Baobab-Fruit Shell and Fibrous Filaments Are Sources of Antioxidant Dietary Fibers
Abstract
:1. Introduction
2. Results
2.1. Total, Soluble, and Insoluble Dietary Fiber
2.2. Direct and Soluble Total Antioxidant Capacities
2.3. Characterization of Polyphenols
2.4. Water-Holding Capacity (WHC) and Oil-Holding Capacity (OHC)
2.5. Endocannabinoids (Ecs) and N-Acylethanolamines (NAEs)
3. Discussions
4. Materials and Methods
4.1. Chemical
4.2. Baobab Samples
4.3. Soluble, Insoluble, and Total Dietary Fiber
4.4. Direct and Soluble Total Antioxidant Capacities
4.5. Polyphenol Characterization by HPLC and HPLC-MS/MS Analysis
4.6. Water- and Oil-Holding Capacities
4.7. Determination of Endocannabinoids (ECs) and N-Acylethanolamines (NAEs)
4.8. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hughes, A.; Haq, N.; Smith, R.W. Baobab. In Adansonia digitata L.; International Centre for Underutilised Crops: Southampton, UK, 2002. [Google Scholar]
- Chadare, F.J.; Linnemann, A.R.; Hounhouigan, J.D.; Nout, M.J.R.; Van Boekel, M.A.J.S. Baobab food products: A review on their composition and nutritional value. Crit. Rev. Food Sci. Nutr. 2008, 49, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.B.; Pu, Y.; Guo, M.; Ma, X.; Liu, D. LC-MS/QTOF identification of phytochemicals and the effects of solvents on phenolic constituents and antioxidant activity of baobab (Adansonia digitata) fruit pulp. Food Chem. 2019, 277, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Baky, M.H.; Badawy, M.T.; Bakr, A.F.; Hegazi, N.M.; Abdellatif, A.; Farag, M.A. Metabolome-based profiling of African baobab fruit (Adansonia digitata L.) using a multiplex approach of MS and NMR techniques in relation to its biological activity. RSC Adv. 2021, 11, 39680–39695. [Google Scholar] [CrossRef]
- Prior, R.L.; Gu, L. Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry 2005, 66, 2264–2280. [Google Scholar] [CrossRef] [PubMed]
- Foltz, M.; Zahradnik, A.C.; van den Abbeele, P.; Ghyselinck, J.; Marzorati, M. A Pectin-Rich, Baobab Fruit Pulp Powder Exerts Prebiotic Potential on the Human Gut Microbiome In Vitro. Microorganisms 2021, 9, 1981. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, C.; Prehsler, S.; Hartl, A.; Vogl, C.R. The importance of baobab (Adansonia digitata L.) in rural West African subsistence—suggestion of a cautionary approach to international market export of baobab fruits. Ecol. Food Nutr. 2010, 49, 145–172. [Google Scholar] [CrossRef]
- Munthali, C.R.Y.; Chirwa, P.W.; Akinnifesi, F.K. Phenotypic variation in fruit and seed morphology of Adansonia digitata L. (baobab) in five selected wild populations in Malawi. Agrofor. Syst. 2012, 85, 279–290. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- Ndiaye, E.M.; Yousra, Y.E.I.; Alioune, S.; Ayessou, N.C.; Harhar, H.; Cisse, M.; Tabyaoui, M. Secondary Metabolites and Antioxidant Activity of Different Parts of the Baobab Fruit (Adansonia digitata L.). Food Sci. Nutr. 2021, 12, 732–741. [Google Scholar] [CrossRef]
- Ismail, B.B.; Guo, M.; Pu, Y.; Wang, W.; Ye, X.; Liu, D. Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods. Ultrason. Sonochemistry 2019, 52, 257–267. [Google Scholar] [CrossRef]
- Salih, N.K.E.M.; Yahia, E.M. Phenolics and fatty acids compositions of vitex and baobab seeds used as coffee substitutes in Nuba Mountains, Sudan. Agric. Biol. J. N. Am. 2015, 6, 90–93. [Google Scholar] [CrossRef]
