Confinement Effects on the Magnetic Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrachloroferrate(III)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Mesoporous Silicas
2.2. Thermal Characterization
2.3. Impedance Spectroscopy
2.4. Magnetic Susceptibility Measurements
2.5. Ambient Pressure Vibrational Spectroscopy
2.6. High-Pressure Infrared Spectroscopy
3. Conclusions
4. Materials and Methods
4.1. Sample Preparation
4.2. N2 Adsorption Isotherms
4.3. Thermal Characterization
4.4. Magnetic Property Assessment
4.5. Impedance Spectroscopy
4.6. Vibrational Spectroscopy
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Welton, T. Ionic Liquids: A Brief History. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Sitze, M.S.; Schreiter, E.R.; Patterson, E.V.; Freeman, R.G. Ionic Liquids Based on FeCl3 and FeCl2. Raman Scattering and Ab Initio Calculations. Inorg. Chem. 2001, 40, 2298–2304. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Hamaguchi, H. Discovery of a Magnetic Ionic Liquid [Bmim]FeCl4. Chem. Lett. 2004, 33, 1590–1591. [Google Scholar] [CrossRef]
- Wang, J.; Yao, H.; Nie, Y.; Zhang, X.; Li, J. Synthesis and Characterization of the Iron-Containing Magnetic Ionic Liquids. J. Mol. Liq. 2012, 169, 152–155. [Google Scholar] [CrossRef]
- Herber, R.H.; Nowik, I.; Kostner, M.E.; Kahlenberg, V.; Kreutz, C.; Laus, G.; Schottenberger, H. Mossbauer Spectroscopy and X-Ray Diffraction Study of 57Fe-Labeled Tetrachloroferrate(III)-Based Magnetic Ionic Liquids. Int. J. Mol. Sci. 2011, 12, 6397–6406. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Zyła, G.; Thomas, V.I.; Nair, P.R.; Padmanabhan, A.S.; Mathew, S. Paramagnetic Ionic Liquids for Advanced Applications: A Review. J. Mol. Liq. 2016, 218, 319–331. [Google Scholar] [CrossRef]
- Yoshida, Y.; Saito, G. Influence of Structural Variations in 1-Alkyl-3-Methylimidazolium Cation and Tetrahalogenoferrate(III) Anion on the Physical Properties of the Paramagnetic Ionic Liquids. J. Mater. Chem. 2006, 16, 1254–1262. [Google Scholar] [CrossRef]
- Del Sesto, R.E.; McCleskey, T.M.; Burrell, A.K.; Baker, G.A.; Thompson, J.D.; Scott, B.L.; Wilkes, J.S.; Williams, P. Structure and Magnetic Behavior of Transition Metal Based Ionic Liquids. Chem. Commun. 2008, 8, 447–449. [Google Scholar] [CrossRef]
- Mallick, B.; Balke, B.; Felser, C.; Mudring, A.V. Dysprosium Room-Temperature Ionic Liquids with Strong Luminescence and Response to Magnetic Fields. Angew. Chem. Int. Ed. 2008, 47, 7635–7638. [Google Scholar] [CrossRef]
- Brown, P.; Butts, C.P.; Eastoe, J.; Padrón Hernández, E.; De Araujo Machadob, F.L.; De Oliveirac, R.J. Dication Magnetic Ionic Liquids with Tuneable Heteroanions. Chem. Commun. 2013, 49, 2765–2767. [Google Scholar] [CrossRef]
- De Pedro, I.; Rojas, D.P.; Blanco, J.A.; Fernández, J.R. Antiferromagnetic Ordering in Magnetic Ionic Liquid Emim[FeCl4]. J. Magn. Magn. Mater. 2011, 323, 1254–1257. [Google Scholar] [CrossRef]
- García-Saiz, A.; De Pedro, I.; Blanco, J.A.; González, J.; Fernández, J.R. Pressure Effects on Emim[FeCl4], a Magnetic Ionic Liquid with Three-Dimensional Magnetic Ordering. J. Phys. Chem. B 2013, 117, 3198–3206. [Google Scholar] [CrossRef] [PubMed]
