Newly Designed Quinazolinone Derivatives as Novel Tyrosinase Inhibitor: Synthesis, Inhibitory Activity, and Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Enzyme Inhibition Studies
2.3. Kinetic Studies
2.4. Fluorescence Analysis
2.4.1. Fluorescence Emission Spectra of Mushroom Tyrosinase in the Presence of Q1 with Various Concentrations
2.4.2. Fluorescence Emission Spectra of Tyrosine in the Presence of Q1 with Various Concentrations
2.4.3. Fluorescence Emission Spectra of L-DOPA in the Presence of Q1 with Various Concentrations
2.5. Molecular Docking
3. Experimental Section
3.1. Synthesis of Quinazolinone Derivatives
3.2. Enzyme Assay
3.3. Fluorescence Analysis
3.4. Molecular Docking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nunes, C.S.; Vogel, K. General perspectives of enzymes, environment preservation, and scarce natural resources—Conclusions. Enzym. Hum. Anim. Nutr. 2018, 515–526. [Google Scholar] [CrossRef]
- Sanchez-Ferrer, A.; Rodriguez-Lopez, J.N.; Garcia-Canovas, F.; Garcia-Carmona, F. Tyrosinase: A comprehensive review of its mechanism. Biochim. Biophys. Acta 1995, 1247, 1–11. [Google Scholar] [CrossRef]
- Prota, G. Progress in the chemistry of melanins and related metabolites. Med. Res. Rev. 1988, 8, 525–556. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Kondoh, H.; Ichihashi, M.; Hearing, V.J. Approaches to Identify Inhibitors of Melanin Biosynthesis via the Quality Control of Tyrosinase. J. Investig. Dermatol. 2007, 127, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Baxter, L.L.; Pavan, W.J. The etiology and molecular genetics of human pigmentation disorders. Wiley Interdiscip. Rev. Dev. Biol. 2013, 2, 379–392. [Google Scholar] [CrossRef]
- Hasegawa, T. Tyrosinase-Expressing Neuronal Cell Line as In Vitro Model of Parkinson’s Disease. Int. J. Mol. Sci. 2010, 11, 1082–1089. [Google Scholar] [CrossRef]
- Hurrell, R.F.; Finot, P.A. Nutritional Consequences of the Reactions between Proteins and Oxidized Polyphenolic Acids. Adv. Exp. Med. Biol. 1984, 177, 423–435. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Menichini, F. Natural and Synthetic Tyrosinase Inhibitors as Antibrowning Agents: An Update. Compr. Rev. Food Sci. F 2012, 11, 378–398. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigment Cell Res. 2003, 16, 101–110. [Google Scholar] [CrossRef]
- Ni-Komatsu, L.; Tong, C.; Chen, G.; Brindzei, N.; Orlow, S.J. Identification of Quinolines that Inhibit Melanogenesis by Altering Tyrosinase Family Trafficking. Mol. Pharmacol. 2008, 74, 1576–1586. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.; Kang, M.; Chung, H.S.; Bae, H. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res. 2007, 21, 805–816. [Google Scholar] [CrossRef]
- Damghani, T.; Hadaegh, S.; Khoshneviszadeh, M.; Pirhadi, S.; Sabet, R.; Khoshneviszadeh, M.; Edraki, N. Design, synthesis, in vitro evaluation and molecular docking study of N’-Arylidene imidazo [1,2-a] pyridine -2-carbohydrazide derivatives as novel Tyrosinase inhibitors. J. Mol. Struct. 2020, 1222, 128876. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Zhai, J.; Han, N.; Liu, Z.; Li, S.; Yin, J. Characterization of antioxidant, α-glucosidase and tyrosinase inhibitors from the rhizomes of Potentilla anserina L. and their structure—Activity relationship. Food Chem. 2021, 336, 127714. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpoor, H.; Iraji, A.; Edraki, N.; Pirhadi, S.; Attarroshan, M.; Khoshneviszadeh, M.; Khoshneviszadeh, M. A Series of Benzylidenes Linked to Hydrazine-1-carbothioamide as Tyrosinase Inhibitors: Synthesis, Biological Evaluation and Structure—Activity Relationship. Chem. Biodivers. 2020, 17, e2000285. [Google Scholar] [CrossRef]