- Sokeng, A.J.T.; Sobolev, A.P.; Di Lorenzo, A.; Xiao, J.; Mannina, L.; Capitani, D.; Daglia, M. Metabolite characterization of powdered fruits and leaves from Adansonia digitata L. (baobab): A multi-methodological approach. Food Chem. 2019, 272, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.B.; Pu, Y.; Fan, L.; Dandago, M.A.; Guo, M.; Liu, D. Characterizing the phenolic constituents of baobab (Adansonia digitata) fruit shell by LC-MS/QTOF and their in vitro biological activities. Sci. Total Environ. 2019, 694, 133387. [Google Scholar] [CrossRef]
- Blancaflor, E.B.; Kilaru, A.; Keereetaweep, J.; Khan, B.R.; Faure, L.; Chapman, K.D. N-Acylethanolamines: Lipid metabolites with functions in plant growth and development. Plant J. 2014, 79, 568–583. [Google Scholar] [CrossRef]
- De Luca, L.; Ferracane, R.; Vitaglione, P. Food database of N-acyl-phosphatidylethanolamines, N-acylethanolamines and endocannabinoids and daily intake from a Western, a Mediterranean and a vegetarian diet. Food Chem. 2019, 300, 125218. [Google Scholar] [CrossRef] [PubMed]
- Witkamp, R.F. The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol. Asp. Med. 2018, 64, 45–67. [Google Scholar] [CrossRef]
- Murray, S.S.; Schoeninger, M.J.; Bunn, H.T.; Pickering, T.R.; Marlett, J.A. Nutritional composition of some wild plant foods and honey used by Hadza foragers of Tanzania. J. Food Compos. Anal. 2001, 14, 3–13. [Google Scholar] [CrossRef]
- Muthai, K.U.; Karori, M.S.; Muchugi, A.; Indieka, A.S.; Dembele, C.; Mng’omba, S.; Jamnadass, R. Nutritional variation in baobab (Adansonia digitata L.) fruit pulp and seeds based on Africa geographical regions. Food Sci. Nutr. 2017, 5, 1116–1129. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Zheng, B.; Lin, L.; Chen, B.; Zheng, Y.; Xiao, J. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell 65 and its hypolipidemic effects in mice. Food Chem. Toxicol. 2017, 109, 1003–1009. [Google Scholar] [CrossRef]
- Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Deroanne, C.; Drira, N.E.; Attia, H. Date flesh: Chemical composition and characteristics of the dietary fibre. Food Chem. 2008, 111, 676–682. [Google Scholar] [CrossRef]
- Slavin, J.L.; Green, H. Dietary fibre and satiety. Nutr. Bull. 2007, 32, 32–42. [Google Scholar] [CrossRef]
- Navarro-González, I.; García-Valverde, V.; García-Alonso, J.; Periago, M.J. Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Res. Int. 2011, 44, 1528–1535. [Google Scholar] [CrossRef]
- Colantuono, A.; Vitaglione, P.; Ferracane, R.; Campanella, O.H.; Hamaker, B.R. Development and functional characterization of new antioxidant dietary fibers from pomegranate, olive and artichoke by-products. Food Res. Int. 2017, 101, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Murthy, P.S.; Naidu, M.M. Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food Bioprocess Technol. 2012, 5, 897–903. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Antioxidant dietary fiber product: A new concept and a potential food ingredient. J. Agric. Food Chem. 1998, 46, 4303–4306. [Google Scholar] [CrossRef]
- Vitaglione, P.; Napolitano, A.; Fogliano, V. Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Technol. 2008, 19, 451–463. [Google Scholar] [CrossRef]
- Papillo, V.A.; Vitaglione, P.; Graziani, G.; Gokmen, V.; Fogliano, V. Release of antioxidant capacity from five plant foods during a multistep enzymatic digestion protocol. J. Agric. Food Chem. 2014, 62, 4119–4126. [Google Scholar] [CrossRef]
