Single-Stage Extraction and Separation of Co2+ from Ni2+ Using Ionic Liquid of [C4H9NH3][Cyanex 272]
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Analytical Methods
2.3. Synthesis of the TSIL
2.4. Single-Factor Experiment
2.5. Optimizing the Extraction Conditions by BBD
2.6. Calculations
3. Results and Discussion
3.1. 1H, 13C NMR, and FT-IR of [C4H9NH3][Cyanex 272]
3.2. Single-Factor Experiment
3.3. Optimization of the Conditions for Extraction Process
3.4. Verification of Equation
3.5. Extraction Mechanism of [C4H9NH3][Cyanex 272]
3.6. Stripping for TSIL-Based Extraction Phase and Its Recycling Use
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Chen, Z.; Zhang, L.; Xu, Z. Analysis of cobalt flows in mainland China: Exploring the potential opportunities for improving resource efficiency and supply security. J. Clean. Prod. 2020, 275, 122841. [Google Scholar] [CrossRef]
- Shedd, K.B.; Mccullough, E.A.; Bleiwas, D.I. Global trends affecting the supply security of cobalt. Min. Eng. 2017, 69, 37–42. [Google Scholar]
- Zhang, P.; Qiang, G.; Jingkui, Q.; Tao, Q. Leaching Ni and Co from Saprolitic Laterite Ore by Employing Atmospheric Acid Leaching Solution with High Concentration of FeCl3 at Mild Conditions. Russ. J. Non-Ferr. Met. 2020, 61, 42–48. [Google Scholar] [CrossRef]
- Janiszewska, M.; Markiewicz, A.; Regel-Rosocka, M. Hydrometallurgical separation of Co(II) from Ni(II) from model and real waste solutions. J. Clean. Prod. 2019, 228, 746–754. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Q.; Qin, H.; Yang, K.; Lv, J.; Zhang, Q.; Zhang, H.; Liu, F.; Chen, X.; Wang, M. Separation of valuable metals from mixed cathode materials of spent lithium-ion batteries by single-stage extraction. Korean J. Chem. Eng. 2021, 38, 2113–2121. [Google Scholar] [CrossRef]
- Lakshmanan, V.I.; Sridhar, R.; Chen, J.; Halim, M.A. A mixed-chloride atmospheric leaching process for the recovery of base metals from sulphide materials. Trans. Indian Inst. Met. 2016, 70, 463–470. [Google Scholar] [CrossRef]
- Kursunoglu, S.; Ichlas, Z.T.; Kaya, M. Solvent extraction process for the recovery of nickel and cobalt from Caldag laterite leach solution: The first bench scale study. Hydrometallurgy 2017, 169, 135–141. [Google Scholar] [CrossRef]
- Boudesocque, S.; Viau, L.; Dupont, L. Selective cobalt over nickel separation using neat and confined ionic liquids. J. Environ. Chem. Eng. 2020, 8, 104319. [Google Scholar] [CrossRef]
- Onghena, B.; Valgaeren, S.; Hoogerstraete, T.V.; Binnemans, K. Cobalt(II)/nickel(II) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid. RSC Adv. 2017, 7, 35992–35999. [Google Scholar] [CrossRef] [Green Version]
- Van De Rmeersch, T.; Gevers, L.; Malsche, W.D. A robust multistage mesoflow reactor for liquid–liquid extraction for the separation of Co/Ni with cyanex 272. Sep. Purif. Technol. 2016, 168, 32–38. [Google Scholar] [CrossRef]
- Zhang, L.; Hessel, V.; Peng, J. Liquid-liquid extraction for the separation of Co (II) from Ni (II) with Cyanex 272 using a pilot scale re-entrance flow microreactor. Chem. Eng. J. 2018, 332, 131–139. [Google Scholar] [CrossRef]
- Xing, P.; Wang, C.; Ju, Z.; Li, D.; Yin, F.; Chen, Y.; Xu, S.; Yang, Y. Cobalt separation from nickel in sulfate aqueous solution by a new extractant: Di-decylphosphinic acid (DDPA). Hydrometallurgy 2012, 113–114, 86–90. [Google Scholar] [CrossRef]
- Coll, M.; Fortuny, A.; Kedari, C.; Sastre, A.J.H. Studies on the extraction of Co (II) and Ni (II) from aqueous chloride solutions using Primene JMT-Cyanex272 ionic liquid extractant. Hydrometallurgy 2012, 125, 24–28. [Google Scholar] [CrossRef]
- Fu, J.; Xu, W.; Yu, F.; Wang, H.; Wang, J. Evaluation of an unsymmetrical dialkylphosphinic acid INET-3 for cobalt and nickel extraction and separation from sulfate solutions. Miner. Eng. 2020, 156, 106499. [Google Scholar] [CrossRef]
- Zhang, L.H.; Peng, J.H.; Ju, S.H.; Zhang, L.B.; Dai, L.Q.; Liu, N.S. Microfluidic solvent extraction and separation of cobalt and nickel. RSC Adv. 2014, 4, 16081–16086. [Google Scholar]
- Quijada-Maldonado, E.; Olea, F.; Sepúlveda, R.; Castillo, J.; Cabezas, R.; Merlet, G.; Romero, J. Possibilities and challenges for ionic liquids in hydrometallurgy. Sep. Purif. Technol. 2020, 251, 117289. [Google Scholar] [CrossRef]
