4 | 2.07 |
17a | CH2 | 0.647 | 225.77 | 349 | 2.68 |
17b | O | 1.176 | >301.54 | >256 | 1.82 |
17c | NH | 0.346 | 6.38 | 18 | 1.51 |
17d | NCH3 | 1.153 | 40.78 | 35 | 1.58 |
17e | NPh | 11.763 | 56.50 | 5 | 2.95 |
17f | NCOCH3 | 1.889 | 225.43 | 119 | 1.35 |
17g | NCOPh | 0.438 | 51.01 | 116 | 2.49 |
18a | CH2 | 0.510 | >306 | >600 | 1.25 |
18b | O | 0.145 | 265.38 | 1830 | 0.40 |
18c | NH | 0.012 | 140.43 | 11703 | 0.16 |
18d | NCH3 | 0.142 | >290.45 | >2045 | 0.30 |
18e | NPh | 0.285 | 162.93 | 572 | 1.59 |
18f | NCOCH3 | 0.089 | >267 | >3000 | 0.08 |
18g | NCOPh | 0.037 | 191.17 | 5167 | 1.33 |
Melarsoprol | - | 0.004 | 9.6 | 2400 | - |
Podophyllotoxin | - | - | 0.006 | - | - |
Compound | Z | T. cruzi a IC50 (µM) d | SI b | L. donovani Axenic Amastigotes c IC50 (µM) d | SI b | L. donovani Intracellular Amastigotes c IC50 (µM) d |
---|---|---|---|---|---|---|
18a | CH2 | 0.897 | >342 | 0.476 | >643 | 4.76 |
18b | O | 0.294 | 903 | 0.445 | 597 | - |
18c | NH | 0.125 | 1123 | 3.23 | 43 | - |
18d | NCH3 | 0.462 | 629 | - | - | - |
18f | NCOCH3 | 0.468 | >571 | - | - | - |
18g | NCOPh | 0.300 | 638 | 0.188 | 1017 | 0.225 |
Benznidazole | - | 1.43 | - | - | - | - |
Miltefosine | - | - | - | 0.359 | - | 1.84 |
Compound | Dose (Days mg/kg) | Route a | Cured/Infected | Mean Survival Days (MSD) |
---|---|---|---|---|
Control b | - | - | 0/4 | 7.75 |
18b | 4 | i.p | 3/4 | >60 |
18c | 4 | i.p | 3/3 | >60 |
18d | 4 | i.p | 1/4 | >27.75 |
18f | 4 | i.p | 3/4 | >60 |
18g | 4 | i.p | 4/4 | >60 |
Compound | Bioavailability Score | Solubility | PSA (Å2) | Drug Likeness |
---|---|---|---|---|
16a | 0.55 | Soluble | 116.22 | Yes |
16b | 0.55 | Soluble | 125.45 | Yes |
16c | 0.55 | Soluble | 128.25 | Yes |
16d | 0.55 | Soluble | 119.46 | Yes |
16e | 0.55 | Moderately soluble | 119.46 | Yes |
16f | 0.55 | Soluble | 136.53 | Yes |
16g | 0.55 | Moderately soluble | 136.53 | Yes |
17a | 0.55 | Soluble | 131.32 | Yes |
17b | 0.55 | Soluble | 140.55 | No |
17c | 0.55 | Soluble | 143.35 | No |
17d | 0.55 | Soluble | 134.56 | Yes |
17e | 0.55 | Moderately soluble | 134.56 | Yes |
17f | 0.55 | Soluble | 151.63 | No |
17g | 0.55 | Moderately soluble | 151.63 | No |
18a | 0.55 | Soluble | 120.90 | Yes |
18b | 0.55 | Soluble | 130.13 | Yes |
18c | 0.55 | Very soluble | 132.93 | Yes |
18d | 0.55 | Soluble | 124.14 | Yes |
18e | 0.55 | Soluble | 124.14 | Yes |
18f | 0.55 | Soluble | 141.21 | No |
18g | 0.55 | Soluble | 141.21 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, A.; Foroumadi, P.; Emamgholipour, Z.; Mäser, P.; Kaiser, M.; Foroumadi, A. 2-(Nitroaryl)-5-Substituted-1,3,4-Thiadiazole Derivatives with Antiprotozoal Activities: In Vitro and In Vivo Study. Molecules 2022, 27, 5559. https://doi.org/10.3390/molecules27175559
Mousavi A, Foroumadi P, Emamgholipour Z, Mäser P, Kaiser M, Foroumadi A. 2-(Nitroaryl)-5-Substituted-1,3,4-Thiadiazole Derivatives with Antiprotozoal Activities: In Vitro and In Vivo Study. Molecules. 2022; 27(17):5559. https://doi.org/10.3390/molecules27175559
Chicago/Turabian StyleMousavi, Alireza, Parham Foroumadi, Zahra Emamgholipour, Pascal Mäser, Marcel Kaiser, and Alireza Foroumadi. 2022. "2-(Nitroaryl)-5-Substituted-1,3,4-Thiadiazole Derivatives with Antiprotozoal Activities: In Vitro and In Vivo Study" Molecules 27, no. 17: 5559. https://doi.org/10.3390/molecules27175559
APA StyleMousavi, A., Foroumadi, P., Emamgholipour, Z., Mäser, P., Kaiser, M., & Foroumadi, A. (2022). 2-(Nitroaryl)-5-Substituted-1,3,4-Thiadiazole Derivatives with Antiprotozoal Activities: In Vitro and In Vivo Study. Molecules, 27(17), 5559. https://doi.org/10.3390/molecules27175559