- García-Saiz, A.; Migowski, P.; Vallcorba, O.; Junquera, J.; Blanco, J.A.; González, J.A.; Fernández-Díaz, M.T.; Rius, J.; Dupont, J.; Rodríguez Fernández, J.; et al. A Magnetic Ionic Liquid Based on Tetrachloroferrate Exhibits Three-Dimensional Magnetic Ordering: A Combined Experimental and Theoretical Study of the Magnetic Interaction Mechanism. Chem. Eur. J. 2014, 20, 72–76. [Google Scholar] [CrossRef]
- García-Saiz, A.; De Pedro, I.; Migowski, P.; Vallcorba, O.; Junquera, J.; Blanco, J.A.; Fabelo, O.; Sheptyakov, D.; Waerenborgh, J.C.; Fernández-Díaz, M.T.; et al. Anion-π and Halide-Halide Nonbonding Interactions in a New Ionic Liquid Based on Imidazolium Cation with Three-Dimensional Magnetic Ordering in the Solid State. Inorg. Chem. 2014, 53, 8384–8396. [Google Scholar] [CrossRef] [PubMed]
- García-Saiz, A.; De Pedro, I.; Vallcorba, O.; Migowski, P.; Hernández, I.; Barquin, L.F.; Abrahams, I.; Motevalli, M.; Dupont, J.; Gonzalez, J.A.; et al. 1-Ethyl-2,3-Dimethylimidazolium Paramagnetic Ionic Liquids with 3D Magnetic Ordering in Its Solid State: Synthesis, Structure and Magneto-Structural Correlations. RSC Adv. 2015, 5, 60835–60848. [Google Scholar] [CrossRef]
- Bäcker, T.; Breunig, O.; Valldor, M.; Merz, K.; Vasylyeva, V.; Mudring, A.V. In-Situ Crystal Growth and Properties of the Magnetic Ionic Liquid [C2mim][FeCl4]. Cryst. Growth Des. 2011, 11, 2564–2571. [Google Scholar] [CrossRef]
- Santos, E.; Albo, J.; Irabien, A. Magnetic Ionic Liquids: Synthesis, Properties and Applications. RSC Adv. 2014, 4, 40008–40018. [Google Scholar] [CrossRef]
- Lee, S.H.; Ha, S.H.; You, C.Y.; Koo, Y.M. Recovery of Magnetic Ionic Liquid [Bmim]FeCl4 Using Electromagnet. Korean J. Chem. Eng. 2007, 24, 436–437. [Google Scholar] [CrossRef]
- Wang, M.; Li, B.; Zhao, C.; Qian, X.; Xu, Y.; Chen, G. Recovery of [BMIM]FeCl4 from Homogeneous Mixture Using a Simple Chemical Method. Korean J. Chem. Eng. 2010, 27, 1275–1277. [Google Scholar] [CrossRef]
- Mai, N.L.; Ahn, K.; Koo, Y.M. Methods for Recovery of Ionic Liquids–A Review. Process Biochem. 2014, 49, 872–881. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, C.; Liu, H. Magnetically Rotational Reactor for Absorbing Benzene Emissions by Ionic Liquids. China Particuology 2007, 5, 130–133. [Google Scholar] [CrossRef]
- Okuno, M.; Hamaguchi, H.O.; Hayashi, S. Magnetic Manipulation of Materials in a Magnetic Ionic Liquid. Appl. Phys. Lett. 2006, 89, 132506. [Google Scholar] [CrossRef]
- Santos, E.; Albo, J.; Daniel, C.I.; Portugal, C.A.M.; Crespo, J.G.; Irabien, A. Permeability Modulation of Supported Magnetic Ionic Liquid Membranes (SMILMs) by an External Magnetic Field. J. Membr. Sci. 2013, 430, 56–61. [Google Scholar] [CrossRef]
- Valkenberg, M.; DeCastro, C.; Hölderich, W. Friedel-Crafts Acylation of Aromatics Catalysed by Supported Ionic Liquids. Appl. Catal. A Gen. 2001, 215, 185–190. [Google Scholar] [CrossRef]
- Tilve, R.D.; Alexander, M.V.; Khandekar, A.C.; Samant, S.D.; Kanetkar, V.R. Synthesis of 2,3-Unsaturated Glycopyranosides by Ferrier Rearrangement in FeCl3 Based Ionic Liquid. J. Mol. Catal. A Chem. 2004, 223, 237–240. [Google Scholar] [CrossRef]
- Zhu, A.; Wang, J.; Liu, R. A Volumetric and Viscosity Study for the Binary Mixtures of 1-Hexyl-3-Methylimidazolium Tetrafluoroborate with Some Molecular Solvents. J. Chem. Thermodyn. 2011, 43, 796–799. [Google Scholar] [CrossRef]
