Next Article in Journal
Baobab-Fruit Shell and Fibrous Filaments Are Sources of Antioxidant Dietary Fibers
Next Article in Special Issue
Phytotoxic Metabolites Isolated from Aspergillus sp., an Endophytic Fungus of Crassula arborescens
Previous Article in Journal
Discovery of Quinacrine as a Potent Topo II and Hsp90 Dual-Target Inhibitor, Repurposing for Cancer Therapy
Previous Article in Special Issue
Two New Phenolic Glycosides with Lactone Structural Units from Leaves of Ardisia crenata Sims with Antibacterial and Anti-Inflammatory Activities
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Biological Activities and Secondary Metabolites from Sophora tonkinensis and Its Endophytic Fungi

1
School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
2
School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
3
School of Humanities and Management, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
*
Authors to whom correspondence should be addressed.
These authors contribute equally to this work.
Molecules 2022, 27(17), 5562; https://doi.org/10.3390/molecules27175562
Submission received: 20 July 2022 / Revised: 24 August 2022 / Accepted: 25 August 2022 / Published: 29 August 2022

Abstract

:
The roots of Sophora tonkinensis Gagnep., a traditional Chinese medicine, is known as Shan Dou Gen in the Miao ethnopharmacy. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of lung, stomach, and throat diseases, and the roots of S. tonkinensis have been produced as Chinese patent medicines to treat related diseases. Existing phytochemical works reported more than 300 compounds from different parts and the endophytic fungi of S. tonkinensis. Some of the isolated extracts and monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on. The research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.

Graphical Abstract

1. Introduction

Sophora tonkinensis Gagnep. belongs to the Sophora genus of the Leguminosae family, which is widely distributed in the southwest provinces of China [1,2]. As a famous folk medicine of the Miao people, the roots of S. tonkinensis were known as Shan Dou Gen or Guang Dou Gen in the Miao ethnopharmacy [3,4]. The early medicinal records of Shan Dou Gen were contained in the classics “Kai Bao Ben Cao”, in which S. tonkinensis showed the effect of anti-sore throat diseases [5,6]. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of upper respiratory tract infection, including lung and throat diseases. Meanwhile, S. tonkinensis is also highly effective in the treatment of liver and skin diseases [7,8]. Moreover, the roots of S. tonkinensis can also be combined with other medicines to form dozens of clinical and marketing Chinese patent medicines, such as Kai Hou Jian throat spray, Shuyanqing Spray, and Watermelon Frost Spray, which is usually used for treatment of pharyngitis, tonsillitis, and aphthous ulcers [9,10,11]. Existing phytochemical works reported more than 300 compounds with various structural skeleton types from different parts and endophytic fungi of S. tonkinensis. Some of the isolated monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on [12,13,14,15,16,17]. Herein, the research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.

2. Phytochemistry

Previous studies have shown that alkaloids, flavonoids, triterpenoids, and triterpenoid saponins were the main chemical components isolated from S. tonkinensis. To date, 78 (178) alkaloids, 115 (79193) flavonoids, 46 (194239) triterpenes and triterpenoid saponins, and 37 (240276) other compounds have been isolated from S. tonkinensis, and it is worth mentioning that 40 (277316) compounds were also isolated from the endophytic fungi produced by S. Tonkinensis (Table 1, Figure 1).

2.1. Alkaloids

The alkaloids isolated in S. tonkinensis were mainly quinolizidine-type alkaloids [73]. To date, 78 alkaloids have been identified and isolated, of which 49 (149) are matrine type alkaloids. Sophtonseedline A (46) was isolated from the seeds of S. tonkinensis, which featured an unprecedented 5/6/6/6 tetracyclic skeleton [19]. Meanwhile, tonkinensines A (58) and B (59) with the rare multi group bridging structures were isolated from S. tonkinensis also [25].

2.2. Flavonoids

Flavonoids generically referred to the compounds with C6-C3-C6 structure skeleton. The flavonoids were rich in S. tonkinensis, and more than 115 flavonoids have been reported as far as we know. Their structural types can be classified as flavonoids (79-87), flavonols (8897), isoflavones and dihydroisoflavones (98118), dihydroflavones (119158), chalcones and dihydrochalcones (159167), pterostanes (168191), and flavanols (192193). Interestingly, tonkinochromanes A (143) and B (156) may ring-fused in the isoprenyl substituents [53]. Meanwhile, sophoraflavones A (87) and B (86) were the rare 5-deoxyflavonoids from the roots of S. tonkinensis [32]. Among the eighteen flavonoids identified using UPLC-ESI-LTQ/MS methods, formononetin (107), quercetin (88), rutin (96), isoquercitrin (94), and quercitrin (95) were suggested as the major quality markers of S. tonkinensis roots [37].

2.3. Triterpenoids and Triterpenoid Saponins

As far as we know, more than 46 (194239) triterpenoids and triterpenoid saponins have been isolated from S. tonkinensis. Isolated triterpenoids are mainly of the oleanane type with carbonyl substitution at position C-22 [30,74]. Compared with flavonoids and alkaloids, the triterpenoids and triterpenoid saponins of S. tonkinensis were rarely reported [59,61,62].

2.4. Other Compounds

In addition to alkaloids, flavonoids, and triterpenoids, a total of 37 (240276) phenolic acids, sterols, and other compounds were reported from S. tonkinensis. Two new 2-arylbenzofuran dimers, shandougenines A (263) and B (264), were isolated from the roots of S. tonkinensis. It is noteworthy that shandougenine A (263) has the unique dimeric 2-Arylbenzofuran with a C-3\C-5 bond, and shandougenine B (264) was the natural dimeric 2-arylbenzofuran with a novel C-3/C-3 bond [40]. Meanwhile, a new propenyl phenylacetone was also isolated from S. tonkinensis and named sophoratonin H (257) [42].

2.5. Compounds Produced by Endophytic Fungi

The endophytic fungus Xylaria sp.GDG-102, Penicillium macrosclerotiorum, Penicillium vulpinum, Diaporthe sp.GDG-118, and Xylaria sp. GDGJ-368 [65,66,69,71] were isolated from S. tonkinensis, and some compounds produced by these endophytic fungi were interesting. More than 40 (277316) compounds have been isolated from its endophytic fungi. Xylapeptide A (301) identified from the associated fungus Xylaria sp. GDG-102 was the first example of cyclopentapeptide with an L-Pip of terrestrial origin [70].

3. Pharmacological Activities

3.1. Anti-Inflammatory Effect

Reported studies have shown the anti-inflammatory activities of S. tonkinensis (Table 2) [45,75]. Some novel compounds, including 12,13-dehydrosophoridine (16) from S. tonkinensis, showed significant activity against inflammatory cytokines TNF-α and IL-6 on LPS-induced RAW264.7 macrophages [23]. Moreover, 6,8-diprenyl-7,4’-dihydroxyflavanone (DDF) (119) inhibited the production of NO and the expression of TNF-α, IL-1β, and IL-6 [45]. Meanwhile, the compounds 2′-hydroxyglabrol (131), glabrol (121), maackiain (168), and bolusanthin IV (261) showed strong inhibitory effects on IL-6 [47]. Sophotokin (174) dose-dependently inhibited the lipopolysaccharide (LPS)-stimulated production of NO, TNF-α, PGE2, and IL-1β in microglial cells [34]. Moreover, the orally administered roots extract of S. tonkinensis attenuated the total leukocytes, eosinophil infiltration, and IL-5 level in BAL fluids [76]. Another study also showed S. tonkinensis were able to reduce TNF-α, NO, and IL-6 contents in rat paw edema induced by carrageenan [77].

3.2. Anti-Tumor Effect

The anti-tumor effect was one of the most reported activities of S. tonkinensis (Table 2). The chloroform extracts of S. tonkinensis have been discovered its inhibitory effect on cell viability and clonal growth in a dose-dependent manner [87]. Meanwhile, the extracts of S. tonkinensis also have been reported the inhibit ability target the proliferation, adhesion, invasion, and metastasis of mouse melanoma cells [86]. The anticancer activities of compounds have also been reported [38]. The natural compounds from S. tonkinensis exhibited inhibitory effects against different tumor cells. The growth-inhibitory and apoptosis-inducing activities of sophoranone (120) for leukemia U937 cells were investigated [88].

3.3. Hepatoprotective

The components of S. tonkinensis were reported significant protective effects against immune induced liver injury (Table 2). Previous works suggested that the nonalkaloid constituents of S. tonkinensis obviously reduced the alanine aminotransferase (ALT), aspartate aminotransferase (AST) serum, malondialdehyde (MDA), and nitric oxide (NO), as well as increased the superoxide dismutase (SOD) and glutathione (GSH) in mice with immune-induced liver injury [13]. The water extract of S. tonkinensis alleviated hepatic inflammation, liver fibrosis, and hepatic lipids accumulation [91]. Compounds matrine (1) and oxymatrine (4) may be the main components contributing to the lipid-lowering activity of the water extract of S. tonkinensis [91]. Meanwhile, two purified polysaccharide fractions (STRP1 and STRP2) from the roots of S. tonkinensis have been reported to attenuate hepatic oxidative damage in vivo [95]. In addition, some compounds, including sophocarpine (34) from S. tonkinensis have been reported to significantly improve liver injury in mice [93].

3.4. Anti-Viral Activity

The compounds isolated from S. tonkinensis (Table 2), such as 3-(4-Hydroxyphenyl)-4-(3-methoxy-4- hydroxyphenyl)-3,4-dehydroquinolizidine (75), cermizine C (70), jussiaeiine A (68), jussiaeiine B (67), (+)-5α-hydroxyoxysophocarpine (17), (−)-12β- hydroxyoxysophocarpine (18), and (−)-clathrotropine (64), have reported the anti-coxsackie virus B3 (CVB3) activities with IC50 values rang of 0.12~6.40 µmol/L [26]. The compounds sophtonseedline B (188) and (−)-trifolirhizin (190) from S. tonkinensis exhibited anti-tobacco mosaic virus (TMV) activities with the inhibition rates of 69.62% and 68.72%, respectively, at a concentration of 100 µg/mL [56]. The other compounds, including sophtonseedline D (23), sophtonseedline F (8), and (−)-N-formylcytisine (52), have been reported to have anti-TMV activities as well [19]. In addition to TMV, compounds (+)-oxysophocarpine (20), (−)-sophocarpine (34), and (−)-13,14-Dehydrosophoridine (16) have showed anti-HBV activities [20].

3.5. Anti-Antioxidant Activities

The antioxidant activities of chloroform, ethyl acetate, N-butanol, and ethanol extracts of S. tonkinensis have been tested (Table 2). The results of DPPH, ABTS, and OH radical scavenging assay showed that all extracts exhibited antioxidant activities [98]. Some compounds from S. tonkinensis exhibited antioxidant activities. It is noteworthy that shandougenine A (263), shandougenine C (127), shandougenine D (128), and 7,4’-Dihydroxyisoflavone (103) showed stronger superoxide anion radical scavenging capacity than the known flavanone luteolin. Shandougenines B (264) showed DPPH free radical and ABTS cation radical scavenging capacity. Shandougenine A (263), shandougenine C (127), shandougenine D (128), bolusanthin IV (261), 2-(2’,4’-Dihydroxyphenyl)-5,6-methylenedioxybenzofuran (260), and demethylmedicarpin (179) were reported parallel ABTS cation radical scavenging capacity to the positive control [40].

3.6. Toxicity

The roots of S. tonkinensis were the famous toxic Miao drug (Table 2) and were named Shan Dou Gen or Guang Dou Gen [4,110]. The aqueous and alcoholic parts of S. tonkinensis caused obvious liver damage in mice, which could result in both the alteration of liver function and the organelle damage of hepatocytes [111,112]. Meanwhile, the extracts of S. tonkinensis exhibited pulmonary toxicity, which may trigger pulmonary cancer, dyspnea, and oxidative stress [113]. The obvious toxicity of sophoranone (120) to zebrafish was mainly characterized as hepatotoxicity, neurotoxicity, cardiovascular toxicity, and nephrotoxicity in the acute toxicity model [104]. Besides, the alkaloids matrine (1), oxymatrine (4), cytisine (50), and sophocarpine (34) of S. tonkinensis showed significant cardiotoxicity [114].

3.7. Other Pharmacological Activities

The extracts of S. tonkinensis have the ability to reduce blood glucose and resist microbial activities (Table 2, Figure 2). Cytochalasin E (310) and H (306) inhibit a variety of plant pathogens [71]. The flavonoid-rich extracts of S. tonkinensis administrated orally to mice significantly increased sensibility to insulin, as well as reduced fasting blood-glucose levels [33]. Moreover, matrine (1) from S. tonkinensis could improve glucose metabolism and increased insulin secretion in diabetic mice, which may be used as a potential drug for diabetes treatment [108]. Methanol extracts of S. tonkinensis exhibited antidiarrheal activities [115]. Moreover, diverse anti-microbial activities of compounds from S. tonkinensis and its endophytic fungi have been reported [26,67].