- Shahbaz, H.M.; Park, E.J.; Kim, G.R.; Akram, K.; Kwon, J.H. Assessment of antioxidant potential of pomegranate fruit by-products via a direct approach using a simple quencher method. J. AOAC Int. 2016, 99, 599–603. [Google Scholar] [CrossRef]
- Vitaglione, P.; Mazzone, G.; Lembo, V.; D’Argenio, G.; Rossi, A.; Guido, M.; Savoia, M.; Salomone, F.; Mennella, I.; De Filippis, F.; et al. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut–liver axis. J. Nutr. Sci. 2019, 8, e15. [Google Scholar] [CrossRef]
- Vitaglione, P.; Mennella, I.; Ferracane, R.; A Rivellese, A.; Giacco, R.; Ercolini, D.; Gibbons, S.; La Storia, A.; Gilbert, J.A.; Jonnalagadda, S.; et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: Role of polyphenols bound to cereal dietary fiber. Am. J. Clin. Nutr. 2015, 101, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Hernandez, L.J.; Wong-Paz, J.E.; Ascacio-Valdés, J.A.; Chávez-González, M.L.; Contreras-Esquivel, J.C.; Aguilar, C.N. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods 2021, 10, 3152. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Gabbar, M.A.; Abdel-Twab, S.M.; Fahmy, E.M.; Ebaid, H.; Alhazza, I.M.; Ahmed, O.M. Antidiabetic potency, antioxidant effects, and mode of actions of Citrus reticulata fruit peel hydroethanolic extract, hesperidin, and quercetin in nicotinamide/streptozotocin-induced Wistar diabetic rats. Oxid. Med. Cell. Longev. 2020, 2020, 1730492. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Zeppa, G.; Stévigny, C. Cocoa bean shell—A by-product with nutritional properties and biofunctional potential. Nutrients 2020, 12, 1123. [Google Scholar] [CrossRef] [PubMed]
- Salejda, A.M.; Janiewicz, U.; Korzeniowska, M.; Kolniak-Ostek, J.; Krasnowska, G. Effect of walnut green husk addition on some quality properties of cooked sausages. LWT 2012, 65, 751–757. [Google Scholar] [CrossRef]
- Adilah, Z.M.; Jamilah, B.; Hanan, Z.N. Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll. 2018, 74, 207–218. [Google Scholar] [CrossRef]
- Tagliamonte, S.; Gill, C.I.R.; Pourshahidi, L.K.; Slevin, M.M.; Price, R.K.; Ferracane, R.; Lawther, R.; O’Connor, G.; Vitaglione, P. Endocannabinoids, endocannabinoid-like molecules and their precursors in human small intestinal lumen and plasma: Does diet affect them? Eur. J. Nutr. 2021, 60, 2203–2215. [Google Scholar] [CrossRef]
- Muthai, U.K.; Indieka, A.S.; Muchugi, A.; Karori, S.M.; Mng’omba, S.; Ky-Dembele, C.; Jamnadass, R. Quantitative variation of fatty acid composition in seed oil from baobab (Adansonia digitata L.) wild populations in sub-Sahara Africa. S. Afr. J. Bot. 2019, 123, 1–8. [Google Scholar] [CrossRef]
- Msalilwa, U.L.; Makule, E.E.; Munish, L.K.; Ndakidemi, P.A. Physicochemical properties, fatty acid composition, and the effect of heating on the reduction of cyclopropenoid fatty acids on Baobab (Adansonia digitata L.) crude seed oil. J. Lipids 2020, 2020, 6691298. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Prosky, L.; Asp, N.G.; Schweizer, T.F.; Devries, J.W.; Furda, I. Determination of insoluble, soluble, and total dietary fiber in foods and food products: Interlaboratory study. J. AOAC Int. 1988, 71, 1017–1023. [Google Scholar] [CrossRef]
- Serpen, A.; Capuano, E.; Fogliano, V.; Gökmen, V. A new procedure to measure the antioxidant activity of insoluble food components. J. Agric. Food Chem. 2007, 55, 7676–7681. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, R.; Graziani, G.; Gallo, M.; Fogliano, V.; Ritieni, A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J. Pharm. Biomed. Anal. 2010, 51, 399–404. [Google Scholar] [CrossRef] [PubMed]