- Godajdar, B.M.; Kiasat, A.R.; Hashemi, M.M. Synthesis, Characterization and Application of Magnetic Room Temperature Dicationic Ionic Liquid as an Efficient Catalyst for the Preparation of 1,2-Azidoalcohols. J. Mol. Liq. 2013, 183, 14–19. [Google Scholar] [CrossRef]
- Khalafi-Nezhad, A.; Mohammadi, S. Highly Efficient Synthesis of 1- and 5-Substituted 1H-Tetrazoles Using Chitosan Derived Magnetic Ionic Liquid as a Recyclable Biopolymer-Supported Catalyst. RSC Adv. 2013, 3, 4362–4371. [Google Scholar] [CrossRef]
- Fauzi, A.H.M.; Amin, N.A.S.; Mat, R. Esterification of Oleic Acid to Biodiesel Using Magnetic Ionic Liquid: Multi-Objective Optimization and Kinetic Study. Appl. Energy 2014, 114, 809–818. [Google Scholar] [CrossRef]
- Saha, A.; Payra, S.; Dutta, D.; Banerjee, S. Acid-Functionalised Magnetic Ionic Liquid [AcMIm]FeCl4 as Catalyst for Oxidative Hydroxylation of Arylboronic Acids and Regioselective Friedel-Crafts Acylation. ChemPlusChem 2017, 82, 1129–1134. [Google Scholar] [CrossRef]
- Torabi, M.; Yarie, M.; Zolfigol, M.A.; Azizian, S. Magnetic Phosphonium Ionic Liquid: Application as a Novel Dual Role Acidic Catalyst for Synthesis of 2′-Aminobenzothiazolomethylnaphthols and Amidoalkyl Naphthols. Res. Chem. Intermed. 2020, 46, 891–907. [Google Scholar] [CrossRef]
- Anizadeh, M.R.; Zolfigol, M.A.; Yarie, M.; Torabi, M.; Azizian, S. Synthesis, Characterization and Catalytic Application of Tributyl(Carboxymethyl)Phosphonium Bromotrichloroferrate as a New Magnetic Ionic Liquid for the Preparation of 2,3-Dihydroquinazolin-4(1H)-Ones and 4H-Pyrimidobenzothiazoles. Res. Chem. Intermed. 2020, 46, 3945–3960. [Google Scholar] [CrossRef]
- Salami, M.; Ezabadi, A. Synthesis of the Nano-Magnetic Ionic Liquid Based on Caffeine and Its Catalytic Application in the Synthesis of Xanthenes. Res. Chem. Intermed. 2020, 46, 4611–4626. [Google Scholar] [CrossRef]
- Muraoka, J.; Kamiya, N.; Ito, Y. Preparation and Evaluation of Cellulose-Dissolving Magnetic Ionic Liquid. J. Mol. Liq. 2013, 182, 76–78. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, X.; Guan, P.; Lin, X.; Li, X. Physicochemical Characterization of Paramagnetic Ionic Liquids 1-Vinyl-3-Alkylimidazolium Tetrahalogenidoferrate(III) [VRIM][FeClmBr4–m]. J. Phys. Org. Chem. 2014, 27, 498–503. [Google Scholar] [CrossRef]
- Zakrzewska, M.E.; Paninho, A.B.; Môlho, M.F.; Nunes, A.V.M.; Afonso, C.A.M.; Rosatella, A.A.; Lopes, J.M.; Najdanovic-Visak, V. Solubility and Phase Behavior of Binary Systems Containing Salts Based on Transitional Metals. J. Chem. Thermodyn. 2013, 63, 123–127. [Google Scholar] [CrossRef]
- Li, L.; Huang, Y.; Yan, G.; Liu, F.; Huang, Z.; Ma, Z. Poly(3,4-Ethylenedioxythiophene) Nanospheres Synthesized in Magnetic Ionic Liquid. Mater. Lett. 2009, 63, 8–10. [Google Scholar] [CrossRef]
- Shang, S.; Li, L.; Yang, X.; Zheng, L. Synthesis and Characterization of Poly(3-Methyl Thiophene) Nanospheres in Magnetic Ionic Liquid. J. Colloid Interface Sci. 2009, 333, 415–418. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, Y.; Li, L.; Yang, X.; Yu, X.; Yan, G. Magnetic Ionic Liquid-Assisted Synthesis of Polypyrrole/AgCl Nanocomposites. Polym. Adv. Technol. 2010, 21, 742–745. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, J.T.; Song, E.A.; Min, Y.K.; Hamaguchi, H.O. Polypyrrole Nanostructures Self-Assembled in Magnetic Ionic Liquid as a Template. Macromolecules 2008, 41, 2886–2889. [Google Scholar] [CrossRef]