4. Conclusion and Future Prospective

In this review, we provide a detailed summary of the medicinal chemistry, pharmacological activities, and related toxicity research of S. tonkinensis. Structurally, more than 300 compounds have been isolated from S. tonkinensis and its endophytic fungi, including alkaloids, triterpenes and triterpenoid saponins, flavonoids, and so on. Some of the star molecules, including matrine (1) and oxymatrine (4), were documented to exhibit well biological activities [110]. For its pharmacological research, previous studies suggested the usage of S. tonkinensis in the folk treatment of upper respiratory tract infection diseases. It is generally believed that the alkaloid components of S. tonkinensis were the main active substances in the roots of S. tonkinensis [116]. Interestingly, the extracts of S. tonkinensis have been reported for hepatotoxicity, while the other related studies showed the opposite hepatoprotective effects. The in-depth toxicological or structure-activity relationship study may be worth for further research. Moreover, the roots of S. tonkinensis combined with other medicines form dozens of marketing Chinese patent medicine for the treatments of pharyngitis, tonsillitis, and aphthous ulcers [9,10,11]. However, it is rare for its prescription pharmacological research in the treatment of upper respiratory tract diseases, especially works on the drug combination mechanism, which may need to be further developed.

Author Contributions

Resources, J.-J.L.; writing—original draft preparation, J.-J.L., P.-P.Z., and W.Z.; writing—review and editing, D.S., X.Y., Y.-Q.Z., and X.W.; project administration, X.W., X.P., and Y.Z.; funding acquisition, X.P. and Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Key Research and Development Program of China (2018YFC1708100), the Guiyang Science and Technology Planning Project (Zhu Ke He [2021]43-11), the National Natural Science Foundation of China (32000276), and the Doctoral Startup Funding of Guizhou University of Traditional Chinese Medicine ([2019]-17).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wu, C.; He, L.J.; Yi, X.; Qin, J.; Li, Y.L.; Zhang, Y.B.; Wang, G.C. Three new alkaloids from the roots of Sophora tonkinensis. J. Nat. Med. 2019, 73, 667–671. [Google Scholar] [CrossRef] [PubMed]
  2. Zhou, Y.Q.; Tan, X.M.; Wu, Q.H.; Ling, Z.Z.; Yu, L.Y. A Survey of Original Plant of Radix et Rhizoma Sophora tonkinensis in Guangxi. Guangxi Sci. 2010, 17, 259–262. [Google Scholar]
  3. Zou, L.; Zhao, H.J.; Li, N.; Zhao, M.Y.; Sun, N.; Song, C. Herbal Textual Research and Toxicity Analysis of Radix Sophora tonkinensis. Mod. Tradit. Chin. Med. 2021, 41, 19–23. [Google Scholar]
  4. Lu, L.F.; Lin, M.Y.; Huang, S.Y.; Yu, Q.R.; Li, T.S. Research Progress of Characteristic National Medicine of Youjiang River Basin in Ethnic Minority Areas. Chin. J. Exp. Tradit. Med. Formulae. 2018, 24, 191–200. [Google Scholar]
  5. Lan, Y.S.; Yang, R.Y.; Li, Y.; Guan, H.B.; Chu, L.M. The Progress of Research on Chemical Composition and Pharmacological Activity in Sophora Tonkinensis. J. Chuzhou. Univ. 2010, 12, 48–51. [Google Scholar]
  6. Cai, J.; Ma, J.; Xu, K.; Gao, G.; Xiang, Y.; Lin, C. Effect of Radix Sophora Tonkinensis on the activity of cytochrome P450 isoforms in rats. Int. J. Clin. Exp. Med. 2015, 8, 9737–9743. [Google Scholar] [PubMed]
  7. Li, Y.X.; Wei, H.L. Antitumor Effects of Ethanol Extract of Sophora tonkinensis on Lewis Lung Cancer Mice. J. Shaanxi Univ. Chin. Med. 2021, 44, 86–91. [Google Scholar]
  8. Huang, D.Z.; Zhang, Y.Q. Current and existing problems with the clinical application of Sophora Tonkinensis. Chin. J. Inform. TCM. 2005, 12, 52–53. [Google Scholar]
  9. Sun, J.; Zhao, R.H.; Mao, X.; Guo, S.S.; Gao, Y.J.; Yao, R.M.; Dong, X.; Wu, C.B.; Cui, X.L. Study on the Usage and Dosage of Kaihoujian Spray in the Treatment of Acute Pharyngitis. World.Chin. Med. 2019, 14, 577–580. [Google Scholar]
  10. Dai, D.; Li, Y.J.; Zhang, J. Clinical Observation of Shuyanqing Spray in Treatment of Acute and Chronic Pharyngitis after Radiotherapy and Chemotherapy. Chin. Arch. Tradit. Chin. Med. 2018, 36, 908–911. [Google Scholar]
  11. Huang, K.M.; Shen, Y.B. Clinical study of Guilin Xiguashuang in the treatment of acurate pharyngitis. China J. Tradit. Chin. Med. Pharm. 2012, 27, 2583–2584. [Google Scholar]
  12. He, L.J.; Liu, J.S.; Luo, D.; Zheng, Y.R.; Zhang, Y.B.; Wang, G.C.; Li, Y.L. Quinolizidine alkaloids from Sophora tonkinensis and their anti-inflammatory activities. Fitoterapia 2019, 139, 104391. [Google Scholar] [CrossRef]
  13. Zhou, M.M.; Fan, Z.Q.; Zhao, A.H.; Zhu, L.; Jia, W. Effects of nonalkaloid fractions of the roots of Sophora tonkinensis on mice in an immune induced liver injury model. Lishizhen Med. Mater. Med. Res. 2011, 22, 2709–2710. [Google Scholar]
  14. Pan, Q.M.; Li, Y.H.; Hua, J.; Huang, F.P.; Wang, H.S.; Liang, D. Antiviral Matrine-Type Alkaloids from the Rhizomes of Sophora tonkinensis. J. Nat. Prod. 2015, 78, 1683–1688. [Google Scholar] [CrossRef]
  15. Deng, Y.H.; Xu, K.P.; Zhou, Y.J.; Li, F.S.; Zeng, G.Y.; Tan, G.S. A new flavonol from Sophora tonkinensis. J. Asian Nat. Prod. Res. 2007, 9, 45–48. [Google Scholar] [CrossRef]
  16. Wei, X.; Zhang, W.; Ding, C.F.; Yu, H.F.; Zhang, L.Y.; Zhou, Y. Chemical constituents from the N-butanol extract of Sophora tonkinensis and their antibacterial activities. Guihaia 2021, 41, 1054–1060. [Google Scholar]
  17. Liang, S.L. Chemical Constituents from the Aerial Part of Sophora tonkinensis and Their Activities. Master’s Thesis, Guangxi University, Nanning, China, 2021. [Google Scholar]
  18. Ding, P.L.; Huang, H.; Zhou, P.; Chen, D.F. Quinolizidine alkaloids with anti-HBV activity from Sophora tonkinensis. Planta Med. 2006, 72, 854–856. [Google Scholar] [CrossRef]
  19. Zou, J.B.; Zhao, L.H.; Yi, P.; An, Q.; He, L.X.; Li, Y.A.; Lou, H.Y.; Yuan, C.M.; Gu, W.; Huang, L.J.; et al. Quinolizidine Alkaloids with Antiviral and Insecticidal Activities from the Seeds of Sophora tonkinensis Gagnep. J. Agric. Food Chem. 2020, 68, 15015–15026. [Google Scholar] [CrossRef]
  20. Ding, P.L.; Liao, Z.X.; Huang, H.; Zhou, P.; Chen, D.F. (+)-12 alpha-Hydroxysophocarpine, a new quinolizidine alkaloid and related anti-HBV alkaloids from Sophora flavescens. Bioorg. Med. Chem. Lett. 2006, 16, 1231–1235. [Google Scholar] [CrossRef]
  21. Xiao, P.; Kubo, H.; Komiya, H.; Higashiyama, K.; Yan, Y.; Li, J.S.; Ohmiya, S. (−)-14β-acetoxymatrine and (+)-14α-acetoxymatrine, two new matrine-type lupin alkaloids from the leaves of Sophora tonkinensis. Chem. Pharm. Bull. (Tokyo) 1999, 47, 448–450. [Google Scholar] [CrossRef]
  22. Xiao, P.; Li, J.S.; Hajime, K.; Saito, K.; Murakoshi, I.; Ohmiya, S. (−)-14β-Hydroxymatrine, a New Lupine Alkaloid from the Roots of Sophora tonkinensis. Chem. Pharm. Bull. 1996, 44, 1951–1953. [Google Scholar] [CrossRef] [Green Version]
  23. Tang, Q.; Luo, D.; Lin, D.C.; Wang, W.Z.; Li, C.J.; Zhuo, X.F.; Wu, Z.N.; Zhang, Y.B.; Wang, G.C.; Li, Y.L. Five matrine-type alkaloids from Sophora tonkinensis. J. Nat. Med. 2021, 75, 682–687. [Google Scholar] [CrossRef]
  24. Pan, Q.M.; Zhang, G.J.; Huang, R.Z.; Pan, Y.M.; Wang, H.S.; Liang, D. Cytisine-type alkaloids and flavonoids from the rhizomes of Sophora tonkinensis. J. Asian Nat. Prod. Res. 2016, 18, 429–435. [Google Scholar] [CrossRef]
  25. Li, X.N.; Lu, Z.Q.; Qin, S.; Yan, H.X.; Yang, M.; Guan, S.H.; Liu, X.; Hua, H.M.; Wu, L.J.; Guo, D.A. Tonkinensines A and B, two novel alkaloids from Sophora tonkinensis. Tetrahedron Lett. 2008, 49, 3797–3801. [Google Scholar] [CrossRef]
  26. Yan, Z.; Hu, W.Z.; Chen, X.Z.; Peng, Y.B.; Shi, Y.S. Bioactive quinolizidine alkaloids from Sophora tonkinensis. China J. Chin. Mater. Med. 2016, 41, 2261–2266. [Google Scholar]
  27. Pan, Q.M.; Huang, R.Z.; Pan, Y.M.; Wang, H.S.; Liang, D. Studies on chemical constituents of rhizomes of Sophora tonkinensis. China J. Chin. Mater. Med. 2016, 41, 96–100. [Google Scholar]
  28. Lee, J.W.; Lee, J.H.; Lee, C.; Jin, Q.H.; Lee, D.; Kim, Y.; Hong, J.T.; Lee, M.K.; Hwang, B.Y. Inhibitory constituents of Sophora tonkinensis on nitric oxide production in RAW 264.7 macrophages. Bioorg. Med. Chem. Lett. 2015, 25, 960–962. [Google Scholar] [CrossRef]
  29. Hu, W.Z.; Hou, M.Y.; Corzo, N.; Olano, A.; Villamiel, M. Phytochemical Constituents of the Rhizomes of Sophora tonkinensis. Indian J. Pharm. Sci. 2018, 111, 8–9. [Google Scholar]
  30. Cheng, Q.; Wang, J.F.; Wang, B.L.; Dai, Y.H.; Xu, K.X.; Jia, Z.Y.; Li, P.; Ma, Z.Q.; Lin, R.C. Research Progress in Chemical Components, Bioactivity and Quality Control of Radix et Rhizoma Sophora Tonkinensis. J. Liaoning Univ. Tradit. Chin. Med. 2017, 19, 119–125. [Google Scholar]
  31. Hou, M.Y.; Hu, W.Z.; Hao, K.X.; Xiu, Z.L. Flavonoids and phenolic acids from the roots of Sophora tonkinensis Gagnep. Biochem. Syst. Ecol. 2020, 89, 104011. [Google Scholar] [CrossRef]
  32. Shirataki, Y.; Yokoe, I.; Komatsu, M. Two New Flavone Glycosides from the Roots of Sophora subprostrata. J. Nat. Prod. 1986, 49, 645–649. [Google Scholar] [CrossRef]
  33. Huang, M.; Deng, S.H.; Han, Q.Q.; Zhao, P.; Zhou, Q.; Zheng, S.J.; Ma, X.H.; Xu, C.; Yang, J.; Yang, X.Z. Hypoglycemic Activity and the Potential Mechanism of the Flavonoid Rich Extract from Sophora tonkinensis Gagnep. in KK-Ay Mice. Front. Pharmacol. 2016, 7, 288. [Google Scholar] [CrossRef]