- Raza, H.; Abbasi, M.; Azizur, A.R.; Siddiqui, S.Z.; Hassan, M.; Abbas, Q.; Hong, H.; Shah, S.A.A.; Shahid, M.; Seo, S.Y. Synthesis, molecular docking, dynamic simulations, kinetic mechanism, cytotoxicity evaluation of N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl} butanamides as tyrosinase and melanin inhibitors: In vitro, in vivo and in silico approaches. Bioorg. Chem. 2020, 94, 103445. [Google Scholar] [CrossRef]
- Lertsatitthanakorn, P.; Taweechaisupapong, S.; Aromdee, C.; Khunkitti, W. In vitro bioactivities of essential oils used for acne control. Int. J. Aromather. 2006, 16, 43–49. [Google Scholar] [CrossRef]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M.A.; Elfeki, A.; Talarmin, H. Biological properties of citral and its potential protective effects against cytotoxicity caused by aspirin in the IEC-6 cells. Biomed. Pharmacother. 2017, 87, 653–660. [Google Scholar] [CrossRef]
- Lee, H.J.; Jeong, H.S.; Kim, D.J.; Noh, Y.H.; Yuk, D.Y.; Hong, J.T. Inhibitory effect of citral on NO production by suppression of iNOS expression and NF-κB activation in RAW264.7 cells. Arch. Pharm. Res. 2008, 31, 342–349. [Google Scholar] [CrossRef]
- Carvalho, P.M.M.; Macêdo, C.A.F.; Ribeiro, T.F.; Silva, A.A.; Da, R.E.R.; Morais, L.P.; Kerntopf, M.R.; Menezes, I.R.A.; Barbosa, R. Effect of the Lippia alba (Mill.) N.E. Brown essential oil and its main constituents, citral and limonene, on the tracheal smooth muscle of rats. Biotechnol. Rep. 2018, 17, 31–34. [Google Scholar] [CrossRef]
- Pereira-de-Morais, L.; Silva, A.d.A.; Silva, R.E.R.; Costa, R.H.S.; Monteiro, Á.B.; Barbosa, C.R.S.; Amorim, T.d.S.; Menezes, I.R.A.; Kerntopf, M.R.; Barbosa, R. Tocolytic activity of the Lippia alba essential oil and its major constituents, citral and limonene, on the isolated uterus of rats. Chem. Biol. Interact. 2019, 297, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.E.R.; Morais, L.P.; Silva, A.A.; Bastos, C.M.S.; Pereira-Gonçalves, Á.; Kerntopf, M.R.; Menezes, I.R.A.; Leal-Cardoso, J.H.; Barbosa, R. Vasorelaxant effect of the Lippia alba essential oil and its major constituent, citral, on the contractility of isolated rat aorta. Biomed. Pharmacother. 2018, 108, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.G.; Sousa, S.D.G.; Silva, R.E.R.; Silva-Alves, K.S.; Ferreira-da-Silva, F.W.; Kerntopf, M.R.; Menezes, I.R.A.; Leal-Cardoso, J.H.; Barbosa, R. Essential oil of Lippia alba and its main constituent citral block the excitability of rat sciatic nerves. Braz. J. Med. Biol. Res. 2015, 48, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Saad, M.S.; Perveen, S.; Malik, R.; Khan, A.; Khan, M.K.; Choudhary, I.M. 2-Arylquinazolin-4(3H)-ones: Inhibitory Activities Against Xanthine Oxidase. Med. Chem. 2016, 12, 54–62. [Google Scholar] [CrossRef]