- Akitsu, T.; Einaga, Y. Novel Photo-Induced Aggregation Behavior of a Supramolecular System Containing Iron(III) Magnetic Ionic Liquid and Azobenzene. Inorg. Chem. Commun. 2006, 9, 1108–1110. [Google Scholar] [CrossRef]
- Branco, A.; Branco, L.C.; Pina, F. Electrochromic and Magnetic Ionic Liquids. Chem. Commun. 2011, 47, 2300–2302. [Google Scholar] [CrossRef] [PubMed]
- Katayama, Y.; Konishiike, I.; Miura, T.; Kishi, T. Redox Reaction in 1-Ethyl-3-Methylimidazolium–Iron Chlorides Molten Salt System for Battery Application. J. Power Sources 2002, 109, 327–332. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Imura, M.; Koide, Y.; Terabe, K. Magnetic Control of Magneto-Electrochemical Cell and Electric Double Layer Transistor. Sci. Rep. 2017, 7, 10534. [Google Scholar] [CrossRef]
- Kemmizaki, Y.; Tsutsumi, H.; Ueno, K. Redox Active Glyme-Li Salt Solvate Ionic Liquids Based on Tetrabromoferrate(III). Electrochemistry 2018, 86, 46–51. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Zhang, Y.; Deng, Y. Nanoconfined Ionic Liquids. Chem. Rev. 2017, 117, 6755–6833. [Google Scholar] [CrossRef]
- Singh, M.P.; Singh, R.K.; Chandra, S. Ionic Liquids Confined in Porous Matrices: Physicochemical Properties and Applications. Prog. Mater. Sci. 2014, 64, 73–120. [Google Scholar] [CrossRef]
- Perkin, S. Ionic Liquids in Confined Geometries. Phys. Chem. Chem. Phys. 2012, 14, 5052–5062. [Google Scholar] [CrossRef]
- Perkin, S.; Crowhurst, L.; Niedermeyer, H.; Welton, T.; Smith, A.M.; Gosvami, N.N. Self-Assembly in the Electrical Double Layer of Ionic Liquids. Chem. Commun. 2011, 47, 6572–6574. [Google Scholar] [CrossRef] [PubMed]
- Migliorati, V.; Del Giudice, A.; Casu, A.; Falqui, A.; Podesta, A.; Milani, P.; Borghi, F. Crystalline Structuring of Confined Ionic Liquids at Room Temperature. J. Phys. Chem. C 2022, 126, 13477–13484. [Google Scholar] [CrossRef]
- Futamura, R.; Iiyama, T.; Takasaki, Y.; Gogotsi, Y.; Biggs, M.J.; Salanne, M.; Ségalini, J.; Simon, P.; Kaneko, K. Partial Breaking of the Coulombic Ordering of Ionic Liquids Confined in Carbon Nanopores. Nat. Mater. 2017, 16, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Borghi, F.; Podestà, A. Ionic Liquids under Nanoscale Confinement. Adv. Phys. X 2020, 5, 1736949. [Google Scholar] [CrossRef]
- Singh, M.P.; Singh, R.K.; Chandra, S. Properties of Ionic Liquid Confined in Porous Silica Matrix. ChemPhysChem 2010, 11, 2036–2043. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, J.L.; Feng, G.; Fulvio, P.F.; Li, S.; Rother, G.; Dai, S.; Cummings, P.T.; Wesolowski, D.J. Densification of Ionic Liquid Molecules within a Hierarchical Nanoporous Carbon Structure Revealed by Small-Angle Scattering and Molecular Dynamics Simulation. Chem. Mater. 2014, 26, 1144–1153. [Google Scholar] [CrossRef]
- Nayeri, M.; Aronson, M.T.; Bernin, D.; Chmelka, B.F.; Martinelli, A. Surface Effects on the Structure and Mobility of the Ionic Liquid C6C1ImTFSI in Silica Gels. Soft Matter 2014, 10, 5618–5627. [Google Scholar] [CrossRef]