  34. Xia, W.J.; Luo, P.; Hua, P.; Ding, P.; Li, C.J.; Xu, J.; Zhou, H.H.; Gu, Q. Discovery of a New Pterocarpan-Type Antineuroinflammatory Compound from Sophora tonkinensis through Suppression of the TLR4/NF kappa B/MAPK Signaling Pathway with PU.1 as a Potential Target. ACS Chem. Neurosci. 2019, 10, 295–303. [Google Scholar] [CrossRef]
  35. Li, X.G.; Yan, H.X.; Pang, X.Y.; Sha, N.; Hua, H.M.; Wu, L.J.; Guo, D.A. Chemical constituents of flavonoids from rhizome of Sophora tonkinensis. China J. Chin. Mater. Med. 2009, 34, 282–285. [Google Scholar]
  36. He, C.M.; Cheng, Z.H.; Chen, D.F. Qualitative and quantitative analysis of flavonoids in Sophora tonkinensis by LC/MS and HPLC. Chin. J. Nat. Med. 2013, 11, 690–698. [Google Scholar] [CrossRef]
  37. Jin, X.; Lu, Y.; Chen, S.X.; Chen, D.F. UPLC-MS identification and anticomplement activity of the metabolites of Sophora tonkinensis flavonoids treated with human intestinal bacteria. J. Pharm. Biomed. Anal. 2020, 184, 113176. [Google Scholar] [CrossRef]
  38. Yang, R.Y.; Lan, Y.S.; Huang, Z.J.; Shao, C.L.; Liang, H.; Chen, Z.F.; Li, J. Isoflavonoids from Sophora tonkinensis. Chem. Nat. Compd. 2012, 48, 674–676. [Google Scholar] [CrossRef]
  39. Zhang, W.; Wei, X.; Zhang, L.Y.; Hu, X.Y.; Zhou, Y.Q.; Zhou, Y. Chemical constituents of Sophora tonkinensis. Chem. Nat. Compd. 2020, 56, 1140–1142. [Google Scholar] [CrossRef]
  40. Luo, G.Y.; Yang, Y.; Zhou, M.; Ye, Q.; Liu, Y. Novel 2-arylbenzofuran dimers and polyisoprenylated flavanones from Sophora tonkinensis. Fitoterapia 2014, 99, 21–27. [Google Scholar] [CrossRef]
  41. Ding, P.L.; Chen, D.F. Study on phenolic constituents of the Sophora tonkinensis. Chin. Tradit. Herb. Drugs. 2008, 39, 186–188. [Google Scholar]
  42. Ahn, J.M.; Kim, Y.M.; Chae, H.S.; Choi, Y.H.; Ahn, H.C.; Yoo, H.; Kang, M.; Kim, J.; Chin, Y.W. Prenylated flavonoids from the roots and rhizomes of Sophora tonkinensis and their effects on the expression of inflammatory mediators and proprotein convertase subtilisin/kexin type 9. J. Nat. Prod. 2019, 82, 309–317. [Google Scholar] [CrossRef] [PubMed]
  43. Yang, B.Y.; He, R.J.; Wang, Y.F.; Huang, Y.L. Chemical constituents from the aerial part of Sophora tonkinensis and their tyrosinase inhibitory activity. Guihaia 2022. [Google Scholar] [CrossRef]
  44. Yang, R.Y.; Lan, Y.S.; Huang, Z.J.; Shao, C.L.; Liang, H.; Chen, Z.F.; Li, J. A New Isoflavonolignan Glycoside from the Roots of Sophora tonkinensis. Rec. Nat. Prod. 2012, 6, 212–217. [Google Scholar]
  45. Chae, H.S.; Yoo, H.; Kim, Y.M.; Choi, Y.H.; Lee, C.H.; Chin, Y.W. Anti-inflammatory effects of 6,8-diprenyl-7,4′-dihydroxyflavanone from Sophora tonkinensis on lipopolysaccharide-stimulated RAW 264.7 cells. Molecules 2016, 21, 1049. [Google Scholar] [CrossRef]
  46. Li, X.N.; Sha, N.; Yan, H.X.; Pang, X.Y.; Guan, S.H.; Yang, M.; Hua, H.M.; Wu, L.J.; Guo, D.A. Isoprenylated flavonoids from the roots of Sophora tonkinensis. Phytochem. Lett. 2008, 1, 163–167. [Google Scholar] [CrossRef]
  47. Yoo, H.; Chae, H.S.; Kim, Y.M.; Kang, M.; Ryu, K.H.; Ahn, H.C.; Yoon, K.D.; Chin, Y.W.; Kim, J. Flavonoids and arylbenzofurans from the rhizomes and roots of Sophora tonkinensis with IL-6 production inhibitory activity. Bioorg. Med. Chem. Lett. 2014, 24, 5644–5647. [Google Scholar] [CrossRef]
  48. Yang, X.Z.; Deng, S.H.; Huang, M.; Wang, J.L.; Chen, L.; Xiong, M.R.; Yang, J.; Zheng, S.J.; Ma, X.H.; Zhao, P.; et al. Chemical constituents from Sophora tonkinensis and their glucose transporter 4 translocation activities. Bioorg. Med. Chem. Lett. 2017, 27, 1463–1466. [Google Scholar] [CrossRef]
  49. Wang, W.; Nakashima, K.-I.; Hirai, T.; Inoue, M. Neuroprotective effect of naturally occurring RXR agonists isolated from Sophora tonkinensis Gagnep. on amyloid-β-induced cytotoxicity in PC12 cells. J. Nat. Med. 2019, 73, 154–162. [Google Scholar] [CrossRef]
  50. Ding, P.L.; Chen, D.F. Three cyclized isoprenylated flavonoids from the roots and rhizomes of Sophora tonkinensis. Helv. Chim. Acta 2007, 90, 2236–2244. [Google Scholar] [CrossRef]
  51. Inoue, M.; Tanabe, H.; Nakashima, K.; Ishida, Y.; Kotani, H. Rexinoids Isolated from Sophora tonkinensis with a Gene Expression Profile Distinct from the Synthetic Rexinoid Bexarotene. J. Nat. Prod. 2014, 77, 1670–1677. [Google Scholar] [CrossRef]
  52. Li, X.N.; Lu, Z.Q.; Chen, G.T.; Yan, H.X.; Sha, N.; Guan, S.H.; Yang, M.; Hua, H.M.; Wu, L.; Guo, D.A. NMR spectral assignments of isoprenylated flavanones from Sophora tonkinensis. Magn. Reson. Chem. 2008, 46, 898–902. [Google Scholar] [CrossRef]
  53. Ding, P.L.; Chen, D.F. Isoprenylated flavonoids from the roots and rhizomes of Sophora tonkinensis. Helv. Chim. Acta 2006, 89, 103–110. [Google Scholar] [CrossRef]
  54. He, C.M. Comparative Studies on Flavonoids and Their Bioactivities of Sophora flavescens and Sophora tonkinensis. Ph.D. Thesis, Fudan University, Shanghai, China, 2010. [Google Scholar]
  55. Park, J.A.; Kim, H.J.; Jin, C.; Lee, K.T.; Yong, S.L. A new pterocarpan, (−)-maackiain sulfate, from the roots of Sophora subprostrata. Arch. Pharm. Res. 2003, 26, 1009–1013. [Google Scholar] [CrossRef]
  56. Hu, Z.X.; Zou, J.B.; An, Q.; Yi, P.; Yuan, C.M.; Gu, W.; Huang, L.J.; Lou, H.Y.; Zhao, L.H.; Hao, X.J. Anti-tobacco mosaic virus (TMV) activity of chemical constituents from the seeds of Sophora tonkinensis. J. Asian Nat. Prod. Res. 2021, 23, 644–651. [Google Scholar] [CrossRef]
  57. Chae, H.S.; Yoo, H.; Choi, Y.H.; Choi, W.J.; Chin, Y.W. Maackiapterocarpan B from Sophora tonkinensis Suppresses Inflammatory Mediators via Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways. Biol. Pharm. Bull. 2016, 39, 259–266. [Google Scholar] [CrossRef]
  58. Li, X.N. Chemical Constituents of Sophora tonkinensis and Fragmentation Patterns ofthe Flavonoids in ESI Mass Spectrometry. Ph.D. Thesis, Shenyang Pharmaceutical University, Shenyang, China, 2009. [Google Scholar]
  59. Takeshita, T.; Yokoyama, K.; Yi, D.; Kinjo, J.; Nohara, T. Four new and twelve known sapogenols from Sophora Subprostrate Radix. Chem.pharm.bull. 1991, 39, 1908–1910. [Google Scholar] [CrossRef]
  60. Long, J.Q.; Lin, H.; Yang, X.D.; Zhao, J.F.; Liang, L.I. Study on the chemical constituents of Sophora tonkinensis from Guangxi. J. Yunnan Univ. Nat. Sci. Ed. 2011, 33, 72–76. [Google Scholar]
  61. Ding, Y.; Takeshita, T.; Yokoyama, K.; Kinjo, J.; Nohara, T. Triterpenoid Glycosides from Sophora Subprostratae Radix. Chem. Pharm. Bull. 1992, 40, 139–142. [Google Scholar] [CrossRef]
  62. Sakamoto, S.; Kuroyanagi, M.; Ueno, A.; Sekita, S. Triterpenoid saponins from Sophora subprostrata. Phytochemistry 1992, 31, 1339–1342. [Google Scholar] [CrossRef]
  63. Ding, Y.; Tian, R.H.; Takeshita, T.; Kinjo, J.; Nohara, T. Four new oleanene glycosides from Sophora Subprostratae Radix. III. Chem. Pharm. Bull. 1992, 40, 1831–1834. [Google Scholar] [CrossRef]
  64. He, H.K.; Sun, H.; Yang, S.L.; Tian, M.Y.; Wang, S.J. Studies on active aromatic constituents from rhizomes of Sophora tonkinensis. China J. Chin. Mater. Med. 2019, 44, 4481–4485. [Google Scholar]
  65. Mo, T.X.; Liu, X.B.; Duan, L.H.; Zhang, X.M.; Xu, Z.L.; Qin, X.Y.; Li, B.C.; Li, J.; Yang, R.Y. secondary metabolites of the endophytic fungus Xylaria sp.GDG-102 from Sophora tonkinensis. Chem. Nat. Compd. 2021, 57, 764–766. [Google Scholar] [CrossRef]
  66. Xu, Z.L.; Cao, S.M.; Qin, Y.Y.; Mo, T.X.; Li, B.C.; Qin, X.Y.; Huang, X.S.; Li, J.; Yang, R.Y. Chemical Constituents of the Endophytic Fungus Penicillium macrosclerotiorum from Sophora tonkinensis. Chem. Nat. Compd. 2021, 57, 542–544. [Google Scholar] [CrossRef]
  67. Zheng, N.; Yao, F.H.; Liang, X.F.; Liu, Q.; Xu, W.F.; Liang, Y.; Liu, X.B.; Li, J.; Yang, R.Y. A new phthalide from the endophytic fungus Xylaria sp. GDG-102. Nat. Prod. Res. 2018, 32, 755–760. [Google Scholar] [CrossRef] [PubMed]
  68. Liang, Y.; Xu, W.F.; Liu, C.M.; Zhou, D.X.; Liu, X.B.; Qin, Y.Y.; Cao, F.; Li, J.; Yang, R.Y.; Qin, J.K. Eremophilane sesquiterpenes from the endophytic fungus Xylaria sp. GDG-102. Nat. Prod. Res. 2019, 33, 1304–1309. [Google Scholar] [CrossRef]
  69. Qin, Y.Y.; Liu, X.B.; Lin, J.; Huang, J.Y.; Jiang, X.F.; Mo, T.X.; Xu, Z.L.; Li, J.; Yang, R.Y. Two new phthalide derivatives from the endophytic fungus Penicillium vulpinum isolated from Sophora tonkinensis. Nat. Prod. Res. 2021, 35, 421–427. [Google Scholar] [CrossRef]
  70. Xu, W.F.; Hou, X.M.; Yao, F.H.; Zheng, N.; Li, J.; Wang, C.Y.; Yang, R.Y.; Shao, C.L. Xylapeptide A, an Antibacterial Cyclopentapeptide with an Uncommon L-Pipecolinic Acid Moiety from the Associated Fungus Xylaria sp. (GDG-102). Sci. Rep. 2017, 7, 6937. [Google Scholar] [CrossRef]
  71. Huang, X.S.; Zhou, D.X.; Liang, Y.; Liu, X.B.; Cao, F.; Qin, Y.Y.; Mo, T.X.; Xu, Z.L.; Li, J.; Yang, R.Y. Cytochalasins from endophytic Diaporthe sp. GDG-118. Nat. Prod. Res. 2019, 35, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
  72. Qin, Y.Y.; Liu, X.B.; Mo, T.X.; Li, J.; Yang, R.Y. Secondary Metabolites of Endophytic Fungus Xylaria sp. GDGJ-368 from Sophora tonkinensis. J.Guangxi. Nor. Univ. Nat. Sci. Ed. 2020, 38, 71–77. [Google Scholar]