- Saad, M.S.; Saleem, M.; Perveen, S.; Alam, T.M.; Khan, M.K.; Choudhary, I.M. Synthesis and Biological Potential Assessment of 2-Substituted Quinazolin-4(3H)-ones as Inhibitors of Phosphodiesterase-I and Carbonic Anhydrase-II. Med. Chem. 2015, 11, 336–341. [Google Scholar] [CrossRef]
- Khalid, M.K.; Syed, M.S.; Nimra, N.S.; Shafqat, H.; Muhammad, I.F.; Shahnaz, P.; Muhammad, T.; Muhammad, I.C. Synthesis and β-glucuronidase inhibitory activity of 2-arylquinazolin-4(3H)-ones. Bioorg. Med. Chem. 2014, 22, 3449–3454. [Google Scholar] [CrossRef]
- Javaid, S.; Saad, S.M.; Perveen, S.; Khan, K.M.; Choudhary, M.I. 2-Arylquinazolin-4(3H)-ones: A novel class of thymidine phosphorylase inhibitors. Bioorg. Chem. 2015, 63, 142–151. [Google Scholar] [CrossRef]
- Javaid, K.; Saad, S.M.; Rasheed, S.; Moin, S.T.; Syed, N.; Fatima, I.; Salar, U.; Khan, K.M.; Perveen, S.; Choudhary, M.I. 2-Arylquinazolin-4(3H)-ones: A new class of α-glucosidase inhibitors. Bioorg. Med. Chem. 2015, 23, 7417–7421. [Google Scholar] [CrossRef]
- Wang, R.; Chai, W.M.; Yang, Q.; Wei, M.K.; Peng, Y. 2-(4-Fluorophenyl)-quinazolin-4(3H)-one as a novel tyrosinase inhibitor: Synthesis, inhibitory activity, and mechanism. Bioorg. Med. Chem. 2016, 24, 4620–4625. [Google Scholar] [CrossRef]
- Dige, N.C.; Mahajan, P.G.; Raza, H.; Hassan, M.; Vanjare, B.D.; Hong, H.; Lee, K.H.; Seo, S.Y. Ultrasound mediated efficient synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamides as potent tyrosinase inhibitors: Mechanistic approach through chemoinformatics and molecular docking studies. Bioorg. Chem. 2019, 92, 103201–103210. [Google Scholar] [CrossRef]
- Mahajan, P.G.; Dige, N.C.; Vanjare, B.D.; Raza, H.; Hassan, M.; Seo, S.Y.; Kim, C.H.; Lee, K.H. Facile synthesis of new quinazolinone benzamides as potent tyrosinase inhibitors: Comparative spectroscopic and molecular docking studies. J. Mol. Struct. 2019, 1198, 126915–126925. [Google Scholar] [CrossRef]
- Sepehri, N.; Iraji, A.; Yavari, A.; Asgari, M.S.; Zamani, S.; Hosseini, S.; Bahadorikhalili, S.; Pirhadi, S.; Larijani, B.; Khoshneviszadeh, M.; et al. The natural-based optimization of kojic acid conjugated to different thio-quinazolinones as potential anti-melanogenesis agents with tyrosinase inhibitory activity. Bioorg. Med. Chem. 2021, 36, 116044–116053. [Google Scholar] [CrossRef] [PubMed]
- Meunier, B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res. 2008, 41, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.S.; Singh, P. Hybrids molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem. 2016, 124, 500–536. [Google Scholar] [CrossRef]
- Capetti, F.; Tacchini, M.; Marengo, A.; Cagliero, C.; Bicchi, C.; Rubiolo, P.; Sgorbini, B. Citral-Containing Essential Oils as Potential Tyrosinase Inhibitors: A Bio-Guided Fractionation Approach. Plants 2021, 10, 969. [Google Scholar] [CrossRef]
- Kim, N.Y.; Cheon, C.H. Synthesis of quinazolinones from anthranilamides and aldehydes via metal-free aerobic oxidation in DMSO. Tetrahedron Lett. 2014, 55, 2340–2344. [Google Scholar] [CrossRef]
- Thanigaimalai, P.; Sharma, V.K.; Lee, K.C.; Yun, C.Y.; Kim, Y.; Jung, S.H. Refinement of the pharmacophore of 3,4-dihydroquinazoline-2(1H)-thiones for their anti-melanogenesis activity. Bioorg. Med. Chem. Lett. 2010, 20, 4771–4773. [Google Scholar] [CrossRef]