- Iacob, C.; Sangoro, J.R.; Kipnusu, W.K.; Valiullin, R.; Kärger, J.; Kremer, F. Enhanced Charge Transport in Nano-Confined Ionic Liquids. Soft Matter 2012, 8, 289–293. [Google Scholar] [CrossRef]
- Tu, W.; Chat, K.; Szklarz, G.; Laskowski, L.; Grzybowska, K.; Paluch, M.; Richert, R.; Adrjanowicz, K. Dynamics of Pyrrolidinium-Based Ionic Liquids under Confinement. II. The Effects of Pore Size, Inner Surface, and Cationic Alkyl Chain Length. J. Phys. Chem. C 2020, 124, 5395–5408. [Google Scholar] [CrossRef]
- Kaneko, K.; Fukuzaki, N.; Ozeki, S. The Concentrated NO Dimer in Micropores above Room Temperature. J. Chem. Phys. 1987, 87, 776–777. [Google Scholar] [CrossRef]
- Kaneko, K.; Fukuzaki, N.; Kakei, K.; Suzuki, T.; Ozeki, S. Enhancement of NO Dimerization by Micropore Fields of Activated Carbon Fibers. Langmuir 1989, 5, 960–965. [Google Scholar] [CrossRef]
- Kanoh, H.; Kaneko, K. Random Magnetism of O2 Confined in a Slit-Shaped Graphitic Nanospace at Low Temperature. J. Phys. Chem. 1995, 99, 5746–5748. [Google Scholar] [CrossRef]
- Otsuka, H.; Futamura, R.; Amako, Y.; Ozeki, S.; Iiyama, T. Effect of Pore Size on the Magnetic Properties of Emim FeCl4 Confined in the Pores of SBA-15. Chem. Phys. Lett. 2022, 804, 139878. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Williams, R.T. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorpt. Sci. Technol. 2004, 22, 773–782. [Google Scholar] [CrossRef]
- Sonwane, C.G.; Ludovice, P.J. A Note on Micro- and Mesopores in the Walls of SBA-15 and Hysteresis of Adsorption Isotherms. J. Mol. Catal. A Chem. 2005, 238, 135–137. [Google Scholar] [CrossRef]
- Jackson, C.L.; McKenna, G.B. The Melting Behavior of Organic Materials Confined in Porous Solids. J. Chem. Phys. 1990, 93, 9002–9011. [Google Scholar] [CrossRef]
- Burba, C.M.; Janzen, J. Confinement Effects on the Phase Transition Temperature of Aqueous NaCl Solutions: The Extended Gibbs-Thomson Equation. Thermochim. Acta 2015, 615, 81–87. [Google Scholar] [CrossRef]
- Liu, F.; Zargarzadeh, L.; Chung, H.J.; Elliott, J.A.W. Thermodynamic Investigation of the Effect of Interface Curvature on the Solid-Liquid Equilibrium and Eutectic Point of Binary Mixtures. J. Phys. Chem. B 2017, 121, 9452–9462. [Google Scholar] [CrossRef]
- Jantsch, E.; Weinberger, C.; Tiemann, M.; Koop, T. Phase Transitions of Ice in Aqueous Salt Solutions within Nanometer-Sized Pores. J. Phys. Chem. C 2019, 123, 24566–24574. [Google Scholar] [CrossRef]
- Krause, C.; Sangoro, J.R.; Iacob, C.; Kremer, F. Charge Transport and Dipolar Relaxations in Imidazolium-Based Ionic Liquids. J. Phys. Chem. B 2010, 114, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Otsuka, A.; Saito, G.; Natsume, S.; Nishibori, E.; Takata, M.; Sakata, M.; Takahashi, M.; Yoko, T. Conducting and Magnetic Properties of 1-Ethyl-3-Methylimidazolium (EMI) Salts Containing Paramagnetic Irons: Liquids [EMI][MIIICl4] (M = Fe and Fe0.5Ga0.5) and Solid [EMI]2[FeIICl4]. Bull. Chem. Soc. Jpn. 2005, 78, 1921–1928. [Google Scholar] [CrossRef]
- Davenport, M.; Rodriguez, A.; Shea, K.J.; Siwy, Z.S. Squeezing Ionic Liquids through Nanopores. Nano Lett. 2009, 9, 2125–2128. [Google Scholar] [CrossRef] [PubMed]