  73. Ding, P.L.; Yu, Y.Q.; Chen, D.F. Comparative Studies on the Chemical Constituents of Sophora tonkinensis and Sophora flavescens, 7th China Doctoral Forum for New Medicines, Nanchang, Jiangxi, China; China Academic Journal Electronic Publishing House: Nanchang, China, 2004; pp. 30–32. [Google Scholar]
  74. Li, F.; Li, C.P.; Fu, H.; Su, X.L.; Wang, Z.J.; Hou, X.R.; Lin, R.C.; Guan, X.Y.; Liu, Q.M. Research progress of Radix Sophora Tonkinensis and supplementary reports of assay method for toxic chemical composition. Chin. J. Pharm. Anal. 2013, 33, 1453–1463. [Google Scholar]
  75. Ai, H.; Sun, J.; Sheng, Y.H.; Ning, L.; Tang, L.M.; Jin, R.M. Study on anti-inflammation mechanism of Radix et Rhizome Sophora tonkinensis rat based on profile of pharmacokinetic parameters. Chin. Pharmacol. Bull. 2020, 36, 645–649. [Google Scholar]
  76. Yoo, H.; Kang, M.; Pyo, S.; Chae, H.S.; Ryu, K.H.; Kim, J.; Chin, Y.W. SKI3301, a purified herbal extract from Sophora tonkinensis, inhibited airway inflammation and bronchospasm in allergic asthma animal models in vivo. J. Ethnopharmacol. 2017, 206, 298–305. [Google Scholar] [CrossRef] [PubMed]
  77. Peng, H.H.; Huang, J.; Wen, X.I.; Ping, L.I.; Jiang, H.Y. Anti-inflammatory Effect and Related Mechanism of Sophora tonkinensis Granula and its Herbal Piece. Chin. J. Exp. Tradit. Med. Formulae. 2013, 19, 265–269. [Google Scholar]
  78. Qian, L.W.; Dai, W.H.; Zhou, G.Q.; Wang, L.L.; Wang, H.S. Antinociceptive and anti-inflammatory effects of major alkaloids from the roots of radix sophora flavescentis and Radix Sophora tonkinensis. Chin. Tradit. Pat. Med. 2012, 34, 1593–1596. [Google Scholar]
  79. Lu, X.P.; Zhou, H.S.; Xi, W.; Wei, L.; Li, P. Study on anti-inflammatory effect of Shandougen Keli. Inn. Mongolia. J. Tradit. Chin. Med. 2011, 30, 85–86. [Google Scholar]
  80. Luan, Y.F.; Luo, D.; Zheng, L.N.; Xie, Y.Z.; Sun, R. The Margin of Safety Study on Anti- inflammatory Effect of Different Components from Radix et Rhizome Sophora Tonkinensis. Chin. J. Pharmacovigil. 2012, 9, 392–396. [Google Scholar]
  81. Li, X.Y.; Sun, R. Study on Mechanisms of Anti-inflammatory Efficacy Accompanied by Toxicity and Side Effects of Water Extraction Components of Sophora Tonkinensis Radix et Rhizoma on Throat Excess-heat Syndrome Mice. Chin. J. Pharmacovigil. 2015, 12, 82–85. [Google Scholar]
  82. Chui, C.H.; Lau, F.Y.; Tang, J.C.O.; Kan, K.L.; Cheng, G.Y.M.; Wong, R.S.M.; Kok, S.H.L.; Lai, P.B.S.; Ho, R.; Gambari, R. Activities of fresh juice of Scutellaria barbata and warmed water extract of Radix Sophora Tonkinensis on anti-proliferation and apoptosis of human cancer cell lines. Int. J. Mol. Med. 2005, 16, 337–341. [Google Scholar]
  83. Deng, Y.H.; Sun, L.; Zhang, W.; Xu, K.P.; Li, F.S.; Tan, J.B.; Cao, J.G.; Tan, G.S. Studies on Cytotoxic Constituents from Sophora tonkinensis. Nat. Prod. Res. Dev. 2006, 3, 408–410. [Google Scholar]
  84. Chen, Y.; Zhang, Q.; Han, S.X.; Han, F.M.; Chen, L.M.; Tong, Y.; You, Y. Studies on the toxic effects of different extraction sites from Radix Sophora tonkinensis. Chin. J. Pharmacovigil. 2017, 14, 188–189. [Google Scholar]
  85. Huang, Z.R. Exploration of an effective and safety method for thequality control of Sophora tonkinensis radix et rhizome. Master’s Thesis, Xi’an University of Technology, Shaanxi, China, 2021. [Google Scholar]
  86. Li, J.L.; Zhang, D.; Liu, S. Effect of Sophora Tonkinensis Gapnep. on Growth and Proliferation of Murine Melanoma Cell B16-BL6. Guangming. J. Chin. Med. 2017, 32, 1256–1259. [Google Scholar]
  87. Wang, S.; Song, Z.J.; Gong, X.M.; Ou, C.L.; Zhang, W.Y.; Wang, J.; Yao, C.Y.; Qin, S.S.; Yan, B.X.; Li, Q.P.; et al. Chloroform extract from Sophora tonkinensis Gagnep. inhibit proliferation, migration, invasion and promote apoptosis of nasopharyngeal carcinoma cells by silencing the PI3K/AKT/mTOR signaling pathway. J. Ethnopharmacol. 2021, 271, 113879. [Google Scholar]
  88. Kajimoto, S.; Takanashi, N.; Kajimoto, T.; Xu, M.; Cao, J.D.; Masuda, Y.; Aiuchi, T.; Nakajo, S.; Ida, Y.; Nakaya, K. Sophoranone, extracted from a traditional Chinese medicine Shan Dou Gen, induces apoptosis in human leukemia U937 cells via formation of reactive oxygen species and opening of mitochondrial permeability transition pores. Int. J. Cancer 2002, 99, 879–890. [Google Scholar] [CrossRef]
  89. Yao, Z.Q.; Zhu, H.; Wang, G.F. Anti-tumor Effect of Total Alkaloids of Radix Sophora tonkinensis. J. Nanjing. Univ. Tradit. Chin. Med. 2005, 21, 253–254. [Google Scholar]
  90. Cao, L.; Li, T.J.; Meng, X.S.; Bao, Y.R.; Wang, S. Study on the Efficacy and Mechanism of Liver Cancer Induced by DEN in Rats of Alkaloids of Sophora Tonkinensis Radix Et Rhizoma. Chin. J. Mod. Appl. Pharm. 2018, 35, 370–374. [Google Scholar]
  91. Zhao, Q.; Wei, M.; Zhang, S.; Huang, Z.; Ji, L. The water extract of Sophora tonkinensis Radix et Rhizoma alleviates non-alcoholic fatty liver disease and its mechanism. Phytomedicine 2020, 77, 153270. [Google Scholar] [CrossRef]
  92. Yin, L.S.; Lv, L.L.; Dou, L.W.; Li, X.Y.; Sun, R. Study on Anti-inflammatory Efficacy Accompanied by Toxicity and Side Effects of Water Extraction Components of Sophora Tonkinensis Radix et Rhizoma on Throat Excess-heat Syndrome Mice. Chin. J. Pharmacovigil. 2015, 12, 79–81+85. [Google Scholar]
  93. Huang, Y.Q. The Intervention of Major Alkaloids in Sophora tonkinensis on Immune Liver Injury in Mice. Master’s Thesis, Chengdu University of TCM, Chengdu, China, 2017. [Google Scholar]
  94. Han, Y.Z. Preliminary study on the protective effect and mechanism of oxymatrine on Con A-induced liver injury in mice. Master’s Thesis, Chengde Medical University, Sichuan, China, 2016. [Google Scholar]
  95. Cai, L.L.; Zou, S.S.; Liang, D.P.; Luan, L.B. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophora tonkinensis Radix. Carbohydr. Polym. 2018, 184, 354–365. [Google Scholar] [CrossRef]
  96. Wang, L.P.; Lu, J.Y.; Sun, W.; Gu, Y.M.; Zhang, C.C.; Jin, R.M.; Li, L.Y.; Zhang, Z.A.; Tian, X.S. Hepatotoxicity induced by radix Sophora tonkinensis in mice and increased serum cholinesterase as a potential supplemental biomarker for liver injury. Exp. Toxicol. Pathol. 2017, 69, 193–202. [Google Scholar] [CrossRef]
  97. Kim, H.Y.; Shin, H.S.; Park, H.; Kim, Y.C.; Yong, G.Y.; Sun, P.; Shin, H.J.; Kim, K. In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J. Clin. Virol. 2008, 41, 122–128. [Google Scholar] [CrossRef]
  98. Xu, H.T.; Lu, J.F.; Zhao, Y.Z.; Zhou, J.Y. Antioxidant and antibacterial activity of extracts from Sophora tonkinensis Gagnep. Sci. Technol. Food Ind. 2015, 36, 111–114. [Google Scholar]
  99. Ning, X.; Liu, Y.; Jia, M.; Wang, Q.; Sun, L. Pectic polysaccharides from Radix Sophora Tonkinensis exhibit significant antioxidant effects. Carbohydr. Polym. 2021, 262, 117925. [Google Scholar] [CrossRef]
  100. Peng, T.; Su, L.J.; Hu, T.J.; Shuai, X.H. Acute toxicity test of ethanol extract from the radix et rhizome of Sophora tonkinensis Gagnep. Guangxi. J. Anim. Husbandry. 2010, 26, 5–7. [Google Scholar]
  101. Fan, H.T.; Gu, Y.M.; Sun, W.; Geng, Y.; Wang, L.P.; Jin, R.M.; Zhang, Z.A.; Tian, X.S. Effect of Cytisine on Hepatotoxicity of Sophora tonkinensis Radix et Rhizoma. Chin. J. Exp. Tradit. Med. Formulae. 2018, 24, 176–181. [Google Scholar]
  102. Sun, R.; Yang, Q.; Zhao, Y. Comparative Study on Acute Toxicity of Different Components of Radix et Rhizome Sophora tonkinensis in Mice. Chin. J. Pharmacovigil. 2010, 7, 257–262. [Google Scholar]
  103. Wang, P.; Wu, X.; Li, J.P.; Xie, T.Z.; Wu, X.O.; Wang, X.W.; Wen, P.; Zhan, H.Q.; Li, J. Study on Acute Toxicity of Radix et Rhizome Sophora tonkinensis. Lishizhen Med. Mater. Med. Res. 2013, 24, 771–773. [Google Scholar]
  104. Yuan, W.L.; Huang, Z.R.; Xiao, S.J.; Zhang, W.D.; Shen, Y.H. Acute toxicity study of flavonoids from Sophora Tonkinensis Radix et Rhizoma on zebrafish. Chin. Tradit. Herb. Drugs. 2021, 52, 2978–2986. [Google Scholar]
  105. Liu, H.C.; Zhu, X.Y.; Chen, J.H.; Guo, S.Y.; Li, C.Q.; Deng, Z.P. Toxicity comparison of different active fractions extracted from radix Sophora tonkinensis in zebrafish. J. Zhejiang. Univ. Sci. B. 2017, 18, 757–769. [Google Scholar] [CrossRef]
  106. Zheng, N.; Liu, Q.; He, D.L.; Liang, Y.; Li, J.; Yang, R.Y. A New Compound from the Endophytic Fungus Xylaria sp from Sophora tonkinensis. Chem. Nat. Compd. 2018, 54, 447–449. [Google Scholar] [CrossRef]
  107. Yao, Y.Q.; Wang, D.K.; Li, L.B.; Huang, R.S.; Lan, F. Antifungal Activity of Methanol Extracts from the Root of Sophora tonkinensis Gapnep against Main Pathogenic Fungi of Panax notoginseng. Genom. Appl. Biol. 2016, 35, 2417–2422. [Google Scholar]
  108. Guo, S.; Yan, T.; Shi, L.; Liu, A.; Zhang, T.; Xu, Y.; Jiang, W.; Yang, Q.; Yang, L.; Liu, L.N.; et al. Matrine, as a CaSR agonist promotes intestinal GLP-1 secretion and improves insulin resistance in diabetes mellitus. Phytomedicine 2021, 84, 153507. [Google Scholar] [CrossRef] [PubMed]
  109. Wang, Z.; Wang, D.; Liu, A.; Huang, L. Analysis of Chemical Constituents of Effective Part of Anti-butyrylcholinesterase of Sophora tonkinensis by UPLC-Q-TOF-MS. Mod. Chin. Med. 2015, 17, 912–916. [Google Scholar]