Samples | Direct TAC | Soluble TAC |
---|---|---|
Pulp | 187.6 ± 2.0 c | 37.4 ± 0.2 b |
Shell | 524.9 ± 1.0 a | 72.0 ± 0.7 a |
Fibrous filaments | 366.3 ± 8.6 b | 21.9 ± 0.9 c |
Seeds | 45.8 ± 0.0 d | 1.6 ± 0.1 d |
Polyphenols | Pulp | Shell | Fibrous Filaments | Seeds |
---|---|---|---|---|
Gallic acid | 33.9 ± 1.1 c | 78.3 ± 0.3 b | 88.5 ± 0.4 a | 19.6 ± 0.8 d |
Protocatechuic acid | - | 50.0 ± 0.2 a | 2.4 ± 0.005 c | 14.7 ± 1.3 b |
Chlorogenic acid | 1.8 ± 0.09 a | - | - | - |
Catechin | - | 47 ± 0.1 a | - | - |
Epicatechin | 514 ± 1 a | 81.9 ± 0.7 d | 197.2 ± 0.1 b | 120.1 ± 0.6 c |
Procyanidin B2 | 506.5 ± 5.7 a | 336.7 ± 1.0 b | 135.5 ± 0.4 c | 106.3 ± 0.02 d |
Rutin | 80.3 ± 0.9 a | 17.5 ± 0.5 c | 70.3 ± 0.1 b | 1.5 ± 0.03 d |
Caffeic acid | 25.9 ± 0.8 a | - | 6 ± 0.006 b | 3.9 ± 0.01 c |
Procyanidin trimer | 60 ± 1.4 b | 112.3 ± 1.5 a | - | - |
Quercetin 3-O-glucoside | - | - | - | 15.5 ± 0.7 a |
Quercetin | 39.5 ± 1.4 b | 438.7 ± 2.5 a | 28.5 ± 0.03 c | 4.6 ± 0.004 d |
TOTAL | 1262 ± 5.8 a | 1162 ± 0.5 b | 528.5 ± 1 c | 286.3 ± 0.8 d |
Samples | WHC | OHC |
---|---|---|
Pulp | 3.2 ± 0.2 c | 2.7 ± 0.0 b |
Shell | 4.3 ± 0.1 b | 2.5 ± 0.1 b |
Fibrous filaments | 7.7 ± 0.2 a | 7.2± 0.5 a |
Seeds | 3.2 ± 0.3 c | 2.0 ± 0.2 b |
Samples | LEA | PEA | OEA | SEA |
---|---|---|---|---|
Pulp | 107.9 ± 0.3 C,a | 46.3 ± 1.1 C,b | 44.7 ± 1.5 C,b | 36.9 ± 0.1 C,c |
Seeds | 325.2 ± 14.1 B,a | 174.3 ± 13.1 B,c | 218.7 ± 0.1 A,b | 67.8 ± 3.1 B,d |
Seed oil | 995.3 ± 21.1 A,a | 520.9 ± 5.5 A,c | 152.9 ± 1.6 B,d | 739.5 ± 2.8 A,b |
Polyphenols | Retention Time (min) |
---|---|
Gallic acid | 3.8 |
Protocatechuic acid | 5.7 |
Chlorogenic acid | 6.8 |
Procyanidin trimer | 6.5 |
Catechin | 7.1 |
Procyanidin B2 | 7.3 |
Epicatechin | 9.7 |
Caffeic acid | 10.2 |
Quercetin 3-O-glucoside | 10.6 |
Rutin | 14.5 |
Quercetin | 26.6 |
Compound | Precursor Ions [M − H]- (m/z) | Product Ions (m/z) |
---|---|---|
Gallic acid | 169 | 125, 79 |
Protocatechuic acid | 153 | 109 |
Chlorogenic acid | 353 | 191 |
Procyanidin trimer | 865 | 577, 451, 695, 289 |
Catechin and Epicatechin | 289 | 245 |
Procyanidin B2 | 577 | 125, 425, 407, 289 |
Caffeic acid | 179 | 135 |
Quercetin 3-O-glucoside | 463 | 301, 300, 271 |
Rutin | 609 | 301, 271 |
Quercetin | 301 | 151, 179 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiacchio, M.F.; Tagliamonte, S.; Visconti, A.; Ferracane, R.; Mustafa, A.; Vitaglione, P. Baobab-Fruit Shell and Fibrous Filaments Are Sources of Antioxidant Dietary Fibers. Molecules 2022, 27, 5563. https://doi.org/10.3390/molecules27175563
Chiacchio MF, Tagliamonte S, Visconti A, Ferracane R, Mustafa A, Vitaglione P. Baobab-Fruit Shell and Fibrous Filaments Are Sources of Antioxidant Dietary Fibers. Molecules. 2022; 27(17):5563. https://doi.org/10.3390/molecules27175563
Chicago/Turabian StyleChiacchio, Manuela Flavia, Silvia Tagliamonte, Attilio Visconti, Rosalia Ferracane, Arwa Mustafa, and Paola Vitaglione. 2022. "Baobab-Fruit Shell and Fibrous Filaments Are Sources of Antioxidant Dietary Fibers" Molecules 27, no. 17: 5563. https://doi.org/10.3390/molecules27175563
APA StyleChiacchio, M. F., Tagliamonte, S., Visconti, A., Ferracane, R., Mustafa, A., & Vitaglione, P. (2022). Baobab-Fruit Shell and Fibrous Filaments Are Sources of Antioxidant Dietary Fibers. Molecules, 27(17), 5563. https://doi.org/10.3390/molecules27175563