- Qiu, G.; Huang, P.; Yang, Q.; Lu, H.; Xu, J.S.; Deng, Z.H.; Zhang, M.; Peng, Y.Y. ChemInform Abstract: Synthesis of 4-Arylquinazolines by Arylation of Quinazolin-4-ones under Mild Conditions. Synthesis 2013, 45, 3131–3136. [Google Scholar] [CrossRef]
- Si, Y.X.; Wang, Z.J.; Park, D.; Chung, H.Y.; Wang, S.F.; Yan, L.; Yang, J.M.; Qian, G.Y.; Yin, S.J.; Park, Y.D. Effect of hesperetin on tyrosinase: Inhibition kinetics integrated computational simulation study. Int. J. Biol. Macromol. 2012, 50, 257–262. [Google Scholar] [CrossRef]
- Germano, M.P.; Cacciola, F.; Donato, P.; Dugo, P.; Certo, G.; Angelo, V.D.; Mondello, L.; Rapisarda, A. Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. Fitoterapia 2012, 83, 877–882. [Google Scholar] [CrossRef]
- Chen, X.X.; Shi, Y.; Chai, W.M.; Feng, H.L.; Zhuang, J.X.; Chen, Q.X. Condensed tannins from Ficus virens as tyrosinase inhibitors: Structure, inhibitory activity and molecular mechanism. PLoS ONE 2014, 9, e91809. [Google Scholar] [CrossRef] [PubMed]
- Hridya, H.; Amrita, A.; Sankari, M.; Doss, C.G.P.; Gopalakrishnan, M.; Gopalakrishnan, C.; Siva, R. Inhibitory effect of brazilein on tyrosinase and melanin synthesis: Kinetics and in silico approach. Int. J. Biol. Macromol. 2015, 81, 228–234. [Google Scholar] [CrossRef]
- Sujin, S.; Haewon, K.; Hwi, Y.Y.; Do, H.K.; Sultan, U.; Seong, J.K.; Yeon-Jeong, K.; Min-Soo, K.; Jin-Wook, Y.; Pusoon, C.; et al. (E)-2-Cyano-3-(substituted phenyl)acrylamide analogs as potent inhibitors of tyrosinase: A linear β-phenyl-α, β-unsaturated carbonyl scaffold. Bioorg. Med. Chem. 2015, 23, 7728–7734. [Google Scholar] [CrossRef]
- Xie, J.; Dong, H.; Yu, Y.; Cao, S. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: Insights from fluorescence, 1H NMR titration and molecular docking studies. Food Chem. 2016, 190, 709–716. [Google Scholar] [CrossRef] [PubMed]
Compound | Structure | Yield a (%) | IC50 b (µM) |
---|---|---|---|
Q1 | 61% | 103 ± 2 | |
Q2 | 51% | 105 ± 1 | |
Q3 | 49% | 168 ± 2 | |
Q4 | 54% | 253 ± 2 | |
Q5 | 73% | NA | |
Q6 | 81% | NA | |
Q7 | 79% | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yang, J.; Chi, Y.; Gong, C.; Yang, H.; Zeng, F.; Gao, F.; Hua, X.; Wang, Z. Newly Designed Quinazolinone Derivatives as Novel Tyrosinase Inhibitor: Synthesis, Inhibitory Activity, and Mechanism. Molecules 2022, 27, 5558. https://doi.org/10.3390/molecules27175558
Huang Y, Yang J, Chi Y, Gong C, Yang H, Zeng F, Gao F, Hua X, Wang Z. Newly Designed Quinazolinone Derivatives as Novel Tyrosinase Inhibitor: Synthesis, Inhibitory Activity, and Mechanism. Molecules. 2022; 27(17):5558. https://doi.org/10.3390/molecules27175558
Chicago/Turabian StyleHuang, Yaru, Jiefang Yang, Yunyang Chi, Chun Gong, Haikuan Yang, Fanxin Zeng, Fang Gao, Xiaoju Hua, and Zongde Wang. 2022. "Newly Designed Quinazolinone Derivatives as Novel Tyrosinase Inhibitor: Synthesis, Inhibitory Activity, and Mechanism" Molecules 27, no. 17: 5558. https://doi.org/10.3390/molecules27175558
APA StyleHuang, Y., Yang, J., Chi, Y., Gong, C., Yang, H., Zeng, F., Gao, F., Hua, X., & Wang, Z. (2022). Newly Designed Quinazolinone Derivatives as Novel Tyrosinase Inhibitor: Synthesis, Inhibitory Activity, and Mechanism. Molecules, 27(17), 5558. https://doi.org/10.3390/molecules27175558