  110. Zhou, S.Y.; Chen, J.P.; Liu, Z.D.; Zhou, J.R.; Liu, Y.; Liu, S.X.; Tian, C.W.; Chen, C.Q. Research progress on chemical constituents and pharmacological effects of Sophora tonkinensis Radix et Rhizoma. Chin. Tradit. Herb. Drugs. 2021, 52, 1510–1521. [Google Scholar]
  111. Li, S.J.; Qian, X.L.; Li, X.Y.; Huang, W.; Sun, R. Research of Hepatotoxic Damage Caused by Different Components of Radix et Rhizoma Sophora Tonkinensis. Chin. J. Pharmacovigil. 2011, 8, 577–580. [Google Scholar]
  112. Li, S.J.; Lv, L.L.; Qian, X.L.; Li, X.Y.; Sun, R. Experimental Study on the “Dose-Time-Toxicity” Relationship of Hepatotoxicity Induced by Different Components from Radix et Rhizoma Sophora Tonkinensis in Mice. Chin. J. Pharmacovigil. 2011, 8, 81–84. [Google Scholar]
  113. Zhang, S.N.; Li, X.Z.; Yang, W.D.; Zhou, Y. Sophora tonkinensis radix et rhizome-induced pulmonary toxicity: A study on the toxic mechanism and material basis based on integrated omics and bioinformatics analyses. J. Chromatogr. B 2021, 1179, 122868. [Google Scholar] [CrossRef]
  114. Wang, R.; Wang, M.; Wang, S.; Yang, K.; Zhou, P.; Xie, X.H.; Cheng, Q.; Ye, J.X.; Sun, G.B. An integrated characterization of contractile, electrophysiological, and structural cardiotoxicity of Sophora tonkinensis Gapnep. in human pluripotent stem cell-derived cardiomyocytes. Stem Cell. Res. Ther. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
  115. Li, Y.Y.; Li, J.; Liu, X.; Zhang, J.W.; Mei, X.; Zheng, R.D.; Chen, W.; Zheng, Q.; Zhong, S.J. Antidiarrheal activity of methanol extract of Sophora tonkinensis in mice and spasmolytic effect on smooth muscle contraction of isolated jejunum in rabbits. Pharm. Biol. 2019, 57, 477–484. [Google Scholar] [CrossRef] [Green Version]
  116. Dai, W.H.; Qian, L.W.; Yang, S.Y.; Zhou, G.Q. Advance in pharmaceutical research of main alkaloid in Sophora flavescens and Sophora tonkinensis. Anhui Med. Pharm. J. 2011, 15, 1057–1060. [Google Scholar]
Figure 1. Structures of compounds 1–316 from S. tonkinensis.
Figure 1. Structures of compounds 1–316 from S. tonkinensis.
Molecules 27 05562 g001aMolecules 27 05562 g001bMolecules 27 05562 g001cMolecules 27 05562 g001dMolecules 27 05562 g001eMolecules 27 05562 g001fMolecules 27 05562 g001gMolecules 27 05562 g001hMolecules 27 05562 g001iMolecules 27 05562 g001jMolecules 27 05562 g001k
Figure 2. The biological activities of S. tonkinensis.
Figure 2. The biological activities of S. tonkinensis.
Molecules 27 05562 g002
Table 1. The comprehensive list of the compounds from S. tonkinensis and its Endophytic fungus.
Table 1. The comprehensive list of the compounds from S. tonkinensis and its Endophytic fungus.
NOCompoundsMolecular FormulaParts of PlantReferences
Matrine-Type alkaloids
1MatrineC15H24N2ORoots[12]
25α,14β-DihydroxymatrineC15H24N2O3Roots[12]
3(+)-5α-HydroxyoxymatrineC15H24N2O3Roots[12]
4(+)-OxymatrineC15H24N2O2Roots[18]
5(+)-5α-Hydroxymatrine ((+)-Sophoranol)C15H24N2O2Roots[12]
6(−)- 14β-HydroxyoxymatrineC15H24N2O3Roots[18]
7Sophtonseedline EC17H26N2O4Seeds[19]
8Sophtonseedline FC17H28N2O3SSeeds[19]
9Sophtonseedline GC15H24N2O3Seeds[19]
10Sophtonseedline HC16H26N2O2Seeds[19]
11(+)-9α-HydroxymatrineC15H24N2O2Seeds[19]
12(+)-5α-9α-DihydroxymatrineC15H24N2O3Seeds[19]
13(+)-Allomatrine (Sophoridine)C15H24N2ORoots[20]
14(+)-LehmannineC15H24N2ORoots[20]
15(+)-12α-HydroxysophocarpineC15H24N2O2Roots[20]
16(−)-13,14-Dehydrosophoridine (12,13-Dehydrosophoridine)C15H24N2ORoots[20]
17(+)-5α-HydroxyoxysophocarpineC15H22N2O3Roots[14]
18(−)-12β-HydroxyoxysophocarpineC15H22N2O3Roots[14]
19(−)-12β-HydroxysophocarpineC15H22N2O2Roots[14]
20(+)-OxysophocarpineC15H22N2O2Roots[14]
21Sophtonseedline BC15H22N2O3Seeds[19]
22Sophtonseedline CC17H24N2O4Seeds[19]
23Sophtonseedline DC17H26N2O3SSeeds[19]
24(−)-5α-Hydroxysophocarpine (13,14-Dehydrosophoranol)C15H22N2O2Seeds[19]
25(−)-9α-HydroxysophocarpineC15H22N2O2Seeds[19]
26(−)-14β-AcetoxymatrineC17H26N2O3Leaves[21]
27(+)-14α-AcetoxymatrineC17H26N2O3Leaves[21]
28(−)-14β-HydroxymatrineC15H24N2O2Leaves[21]
29(+)-14α-HydroxymatrineC15H24N2O2Leaves[21]
30Sophtonseedline IC17H24N2O4Seeds[19]
316,7-Dehydro-matrineC15H22N2OSeeds[19]
325-Hydroxy-6,7-dehydro-matrineC15H22N2O2Seeds[19]
33(+)-13,14-DehydrosophoranolC15H22N2O2Roots[22]
34(−)-SophocarpineC15H22N2ORoots[12]
35(+)-5α-HydroxylemannineC15H22N2O2Roots[14]
3613α-HydroxymatrineC15H24N2O2Roots[23]
3713β-HydroxymatrineC15H24N2O2Roots[23]
3811,12-DehydroallmatrineC15H22N2ORoots[1]
3911,12-DehydromatrineC15H22N2ORoots[1]
40(+)-Matrine N-oxideC15H24N2OLeaves[21]
41(+)-Sophoranol N-oxideC15H24N2O2Leaves[21]
42(+)-7,11-DehydromatrineC15H22N2ORoots[22]
43Alopecurin AC15H22N2O4Seeds[19]
44Sophtonseedline JC15H20N2O3Seeds[19]
45Sophtonseedline KC15H20N2O3Seeds[19]
46Sophtonseedline AC15H22N2O2Seeds[19]
475,6-Dehydro-matrineC15H22N2OSeeds[19]
48IsosophocarpineC15H22N2ORoots[23]
49(+)-Sophoramine (7β-Sophoramine)C15H20N2ORoots[14]
Cytisine-type alkaloids
50(−)-CytisineC11H14N2OSeeds[19]
51N-MethylcytisineC12H16N2OSeeds[19]
52(−)-N-FormylcytisineC12H14N2O2Seeds[19]
53N-AcylcytisineC13H16N2O2Seeds[19]
54(−)-N-MethylcytisineC12H16N2ORoots[18]
55(−)-N-HexanoylcytisineC17H24N2O2Roots[24]
56(−)-N-EthylcytisineC13H18N2ORoots[24]
57(−)-N-PropionylcytisineC14H18N2O2Roots[24]
58Tonkinensine AC28H26N2O6Roots[25]
59Tonkinensine BC28H26N2O6Roots[25]
Anagyrine-type alkaloids
6017-Oxo-α-isosparteineC15H24N2OLeaves[21]
61(−)-AnagyrineC15H20N2ORoots[12]
62(−)-ThermopsineC15H20N2ORoots[12]
63(−)-BaptifolineC15H20N2O2Leaves[21]
64(−)-ClathrotropineC17H22N2O4Roots[26]
65Lanatine AC22H29N3O3Roots[26]
Lupine-types and other alkaloids
66LamprolobineC15H24N2O2Leaves[21]
67Jussiaeiine BC16H24N2O2Roots[26]
68Jussiaeiine AC13H20N2O2Roots[26]
69Senepodine HC14H26NO+Roots[26]
70Cermizine CC11H21NRoots[26]
71Senepodine GC11H20N+Roots[26]
72HarmineC13H12N2ORoots[1]
73Tonkinensine CC16H16N2O2Roots[1]
74PerlolyrineC16H12N2O2Roots[1]
753-(4-Hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl)-3,4-dehydroquinolizidineC22H25NO3Roots[26]
761-(6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-3-yl)ethanoneC8H10N2ORoots[27]
77Cyclo (Pro-Pro)C10H14N2O2Roots[27]
78Nicotinic acidC6H5NO2Roots[27]
Flavonoids
794′,7-DihydroxyflavoneC15H10O4Roots[28]
80WogoninC16H12O5Roots[29]
81LuteolinC15H10O4Roots[29]
82Luteolin-7-glucosideC21H20O11Roots[30]
83Baicalein 7-O-β--glucuronideC21H18O11Roots[31]
84BayinC21H20O9Roots[15]
85SwertisinC22H22O10Roots[31]
86Sophoraflavone BC21H20O9Roots[32]
87Sophoraflavone AC27H30O13Roots[32]
Flavonols
88QuercetinC15H10O7Roots[33]
89MorinC15H10O7Roots[31]
906,8-DiprenylkaempferolC25H26O6Roots[34]
918-C-prenylkeamferolC20H18O6Roots[35]
92DehydrolupinifolinolC25H24O6Roots[33]
93TonkinensisolC25H24O6Roots[15]
94IsoquercitrinC21H20O12Roots[36]
95QuercitrinC21H20O11Roots[37]
96Rutin (Quercetin-3-O-β-D-rutinoside)C27H30O16Roots[31]
97Isorhamnetin-3-O-β-D-rutinosideC28H32O16Roots[31]
Isoflavones and Dihydroisoflavones
988,4′-Dihydroxy-7-methoxyisoflavoneC16H12O5Roots[38]
995,7,2′,4′-TetrahydroxyisoflavoneC15H10O6Roots[38]
100CalycosinC16H12O5Roots[38]
1017,3′-Dihydroxy-5’-methoxyisoflavoneC16H12O5Roots[38]
1027,4′-Dihydroxy-3′-methoxyisoflavoneC16H12O5Roots[38]
103Daidzein (7,4’-Dihydroxyisoflavone)C15H10O4Roots[38]
1047,3′-Dihydroxy-8,4′-dimethoxyisoflavoneC17H14O6Roots[38]
1057,8-Dihydroxy-4′-methoxyisoflavoneC16H12O5Roots[38]
1067,3′,4′-TrihydroxyisoflavoneC15H10O5Roots[38]
107FormononetinC16H12O4Roots[39]
108GenisteinC15H10O5Roots[39]
109WighteoneC20H18O5Roots[40]
1108-MethylretusinC17H14O5Roots[41]
1117-MethoxyebenosinC22H22O4Roots[42]
112TectorigeninC16H12O6Roots[43]
113Butesuperin AC26H22O8Roots[44]
114Butesuperin B -7′-O-β-glucopyranosideC33H34O14Roots[44]
115GenistinC21H20O10Roots[33]
116Ononin (Formononetin-7-O-β-D-glucoside)C22H22O9Roots[33]
117Daidzein-4′-glucoside-rhamnosideC27H30O13Roots[37]
118SophorabiosideC27H30O14Roots[37]
Dihydroflavones
1196,8-Diprenyl-7,4′-DihydroxyflavanoneC25H28O4Roots[45]
120SophoranoneC30H36O4Roots[45]
121GlabrolC25H28O4Roots[45]
1226,8-Diprenyl-7,2′,4′-trihydroxyflavanoneC25H28O5Roots[45]
123Lespeflorin B4C30H36O6Roots[33]
124(2S)-7,4′-Dihydroxy-5′-aldehyde-8,3′-(3′′-methylbut-2′′-enyl) flavanoneC26H28O5Roots[34]
125(2S)-7,2′,4′-Trihydroxy-8,3′,5′-(3′′-methyl- but-2′′-enyl) flavanoneC30H36O5Roots[34]
126Tonkinochromane JC25H28O5Roots[46]
127Shandougenine CC30H36O5Roots[40]
128Shandougenine DC25H28O5Roots[40]
129Sophoratonin FC35H44O4Roots[42]
130Lonchocarpol AC25H28O5Roots[42]
1312′-HydroxyglabrolC25H28O5Roots[47]
1328,5′-Diprenyl-7,2′,4′-trihydroxyflavanoneC25H28O5Roots[45]
133Sophoratonin AC27H28O4Roots[42]
134Sophoratonin BC30H32O4Roots[42]
135Tonkinochromane IC30H36O5Roots[35]
136Tonkinochromane GC30H36O5Roots[34]
137Sophoratonin CC30H30O4Roots[42]
138Sophoratonin DC30H36O4Roots[42]
139Flemichin DC25H26O5Roots[45]
1405-DehydroxylupinifolinC25H26O4Roots[34]
141LupinifolinC25H26O5Roots[40]
1422-(2′,4′-Dihydroxyphenyl)-8,8-dimethyl-1′-(3-methyl-2-butenyl)-8H-pyrano[2,3-d] chroman-4-oneC25H26O5Roots[48]
143Tonkinochromane AC30H36O4Roots[45]
144SophoranochromeneC30H34O4Roots[33]
1452-[{2-(1-Hydroxy-1-methylethyl)-7-(3-methyl-2-butenyl)-2′,3-dihydrobenzofuran}-5-yl]-7-hydroxy-8-(3-methyl-2-butenyl)-chroman-4-oneC30H36O5Roots[49]
146Sophoratonin EC30H32O4Roots[42]
147Tonkinochromane DC30H38O5Roots[50]
148Tonkinochromane EC32H42O5Roots[50]