- Tasserit, C.; Koutsioubas, A.; Lairez, D.; Zalczer, G.; Clochard, M.C. Pink Noise of Ionic Conductance through Single Artificial Nanopores Revisited. Phys. Rev. Lett. 2010, 105, 260602. [Google Scholar] [CrossRef] [PubMed]
- Han, K.S.; Wang, X.; Dai, S.; Hagaman, E.W. Distribution of 1-Butyl-3-Methylimidazolium Bistrifluoromethylsulfonimide in Mesoporous Silica as a Function of Pore Filling. J. Phys. Chem. C 2013, 117, 15754–15762. [Google Scholar] [CrossRef]
- Coasne, B.; Viau, L.; Vioux, A. Loading-Controlled Stiffening in Nanoconfined Ionic Liquids. J. Phys. Chem. Lett. 2011, 2, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Kirk, C.T. Quantitative Analysis of the Effect of Disorder-Induced Mode Coupling on Infrared Absorption in Silica. Phys. Rev. B 1988, 38, 1255–1273. [Google Scholar] [CrossRef]
- Grondin, J.; Lassègues, J.-C.; Cavagnat, D.; Buffeteau, T.; Johansson, P.; Holomb, R. Revisited Vibrational Assignments of Imidazolium-Based Ionic Liquids. J. Raman Spectrosc. 2011, 42, 733–743. [Google Scholar] [CrossRef]
- Lassègues, J.-C.; Grondin, J.; Cavagnat, D.; Johansson, P. New Interpretation of the CH Stretching Vibrations in Imidazolium-Based Ionic Liquids. J. Phys. Chem. A 2009, 113, 6419–6421. [Google Scholar] [CrossRef]
- Roth, C.; Chatzipapadopoulos, S.; Kerlé, D.; Friedriszik, F.; Lütgens, M.; Lochbrunner, S.; Kühn, O.; Ludwig, R. Hydrogen Bonding in Ionic Liquids Probed by Linear and Nonlinear Vibrational Spectroscopy. New J. Phys. 2012, 14, 105026. [Google Scholar] [CrossRef]
- Fateley, W.G.; Dollish, F.R.; Bentley, F.F.; McDewitt, N.T. Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method, 1st ed.; Krieger Publishing Company: Malabar, FL, USA, 1972. [Google Scholar]
- Burba, C.M.; Chang, H.-C. The Nature of Cation–Anion Interactions in Magnetic Ionic Liquids as Revealed Using High-Pressure Fourier Transform Infrared (FT-IR) Spectroscopy. Appl. Spectrosc. 2019, 73, 511–519. [Google Scholar] [CrossRef]
Silica Sample | BET Surface Area (m2/g) | BJH Pore Diameter (nm) | BJH Pore Volume (cm3/g) |
---|---|---|---|
1 | 500.85 | 8.36 | 1.26 |
2 | 549.06 | 7.36 | 1.03 |
3 | 738.90 | 5.39 | 0.67 |
Sample | Pore Diameter (nm) | Melting Point (K) | ΔH (J/g of [C2mim]FeCl4) |
---|---|---|---|
Unconfined | ∞ | 287.5 | 63.5 |
Silica 1 | 8.36 | 249.4 | 21.8 |
Silica 2 | 7.36 | 247.8 | 21.8 |
Silica 3 | 5.39 | 235.4 | 11.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burba, C.M.; Chang, H.-C. Confinement Effects on the Magnetic Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrachloroferrate(III). Molecules 2022, 27, 5591. https://doi.org/10.3390/molecules27175591
Burba CM, Chang H-C. Confinement Effects on the Magnetic Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrachloroferrate(III). Molecules. 2022; 27(17):5591. https://doi.org/10.3390/molecules27175591
Chicago/Turabian StyleBurba, Christopher M., and Hai-Chou Chang. 2022. "Confinement Effects on the Magnetic Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrachloroferrate(III)" Molecules 27, no. 17: 5591. https://doi.org/10.3390/molecules27175591
APA StyleBurba, C. M., & Chang, H. -C. (2022). Confinement Effects on the Magnetic Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrachloroferrate(III). Molecules, 27(17), 5591. https://doi.org/10.3390/molecules27175591