1492-[{2′-(1-Hydroxy-1-methylethyl)-7′-(3-methyl-2-butenyl)-2′,3′-dihydrobenzofuran}-5′-yl]-7-hy-droxy-8-(3-methyl-2-butenyl) chroman-4-oneC30H36O5Whole[51]
150Euchrenone A2C25H26O5Roots[33]
151Sophoratonin GC27H28O4Roots[42]
152Tonkinochromane KC30H36O6Roots[46]
1532-[{3′-Hydroxy-2′,2′-dimethyl-8′-(3-methyl-2-butenyl)} chroman-6′-yl]-7-hydroxy-8-(3-methyl-2-butenyl)-chroman-4-oneC30H36O5whole[51]
1542-[{3-Hydroxy-2′,2-dimethyl-8-(3-methyl-2-butenyl)} chroman-6-yl]-7-hydroxy-8-(3-methyl-2-butenyl)-chro-man-4-oneC31H38O4Roots[49]
155Tonkinochromane HC30H34O5Roots[52]
156Tonkinochromane BC30H36O4Roots[53]
157Kushenol EC25H28O6Roots[46]
158Naringenin 7-O-neo-hesperidosideC27H32O14Roots[31]
Chalcones and Dihydrochalcones
159IsoliquiritigeninC15H12O4Roots[47]
160SophoradinC30H36O4Roots[34]
161XanthohumolC21H22O5Roots[54]
1627,9,2,4-Tetrahydroxy-8-isopentenyl-5-methoxychalconeC21H22O6Roots[54]
163Tonkinochromane CC28H30O4Roots[53]
164Tonkinochromane FC32H42O5Roots[50]
165KuraridineC26H30O6Roots[54]
166SophoradochromeneC30H34O4Roots[42]
167Tonkinochromane LC21H24O4Roots[46]
Pterostanes
168(−)-MaackiainC16H12O5Roots[33]
169PisatinC17H14O6Roots[39]
170Maackiain-3-O-glucoside 6′’-acetateC24H24O11Roots[47]
171(−)-Maackiain 3-sulfateC16H11O8SRoots[55]
1726aR,11aR-1-hydroxy-4-isoprenyl-maackiainC21H20O6Roots[48]
173(6aR,11aR) - 2-hydroxy-3-methoxy-1-isopentenyl- maackiainC22H22O6Roots[47]
174SophotokinC21H20O6Roots[34]
175(−)-PterocarpinC17H14O5Seeds[56]
176MedicarpinC16H14O4Roots[39]
177(6aR, 11aR)-3-O-β-D-GlucopyranosylmedicarpinC22H24O9Roots[24]
178Medicarpin-3-O-glucoside 6″-acetateC24H26O10Roots[47]
179DemethylmedicarpinC15H12O4Roots[40]
180HomopterocarpinC17H16O4Roots[42]
181DehydromaackiainC16H10O5Roots[42]
182Flemichapparin BC17H12O5Roots[42]
183Maackiapterocarpan BC21H18O6Roots[57]
1843-Methylmaackiapterocarpan BC22H20O6Roots[47]
185Erybraedin DC25H26O4Roots[42]
186Maackiapterocarpan AC21H20O6Roots[42]
187MedicagolC16H8O6Seeds[56]
188Sophtonseedlin BC28H28O13Seeds[56]
189SophoratonkinC26H26O11Roots[28]
190(−)-TrifolirhizinC22H22O10Seeds[56]
191(−)-Trifolirhizin-6′′-monoacetateC24H24O11Seeds[56]
Flavanols
1927,2’-Dihydroxy-4’-methoxy-isofiavanolC16H16O5Roots[58]
193(3S,4R)-4-hydroxy-7,4′-dimethoxyisoflavan 3′-O-β-D-glucopyranosideC23H28O10Roots[24]
Triterpenoids and Triterpenoid saponins
194Subprogenin AC30H48O4Roots[59]
195Subprogenin BC30H48O5Roots[59]
196Subprogenin CC30H46O4Roots[59]
197Subprogenin C methylesterC31H48O4Roots[59]
198Subprogenin DC30H46O4Roots[59]
199Subprogenin D methylesterC31H48O4Roots[59]
200Abrisapogenol HC30H48O3Roots[59]
201Wistariasapogenol AC30H48O4Roots[59]
202MelilotigeninC30H46O5Roots[59]
203Abrisapogenol IC30H46O5Roots[59]
204SophoradiolC30H50O2Roots[59]
205CantoniensistiolC30H50O3Roots[59]
206Soyasapogenol BC30H50O3Roots[59]
207Soyasapogenol AC30H50O4Roots[59]
208Abrisapogenol CC30H50O4Roots[59]
209Abrisapogenol DC30H50O3Roots[59]
210Abrisapogenol EC30H50O4Roots[59]
211Kudzusapogenol AC30H50O5Roots[59]
212Abrisapogenol AC30H50O3Roots[59]
213LupeolC30H50ORoots[60]
214StigmasterolC29H48ORoots[60]
215β-SitosterolC29H50ORoots[60]
216DaucosterolC35H60O6Roots[60]
217Subproside ⅠC48H78O19Roots[61]
218Subproside Ⅰ methylesterC49H80O19Roots[61]
219Subproside ⅡC47H76O19Roots[61]
220Subproside Ⅱ methylesterC48H78O19Roots[61]
221Soyasaponin A3 methylesterC49H80O19Roots[62]
222Kuzusapogenol A methylesterC49H80O20Roots[62]
223Soyasaponin I methylesterC49H80O18Roots[62]
224Kaikasaponin Ⅲ methylesterC49H80O17Roots[62]
225Soyasaponin Ⅱ methylesterC48H78O17Roots[62]
226Kaikasapomn I methylesterC49H80O17Roots[62]
227Kudzusaponin A3C47H76O19Roots[61]
228Soyasaponin IIC47H76O17Roots[61]
229Dehydrosoyasaponin IC48H76O18Roots[61]
230Subproside ⅦC59H96O27Roots[63]
231Subproside Ⅶ methylesterC60H98O27Roots[63]
232Subproside ⅣC54H88O23Roots[63]
233Subproside Ⅳ methylesterC55H90O23Roots[63]
234Subproside ⅤC54H88O24Roots[63]
235Subproside Ⅴ methylesterC55H90O24Roots[63]
236Subproside ⅢC54H86O24Roots[61]
237Subproside Ⅲ methylesterC55H88O24Roots[61]
238Subproside ⅥC54H88O24Roots[63]
239Subproside Ⅵ methylesterC55H90O24Roots[63]
Other compounds
240TyrosolC8H10O2Roots[64]
2414-(3-Hydroxypropyl) phenolC9H12O2Roots[64]
242Vanillin alcoholC8H10O3Roots[64]
243(±)-4-(2-Hydroxypropyl) phenolC9H12O2Roots[64]
2443,4,5-Trihydroxybenzoic acidC7H6O5Roots[31]
2453,4-Dihydroxybenzoic acidC7H6O4Roots[31]
2464-Hydroxy-3-methoxybenzoic acidC8H8O4Roots[31]
247p-Hydroxybenzonic acidC7H6O3Roots[31]
248Venillic acidC8H8O4Roots[41]
249p-Methoxybenzonic acidC8H8O3Roots[27]
250Salicylic acidC7H6O3Roots[43]
251BenzamideC7H7NORoots[64]
2524-MethoxybenzamideC8H9NO2Roots[64]
253Docosyl caffeateC31H52O4Roots[4]
254MaltolC6H6O3Roots[41]
255(±)-3-( p-Methoxyphenyl) -1,2-propanediolC9H12O4Roots[64]
2563,4-Dimethoxybenzeneacrylic acid methyl esterC12H14O4Roots[39]
257Sophoratonin HC22H26O5Roots[42]
258Piscidic acid monoethyl esterC13H16O7Roots[41]
2592′,4′, 7-trihydroxy-6,8-bis(3-methyl-2-butenyl) flavanoneC25H28O5Roots[40]
2602-(2′, 4′-dihydroxylphenyl)-5,6-methylenedioxybenzoftiranC15H10O5Roots[56]
261bolusanthin IVC15H12O4Roots[40]
2627,2′-Dihydroxy-4′,5′-methylenedioxyisoflavanC16H14O5Roots[40]
263Shandougenine AC30H18O10Roots[40]
264Shandougenine BC30H18O10Roots[40]
265(−)-Syringaresinol-4,4’-di-O-β-D-glucopyranosideC34H46O18Roots[27]
266(−)-Syringaresinol-4-O-β-D-glucopyranosideC28H36O13Roots[27]
267(−)-Pinoresinol-4,4’-di-O-β-D-glucopyranosideC32H42O16Roots[27]
268PinoresinolC20H22O6Roots[28]
269SyringaresinolC22H26O8Roots[28]
270MedioresinolC21H24O7Roots[28]
271ConiferinC16H22O8Roots[27]
2724-Hydroxymethyl-2,6-dimethoxyphenol-1-O-β-D-glucopyranosideC15H22O9Roots[27]
273SyringinC17H24O9Roots[29]
274Sophtonseedlin AC23H14O9Roots[56]
275(6S,9R) -RoseosideC19H30O8Roots[27]
276(−)-Secoisolariciresinol-4-O-β-D-glucopyranosideC25H33NO9Roots[27]
Compounds produced by endophytic fungi
2772-Methoxy-6-methyl-1,4-benzoquinoneC8H8O3Endophytic Fungus Xylaria sp. GDG-102[65]
2781-Methyl emodinC16H12O5Endophytic Fungus Penicillium macrosclerotiorum[66]
279IsorhodoptilometrinC17H14O6Endophytic Fungus Penicillium macrosclerotiorum[66]
280(−)-5-CarboxylmelleinC11H10O5Endophytic Fungus Xylaria sp. GDG-102[65]
281(−)-5-MethylmelleinC11H12O3Endophytic Fungus Xylaria sp. GDG-102[67]
282XylariphiloneC11H16O4Endophytic Fungus Xylaria sp. GDG-102[65]
283Xylarphthalide AC11H10O6Endophytic Fungus Xylaria sp. GDG-102[65]
2842-Anhydromevalonic acidC6H10O3Endophytic Fungus Xylaria sp. GDG-102[65]
285(2S,5R)-2-Ethyl-5-methylhexanedioic acidC9H16O4Endophytic Fungus Xylaria sp. GDG-102[65]
2866-Heptanoyl-4-methoxy-2H-pyran-2-oneC13H18O4Endophytic Fungus Xylaria sp. GDG-102[65]
287XylareremophilC15H18O3Endophytic Fungus Xylaria sp. GDG-102[68]
2881α,10α-Epoxy-13-hydroxyeremophil-7(11)-en-12,8-β-olideC15H20O4Endophytic Fungus Xylaria sp. GDG-102[68]
2891α,10α-Epoxy-3α-hydroxyeremophil-7(11)-en-12,8-olideC15H20O5Endophytic Fungus Xylaria sp. GDG-102[68]
290Mairetolide BC15H20O4Endophytic Fungus Xylaria sp. GDG-102[68]
291Mairetolide GC15H22O5Endophytic Fungus Xylaria sp. GDG-102[68]
2921β,10α,13-Trihydroxyeremophil-7(11)-en-12,8-olideC16H24O4Endophytic Fungus Xylaria sp. GDG-102[65]
293(−)-3-Carboxypropyl-7-hydroxyphthalideC12H12O5Endophytic fungus Penicillium vulpinum[69]
294(−)-3-Carboxypropyl-7-hydroxyphthalide methyl esterC13H14O5Endophytic fungus Penicillium vulpinum[69]
295SulochrinC17H16O7Endophytic fungus Penicillium macrosclerotiorum[66]
296Monoacetylasterric acidC18H16O9Endophytic fungus Penicillium macrosclerotiorum[66]
297Methyl dichloroasterrateC18H16Cl2O8Endophytic Fungus Penicillium macrosclerotiorum[66]
298PenicillitherC18H17 ClO8Endophytic fungus Penicillium macrosclerotiorum[66]
299Methyl asterrateC18H18O8Endophytic fungus Penicillium macrosclerotiorum[66]
300Asterric acidC17H16O8Endophytic fungus Penicillium macrosclerotiorum[66]
301Xylapeptide AC30H45N5O5Endophytic Fungus Xylaria sp. GDG-102[70]
302Xylapeptide BC29H43N5O5Endophytic Fungus Xylaria sp. GDG-102[70]
30321-Acetoxycytochalasin J2C30H37NO4Endophytic fungus Diaporthe sp.GDG-118[71]
30421-Acetoxycytochalasin J3C30H39NO3Endophytic fungus Diaporthe sp.GDG-118[71]
305Cytochalasin J3C32H41NO4Endophytic fungus Diaporthe sp.GDG-118[71]
306Cytochalasin HC30H39NO5Endophytic fungus Diaporthe sp.GDG-118[71]
3077-Acetoxycytochalasin HC32H41NO6Endophytic fungus Diaporthe sp.GDG-118[71]
308Cytochalasin JC28H37NO4Endophytic fungus Diaporthe sp.GDG-118[71]
309Geomycin AC35H32O15Endophytic fungus Penicillium macrosclerotiorum[66]
310Cytochalasin EC28H33NO7Endophytic fungus Diaporthe sp.GDG-118[71]
311Cytochalasin KC28H33NO7Endophytic fungus Xylaria sp. GDG-102[65]
312Diaporthein BC20H28O6Endophytic fungus Xylaria sp. GDGJ-368[72]
313PiliformicC11H18O4Endophytic fungus Xylaria sp. GDGJ-368[72]
314Cytochalasin CC30H37NO6Endophytic fungus Xylaria sp. GDGJ-368[72]
315Cytochalasin DC30H37NO6Endophytic fungus Xylaria sp. GDGJ-368[72]
316(22E)-ergosta-6,22-diene-3β,,8α-triolC28H46O3Endophytic fungus Xylaria sp. GDGJ-368[72]
Table 2. The comprehensive list of the pharmacological activities from S. tonkinensis.
Table 2. The comprehensive list of the pharmacological activities from S. tonkinensis.
DetailExtracts/CompoundsIn Vivo/In VitroActive Concentration/DoseReferences
Anti-inflammatory activity
Reduce TNF-α(−)-Anagyrine (61)In vitro50 µM[12]
Sophocarpine (34)In vitro50 µM[12]
14β-Hydroxymatrine (28)In vitro50 µM[12]
7β-Sophoramine (49)In vitro50 µM[12]
Matrine (1)In vivo50 µM[12]
(+)-5α-Hydroxymatrine (5)In vivo50 µM[12]
12,13-Dehydrosophoridine (16)In vitro50 µM[23]
13α-Hydroxymatrine (36)In vitro50 µM[23]
13β-Hydroxymatrine (37)In vitro50 µM[23]
Isosophocarpine (48)In vitro50 µM[23]
Sophoridine (13)In vitro50 µM[23]
Water extract of rootsIn vivo0.3 g/kg[75]
Inhibit the production of NOsophoratonkin (189)In vitroIC50 = 33.0 µM[28]
Maackiain (168)In vitroIC50 = 27.0 µM[28]
Sophoranone (120)In vitroIC50 = 28.1 µM[28]
Sophoranochromene (144)In vitroIC50 = 13.6 µM[28]
Tonkinochromane A (143)In vitro20 µM[45]
Flemichin D (139)In vitro20 µM[45]
6,8-Diprenyl-7,4′-dihydroxyflavanone (119)In vitroIC50 = 12.21 µM[45]
Water extract of rootsIn vivo100 mg/kg[13]
Non-alkaloid extracts of rootsIn vivo400 mg/kg[13]
Reduce IL- 62′-Hydroxyglabrol (131)In vitroIC50 = 1.62 µM[47]
Glabrol (121)In vitroIC50 = 0.73 µM[47]
Maackiain (168)In vitroIC50 = 3.01 µM[47]
Bolusanthin IV (261)In vitroIC50 = 4.02 µM[47]
Ethanol extract of rootsIn vivo100 mg/kg[7]
(−)-Anagyrine (61)In vitro50 µM[12]
Sophocarpine (34)In vitro50 µM[12]
14β-Hydroxymatrine (28)In vitro50 µM[12]
7β-Sophoramine (49)In vitro50 µM[12]
Matrine (1)In vitro50 µM[12]
(+)-5α-Hydroxyoxymatrine (3)In vivo50 µM[12]
(+)-5α-Hydroxymatrine (5)In vivo50 µM[12]
12,13-Dehydrosophoridine (16)In vitro50 µM[23]
13α-Hydroxymatrine (36)In vitro50 µM[23]
13β-Hydroxymatrine (37)In vitro50 µM[23]
Isosophocarpine (48)In vitro50 µM[23]
Sophoridine (13)In vitro50 µM[23]
Water extract of rootsIn vivo0.3 g/kg[75]
Reduce IL-550% (v/v) ethanol-water mixtureIn vivo100 mg/kg[76]
Reduce IL-10Ethanol extract of rootsIn vivo100 mg/kg[7]
Reduce IL-1βWater extract of rootsIn vivo0.3 g/kg[75]
Reduced the hyperplasia of goblet cell50% (v/v) ethanol-water mixtureIn vivo10 mg/kg[76]
Inhibit xylene induced auricle swelling in miceOxymatrine (4)In vivo40 mg/kg[78]
(−)-Cytisine (50)In vivo40 mg/kg[78]
S. tonkinensis particlesIn vivo1.75 g/kg[79]
Inhibit pain induced by acetic acid stimulation of the celiac mucosaMatrine (1)In vivo40 mg/kg[78]
Sophoridine (13)In vivo30 mg/kg[78]
Sophocarpine (34)In vivo40 mg/kg[78]
S. tonkinensis particlesIn vivo3.5 g/kg[79]
Inhibit croton oil induced ear swelling in miceWater extract of rootsIn vivo0.35–1.12 g/kg[80]
Ethanol extract of rootsIn vivo0.35–1.12 g/kg[80]
Water extract of rootsIn vivo0.39 g/kg[81]
Anti-tumor activity
Inhibit A549(−)-N-hexanoylcytisine (55)In vitroIC50 = 31.64 µM[24]
(−)-N-Formylcytisine (52)In vitroIC50 = 22.05 µM[24]
(6aR, 11aR)-Maackiain (168)In vitroIC50 = 24.58 µM[24]
Water extracts of rootsIn vitro6.5 µg/µL[82]
1-(6,7-Dihydro-5H-pyrrolo [1,2-a] imidazol-3-yl) ethenone (76)In vitroIC50 = 23.05 ± 0.46 µM[27]
Inhibit HL-60Tonkinensisol (93)In vitroIC50 = 36.48 μg/mL[15]
Sophoranol (5)In vitro10.00 µg/mL[83]
13,14-Dehydrosophoranol (24)In vitro1.00 µg/m L[83]
Inhibit HepG2Tonkinensine C (73)In vitroIC50 = 87.4 ± 7.1 µM[1]
Perlolyrine (74)In vitroIC50 = 91.8 ± 3.5 µM[1]
Harmine (72)In vitroIC50 = 48.9 ± 5.2 µM[1]
AlkaloidsIn vitroIC50 = 9.04 g/L[84]
Non-alkaloids extract of rootsIn vitroIC50 = 0.98 g/L[84]
Water extracts of rootsIn vitro6.5 µg/µL[82]
Inhibit SH-SY5YSophoranone (120)In vitroIC50 = 18.49 µM[85]
Matrine (1)In vitroIC50 = 60.81 µM[85]
Oxymatrine (4)In vitroIC50 = 42.56 µM[85]
(−)-Trifolirhizin (190)In vitroIC50 = 72.11 µM[85]
(−)-Maackiain (168)In vitroIC50 = 65.62 µM[85]
Inhibit B16-BL6Extract of rootsIn vitro400 µg/mL[86]
Inhibit CNE-1, CNE-2Chloroform extract of rootsIn vitro25 µg/mL[87]
Inhibit U937Sophoranone (120)In vitroIC50 = 3.8 ± 0.9 µM[88]
Inhibit HeLaTonkinensine B (59)In vitroIC50 = 24.3± 0.3 µM[25]
Inhibit MDA-MB-231Tonkinensine B (59)In vitroIC50 = 48.9± 0.5 µM[25]
Water extract of rootsIn vitro6.5 µg/µL[82]
Inhibit ESC solid tumor cellTotal alkaloids of rootsIn vivo100 mg/kg[89]
Inhibit H22 ascites tumor cellsTotal alkaloids of rootsIn vivo100 mg/kg[89]
Inhibit S180 solid tumor cellTotal alkaloids of rootsIn vivo75 mg/kg[89]
Inhibit BV2 glioma cell linesSophotokin (174)In vitro10 µM[34]
Maackiain (168)In vitro10 µM[34]
Medicarpin (176)In vitro10 µM[34]
Inhibit Hep3B and KG-1 cellsWater extract of rootsIn vitro6.5 µg/µL[82]
Decrease the number of cancer nodules in tumor tissue and reduce AFP in serumAlkaloids extract of rootsIn vivo0.036 g/kg[90]
Effects on the liver
Protect HepG2 cell against acetaminophen (APAP)- induced damage4-Methoxybenzamide (252)In vitro10 µmol/L[64]
7,3’-Dihydroxy-8,4’-dimethoxyisoflavone (104)In vitro10 µmol/L[64]
7,4’-Dihydroxy-3’-methoxyisoflavone (102)In vitro10 µmol/L[64]
(±)-3-(p-Methoxyphenyl)-1,2-propanediol (255)In vitro10 µmol/L[64]
Enhance L-02 hepatocytesMatrine (1)In vivo and vitro10 µM[91]
Oxymatrine (4)In vivo and vitro10 µM[91]
Increase SOD and GSHNon-alkaloids extract of rootsIn vivo400 mg/kg[13]
Water extract of rootsIn vivo400 mg/kg[13]
Increase ALT and ASTWater extract of rootsIn vivo0.59 g/kg[92]
Increase CPT 1A activityWater extract of rootsIn vivo25 μg/mL[91]
Reduce nonestesterified fatty acid Induce cellular lipids accumulation in hepatocytesMatrine (1)In vivo10 µM[91]
Oxymatrine (4)In vivo10 µM[91]
Reduce immune liver injuryOxymatrine (4)In vivo60 mg/kg[93]
Sophocarpine (34)In vivo60 mg/kg[93]
Oxymatrine (4)In vivo120 mg/kg[94]
Inhibite acetaminophen-induced hepatic oxidative damage in miceSTRP1 (Polysaccharide part)In vivo200 mg/kg[95]
STRP2 (Polysaccharide part)In vivo200 mg/kg[95]
Alleviate non-alcoholic fatty liver disease of miceWater extract of rootsIn vivo90 mg/kg[91]
Inhibit the production of tyrosinaseFormononetin-7-O-β-D-glucoside(116)In vitroIC50 = (7.82 ± 0.28) × 10−4 mol/L[43]
Tectorigenin (112)In vitroIC50 = (3.73 ± 0.45) × 10−4 mol/L[43]
8-Prenylkeamferol (91)In vitroIC50 = (1.58 ± 0.31) × 10−5 mol/L[43]
Reduce AST and ALTOxymatrine (4)In vivo120 mg/kg[93]
Sophocarpine (34)In vivo120 mg/kg[93]
Water extract of rootsIn vivo0.25 g/kg[96]
Reduce ASTNon-alkaloid extract of rootsIn vivo100 mg/kg[13]
Water extract of rootsIn vivo200 mg/kg[13]
Reduce ALTNon-alkaloid extracts of rootsIn vivo400 mg/kg[13]
Water extract of rootsIn vivo200 mg/kg[13]
Anti-viral activity
Anti-Coxsackie virus B3(−)-12β-Hydroxyoxysophocarpine (18)In vitroIC50 = 26.62 µM[14]
(−)-9α-Hydroxysophocarpine (25)In vitroIC50 = 197.22 µM[14]
(+)-Sophoranol (5)In vitroIC50 = 252.18 µM[14]
(−)-14β-Hydroxymatrine (28)In vitroIC50 = 184.14 µM[14]
3-(4-Hydroxyphenyl)- 4- (3- methoxy- 4-hydroxyphenyl)-3,4-dehydroquinolizidine (75)In vitroIC50 = 6.40 µM[26]
Cermizine C (70)In vitroIC50 = 3.25 µM[26]
Jussiaeiine A (68)In vitroIC50 = 4.66 µM[26]
Jussiaeiine B (67)In vitroIC50 = 3.21 µM[26]
(+)-5α-Hydroxyoxysophocarpine (17)In vitroIC50 = 0.12 µM[26]
(−)-12β-Hydroxyoxysophocarpine (18)In vitroIC50 = 0.23 µM[26]
(−)-Clathrotropine (64)In vitroIC50 = 1.60 µM[26]
Anti-tobacco mosaic virus (TMV)Sophtonseedlin B (188)In vitro100 µg/mL[56]
(−)-Trifolirhizin (190)In vitro100 µg/mL[56]
Sophtonseedline B (21)In vitro100 µg/mL[19]
Sophtonseedline D (23)In vitro100 µg/mL[19]
Sophtonseedline F (8)In vitro100 µg/mL[19]
(−)-N-Formylcytisine (52)In vitro100 µg/mL[19]
Alkaloid extracts of seedsIn vitro0.5 mg/mL[19]
Methanol extracts of seedsIn vitro0.5 mg/mL[19]
Anti-hepatitis B virus (HBV)(+)-Oxysophocarpine (20)In vitro0.4 µmol/mL[20]
(−)-Sophocarpine (34)In vitro0.4 µmol/mL[20]
(+)-Lehmannine (14)In vitro0.4 µmol/mL[20]
(−)-13,14-Dehydrosophoridine (16)In vitro1.6 µmol/mL[20]
(−) -14β-Hydroxyoxymatrine (6)In vitro0.4 µmol/mL[18]
(+)-Sophoranol (5)In vitro0.2 µmol/mL[18]
(−)-Cytisine (50)In vitro0.2 µmol/mL[18]
Anti-mouse hepatitis virusMethanol extracts of plantIn vitroEC50 = 27.5 ± 1.1 µg/mL[97]
Inhibited influenza virus A/Hanfang/359/95(+)-12α-Hydroxysophocarpine (15)In vitroIC50 = 84.70 µM[14]
(−)-12β-Hydroxysophocarpine (19)In vitroIC50 = 242.46 µM[14]
(+)-Sophoramine (49)In vitroIC50 = 63.07 µM[14]
Anti-oxidant capacity
ABTS free radical scavenging abilityChloroform extract of rootsIn vitroEC50 = 1.08 mg/mL[98]
Ethyl acetate extract of rootsIn vitroEC50 = 0.55 mg/mL[98]
N-butanol extract of rootsIn vitroEC50 = 1.27 mg/mL[98]
Ethanol extract of rootsIn vitroEC50 = 3.08 mg/mL[98]
Shandougenines A (263)In vitroIC50 = 0.532 ± 0.076 mM[40]
Shandougenines B (264)In vitroIC50 = 0.18 ± 0.032 mM[40]
Bolusanthin IV (261)In vitroIC50 = 0.3 ± 0.025 mM[40]
2-(2′,4′-Dihydroxyphenyl)-5,6-methylenedioxybenzofuran (260)In vitroIC50 = 0.726 ± 0.041 mM[40]
Shandougenine C (127)In vitroIC50 = 0.382 ± 0.055 mM[40]
Shandougenine D (128)In vitroIC50 = 0.341 ± 0.058 mM[40]
Demethylmedicarpin (179)In vitroIC50 = 0.503 ± 0.036 mM[40]
Scavenging of DPPH radicalsEthyl acetate extract of rootsIn vitro0.5 mg/mL[98]
Ethanol extract of rootsIn vitro0.5 mg/mL[98]
Chloroform extract of rootsIn vitro0.5 mg/mL[98]
N-butanol extract of rootsIn vitro0.5 mg/mL[98]
Water extract of aerial partsIn vitroIC50 = 0.1434 g/L[17]
N-butyl alcohol extract of aerial partsIn vitroIC50 = 0.0754 g/L[17]
Ethyl acetate extract of aerial partsIn vitroIC50 = 0.0693 g/L[17]
Dichloromethane of aerial partsIn vitroIC50 = 0.0494 g/L[17]
Petroleum ether extract of aerial partsIn vitroIC50 = 0.1218 g/L[17]
STRP1 (Polysaccharide part)In vitro1.0 mg/mL[95]
STRP2 (Polysaccharide part)In vitro1.0 mg/mL[95]
Tonkinensisol (93)In vitroIC50 = 0.616 ± 0.021 mM[40]
Bolusanthin IV (261)In vitroIC50 = 0.502 ± 0.101 mM[40]
2-(2′,4′-Dihydroxyphenyl)-5,6-methylenedioxybenzofuran (260)In vitroIC50 = 0.527 ± 0.054 mM[40]
Shandougenines A (263)In vitroIC50 = 1.213 ± 0.101 mM[40]
Shandougenines B (264)In vitroIC50 = 0.327 ± 0.022 mM[40]
WRSP-A2b (Polysaccharide part)In vitroIC50 = 19.95 ± 0.25 mg/mL[99]
WRSP-A3a (Polysaccharide part)In vitroIC50 = 5.99 ± 0.20 mg/mL[99]
Reducing powerChloroform extract of rootsIn vitroEC50 = 0.60 mg/mL[98]
Ethyl acetate extract of rootsIn vitroEC50 = 0.64 mg/mL[98]
N-butanol extract of rootsIn vitroEC50 = 0.51 mg/mL[98]
Ethanol extract of rootsIn vitroEC50 = 0.84 mg/mL[98]
Hydroxyl radical scavenging abilityChloroform extract of rootsIn vitroEC50 = 1.33 mg/mL[98]
Ethyl acetate extract of rootsIn vitroEC50 = 2.80 mg/mL[98]
N-butanol extract of rootsIn vitroEC50 = 5.00 mg/mL[98]
WRSP-A2b (Polysaccharide part)In vitroIC50 = 19.78 ± 0.47 mg/mL[99]
WRSP-A3a (Polysaccharide part)In vitroIC50 = 8.38 ± 0.18 mg/mL[99]
Superoxide anion radical scavenging abilityWRSP-A2b (Polysaccharide part)In vitroIC50 = 4.24 ± 0.11 mg/mL[99]
WRSP-A3a (Polysaccharide part)In vitroIC50 = 1.94 ± 0.05 mg/mL[99]
Toxicity
Respiratory depression, muscle fibrillation, convulsions, spasms, and deathHydroalcoholic extract from the rootsMice (i.g.)LD50 = 9.802 ± 2.0067 g/kg[100]
Convulsions, hair erection, rapid abdominal contraction and excitement, depression, abdominal breathing and eye closure, and death(−)- Cytisine (50)Mice (i.g.)LD50 = 48.16 mg/kg[101]
Irritability, hyperactivity, shortness of breath, and convulsionsWater extract of rootsMice (i.g.)LD50 = 17.469 g/kg[102]
90% Ethanol extract of rootsMice (i.g.)LD50 = 27.135 g/kg[102]
Alkaloids of rootsMice (i.g.)LD50 = 13.399 g/kg[102]
Water and 70% Ethanol extract mixture of rootsMice (i.g.)MTD = 36 g/kg[103]
All-component of of rootsMice (i.g.)MTD = 10.68 g/kg[102]
Slow heartbeat, bent trunk of zebrafish, accelerated movement frequency, and abnormal movement track, Hepato renal, pericardial enlargement, death.Sophoranone (120)Zebrafish (p.o.)LC50 = 22.45 µmol/L[104]
To cause hepatomegalySophoranone (120)Zebrafish (p.o.)3.86 µmol/L[104]
The zebrafish liver lost transparency and became dark or brown, and liver blood flow was no longer observableDealkalized water extract of rootsZebrafish (p.o.)LC10 = 1009.1 µg/mL[105]
Ethanol sedimentation extract of rootsZebrafish (p.o.)LC10 = 4367.6 µg/mL[105]
N-Butyl ethanol extract of rootsZebrafish (p.o.)MNLC = 700.0 µg/mL[105]
Slowed heart rate, reduced blood flow, and absence of circulation in the cardiotoxic phenotype, neurotoxic, and presents with behavioral abnormalities, bent trunk.Sophoranone (120)Zebrafish (p.o.)11.59 µmol/L[104]
Induced pericardial edema and slowed the blood circulation, heart rate lowerDiethyl ether extract of rootsZebrafish (p.o.)LC10 = 93.6 µg/mL[105]
N-Butyl ethanol extract of rootsZebrafish (p.o.)LC10 = 538.3 µg/mL[105]
Pericardial edema, a misshaped atrium and ventricle as well as reduced number of endothelial cells and cardiomyocytesDichloromethane extract of rootsZebrafish (p.o.)MNLC = 450.0 µg/mL[105]
Delayed yolk sac resorption in the hepatotoxic phenotype and Intestinal dysplasiaSophoranone (120)Zebrafish (p.o.)1.29 µmol/L[104]
To cause renal and pericardial edemaSophoranone (120)Zebrafish (p.o.)15.57 µmol/L[104]
Other pharmacological activities
Inhibit Pseudomonas aeruginosa2’,4’,7-Trihydroxy-6,8-bis(3-methyl-2-butenyl) flavanone (259)In vitroMIC = 125.0 µg/mL[16]
Genistin (115)In vitroMIC = 15.6 µg/mL[16]
Inhibit Bacillus megaterium2-Methoxy-6-methyl-1,4-benzoquinone (277)In vitroMIC = 3.125 µg/mL[65]
Xylariphilone (282)In vitroMIC = 12.5 µg/mL[65]
Xylarphthalide A (283)In vitroMIC = 25 µg/mL[67]
(−)-5-Carboxylmellein (280)In vitroMIC = 25 µg/mL[67]
(−)-5-Methylmellein (281)In vitroMIC = 25 µg/mL[67]
Inhibit Escherichia coliLanatine A (65)In vitroMIC = 1.0 g/L[26]
Jussiaeiines A (68)In vitroMIC = 3.2 g/L[26]
Jussiaeiines B (67)In vitroMIC = 0.8 g/L[26]
(−)-5-Carboxylmellein (280)In vitroMIC = 25 µg/mL[67]
21-Acetoxycytochalasin J3 (304)In vitroMIC = 12.5 µg/mL[71]
2-(2’,4’-Dihydroxy)-5,6-dioxomethylbenzofuran (260)In vitroMIC = 31.3 µg/mL[16]
Xylarphthalide A (283)In vitroMIC = 25 µg/mL[67]
(−)-5-Methylmellein (281)In vitroMIC = 25 µg/mL[67]
6-Heptanoyl-4-methoxy-2H-pyran-2-one (286)In vitroMIC = 50 µg/mL[106]
Inhibit Staphylococcus aureus3-(4-Hydroxyphenyl)-4-(3-methoxy-4-hydroxyphenyl) -3,4-dehydroquinolizidine (75)In vitroMIC = 8.0 g/L[26]
Cermizines C (70)In vitroMIC = 3.5 g/L[26]
Jussiaeiines B (67)In vitroMIC = 6.0 g/L[26]
Cytochalasin K (311)In vitroMIC = 12.5 µg/mL[65]
6-Heptanoyl-4-methoxy-2H-pyran-2-one (286)In vitroMIC = 50 µg/mL[106]
(−) -N-methylcytisine (54)In vitroMIC = 12.0 g/L[26]
Xylarphthalide A (283)In vitroMIC = 25 µg/mL[67]
(−)-5-Carboxylmellein (280)In vitroMIC = 25 µg/mL[67]
(−)-5-Methylmellein (281)In vitroMIC = 12.5 µg/mL[67]
Cytochalasin K (311)In vitroMIC = 12.5 µg/mL[65]
2’,4’,7-Trihydroxy-6,8-bis(3-methyl-2-butenyl) flavanone (259)In vitroMIC = 62.5 µg/mL[16]
Ethyl acetate extract of rootsIn vitroMIC = 0.313 mg/mL[98]
Inhibit Shigella dysenteriaeXylarphthalide A (283)In vitroMIC = 25 µg/mL[67]
(−)-5-Methylmellein (281)In vitroMIC = 25 µg/mL[67]
(−)-3-Carboxypropyl-7-hydroxyphthalide (293)In vitroMIC = 12.5 µg/mL[69]
Inhibit Proteus vulgarisXylareremophil (287)In vitroMIC = 25 µg/mL[68]
Mairetolide G (291)In vitroMIC = 25 µg/mL[68]
Inhibit Micrococcus luteusMairetolide G (291)In vitroMIC = 50 µg/mL[68]
Mairetolide B (290)In vitroMIC = 50 µg/mL[68]
Xylareremophil (287)In vitroMIC = 25 µg/mL[68]
Inhibit Micrococcus lysodeikticusMairetolide B (290)In vitroMIC = 100 µg/ml[68]
Mairetolide G (291)In vitroMIC = 100 µg/mL[68]
Xylareremophil (287)In vitroMIC = 100 µg/mL[68]
Inhibit Bacillus subtilis(−)-5-Carboxylmellein (280)In vitroMIC = 12.5 µg/mL[67]
Mairetolide B (290)In vitroMIC = 100 µg/mL[68]
Mairetolide G (291)In vitroMIC = 100 µg/mL[68]
Xylarphthalide A (283)In vitroMIC = 25 µg/mL[67]
(−)-5-Methylmellein (281)In vitroMIC = 12.5 µg/mL[67]
Xylapeptide A (301)In vitroMIC = 12.5 µg/mL[70]
(−)-3-Carboxypropyl-7-hydroxyphthalide (293)In vitroMIC = 25 µg/mL[69]
Xylareremophil (287)In vitroMIC = 100 µg/mL[68]
Inhibit Bacillus anthracis(−)-5-Carboxylmellein (280)In vitroMIC = 25 µg/mL[67]
21-Acetoxycytochalasin J3 (304)In vitroMIC = 12.5 µg/mL[71]
Inhibit Alternaria oleraceaCytochalasin E (310)In vitroMIC = 3.125 µg/mL[71]
Cytochalasin H (306)In vitroMIC = 6.25 µg/mL[71]
Inhibit Colletotrichum capsiciCytochalasin E (310)In vitroMIC = 1.56 µg/mL[71]
Cytochalasin H (306)In vitroMIC = 6.25 µg/mL[71]
Inhibit Pestalotiopsis theaeCytochalasin E (310)In vitroMIC = 1.56 µg/mL[71]
Cytochalasin H (306)In vitroMIC = 12.5 µg/mL[71]
Inhibit Enterobacter areogenes(−)-3-Carboxypropyl-7-hydroxyphthalide methyl ester (294)In vitroMIC = 12.5 µg/mL[69]
(−)-3-Carboxypropyl-7-hydroxyphthalide (293)In vitroMIC = 12.5 µg/mL[69]
Inhibit Colletotriehum gloeosporioidesMethanol extract of rootsIn vitroEC50 = 1.214 mg/mLMIC = 2.5 mg/mL[107]
Inhibit Fusarium solaniMethanol extract of rootsIn vitroEC50 = 1.169 mg/mLMIC = 2.5 mg/mL[107]
Inhibit Ceratocystis paradoxaCytochalasin H (306)In vitroMIC = 25 µg/mL[71]
Inhibit Bacillus cereusXylapeptide A (301)In vitroMIC = 12.5 µg/mL[70]
Moderate activities against Aphis fabaeSophtonseedline G (9)In vivoLC50 = 38.29 mg/L[19]
Matrine (1)In vivoLC50 = 18.63 mg/L[19]
(−)-N-Formylcytisine (52)In vivoLC50 = 23.74 mg/L[19]
Decreased fasting blood glucose levelsMatrine (1)In vivo2.5 mg/kg[108]
Ethyl acetate extract of rootsIn vivo60 mg/kg[33]
alleviate insulin resistanceEthyl acetate extract of rootsIn vivo60 mg/kg[33]
Matrine (1)In vivo10 mg/kg[108]
Inhibit 5-lipoxygenase50 % (v/v) Ethanol–water mixtureIn vitroIC50 = 1.61 µg/mL[76]
Maackiain (168)In vitroIC50 = 7.9 µM[76]
Sophoranone (120)In vitroIC50 = 1.6 µM[76]
Inhibit thromboxane synthase50 % (v/v) Ethanol–water mixtureIn vitroIC50 = 5.56 µg/mL[76]
Inhibit butyrylcholinesteraseEthanol extract of rootsIn vitroIC50 = 15. 169 µg/mL[109]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Liang, J.-J.; Zhang, P.-P.; Zhang, W.; Song, D.; Wei, X.; Yin, X.; Zhou, Y.-Q.; Pu, X.; Zhou, Y. Biological Activities and Secondary Metabolites from Sophora tonkinensis and Its Endophytic Fungi. Molecules 2022, 27, 5562. https://doi.org/10.3390/molecules27175562

AMA Style

Liang J-J, Zhang P-P, Zhang W, Song D, Wei X, Yin X, Zhou Y-Q, Pu X, Zhou Y. Biological Activities and Secondary Metabolites from Sophora tonkinensis and Its Endophytic Fungi. Molecules. 2022; 27(17):5562. https://doi.org/10.3390/molecules27175562

Chicago/Turabian Style

Liang, Jia-Jun, Pan-Pan Zhang, Wei Zhang, Da Song, Xin Wei, Xin Yin, Yong-Qiang Zhou, Xiang Pu, and Ying Zhou. 2022. "Biological Activities and Secondary Metabolites from Sophora tonkinensis and Its Endophytic Fungi" Molecules 27, no. 17: 5562. https://doi.org/10.3390/molecules27175562

APA Style

Liang, J. -J., Zhang, P. -P., Zhang, W., Song, D., Wei, X., Yin, X., Zhou, Y. -Q., Pu, X., & Zhou, Y. (2022). Biological Activities and Secondary Metabolites from Sophora tonkinensis and Its Endophytic Fungi. Molecules, 27(17), 5562. https://doi.org/10.3390/molecules27175562

Article Metrics

Back to TopTop