- Marsousi, S.; Karimi-Sabet, J.; Moosavian, M.A.; Amini, Y. Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics. Chem. Eng. J. 2019, 356, 492–505. [Google Scholar] [CrossRef]
- Jing, X.; Wang, J.; Cao, H.; Ning, P.; Wang, Q. Extraction of V(V) and Cr(VI) from aqueous solution using primary amine extractants: Extraction mechanism and oxidation of extractants. Chem. Pap. 2018, 72, 109–118. [Google Scholar] [CrossRef]
- Dutta, T.; Kim, K.H.; Deep, A.; Szulejko, J.E.; Vellingiri, K.; Kumar, S.; Kwon, E.E.; Yun, S.T. Recovery of nanomaterials from battery and electronic wastes: A new paradigm of environmental waste management. Renew. Sustain. Energy Rev. 2018, 82, 3694–3704. [Google Scholar] [CrossRef]
- Sobekova Foltova, S.; Vander Hoogerstraete, T.; Banerjee, D.; Binnemans, K. Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Sep. Purif. Technol. 2019, 210, 209–218. [Google Scholar] [CrossRef]
- Wellens, S.; Thijs, B.; Binnemans, K. An environmentally friendlier approach to hydrometallurgy: Highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem. 2012, 14, 1657–1665. [Google Scholar] [CrossRef] [Green Version]
- Lv, W.; Wang, Z.; Cao, H.; Sun, Y.; Zhang, Y.; Sun, Z. A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 1504–1521. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, Q.; Cui, Y.X.; Li, S.; Ma, Y.J. Extraction of Cu2+ from aqueous solutions using microcapsules containing ionic liquid [BMIM]PF6. Russ. J. Appl. Chem. 2017, 90, 446–451. [Google Scholar] [CrossRef]
- Kaur, G.; Kumar, H.; Singla, M. Diverse applications of ionic liquids: A comprehensive review. J. Mol. Liq. 2022, 351, 118556. [Google Scholar] [CrossRef]
- Bhaisare, M.L.; Abdelhamid, H.N.; Wu, B.S.; Wu, H.F. Rapid and direct MALDI-MS identification of pathogenic bacteria from blood using ionic liquid-modified magnetic nanoparticles (Fe3O4@ SiO2). J. Mater. Chem. B 2014, 2, 4671–4683. [Google Scholar] [CrossRef]
- Gaile, A.A.; Vereshchagin, A.V.; Klement’ev, V.N. Refining of diesel and ship fuels by extraction and combined methods. part 1. use of ionic liquids as extractants. Russ. J. Appl. Chem. 2019, 92, 453–475. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Gopal, J.; Wu, H.F. Synthesis and application of ionic liquid matrices (ILMs) for effective pathogenic bacteria analysis in matrix assisted laser desorption/ionization (MALDI-MS). Anal. Chim. Acta 2013, 767, 104–111. [Google Scholar] [CrossRef]
- Su, H.; Ni, S.; Bie, C.; Wu, S.; Sun, X. Efficient and sustainable separation of yttrium from heavy rare earth using functionalized ionic liquid [N1888][NDA]. Sep. Purif. Technol. 2022, 285, 120302. [Google Scholar] [CrossRef]
- Zhang, Z.; Yong, F.; Zhang, L.; Chen, H.; Yuan, W.L.; Xu, D.; Shen, Y.H.; Wang, X.H.; He, L.; Tao, G.H. High performance task-specific ionic liquid in uranium extraction endowed with negatively charged effect. J. Mol. Liq. 2021, 336, 116601. [Google Scholar] [CrossRef]
- Ramjhan, Z.; Lokhat, D.; Alshammari, M.B.; Joy, M.N.; Ahmad, A. Trioctylammonium-based Ionic liquids for metal ions Extraction: Synthesis, characterization and application. J. Mol. Liq. 2021, 342, 117534. [Google Scholar] [CrossRef]
- Bai, R.; Wang, J.; Cui, L.; Yang, S.; Qian, W.; Cui, P.; Zhang, Y. Efficient Extraction of Lithium Ions from High Mg/Li Ratio Brine through the Synergy of TBP and Hydroxyl Functional Ionic Liquids. Chin. J. Chem. 2020, 38, 1743–1751. [Google Scholar] [CrossRef]
- Mohammadnejad, S.; Noaparast, M.; Hosseini, S.; Aghazadeh, S.; Mousavinezhad, S.; Hosseini, F. Physical methods and flotation practice in the beneficiation of a low grade tungsten-bearing scheelite ore. Russ. J. Non-Ferr. Met. 2018, 59, 6–15. [Google Scholar] [CrossRef]
- Sharma, S.; Dutta, N.N.; Agrawal, G.K. Optimization of copper extraction from spent LTS catalyst (CuO–ZnO–Al2O3) using chelating agent: Box-behnken experimental design methodology. Russ. J. Non-Ferr. Met. 2017, 58, 22–29. [Google Scholar] [CrossRef]
- Rajewski, J.; Dobrzyńska-Inger, A. Application of response surface methodology (RSM) for the optimization of chromium(III) synergistic extraction by supported liquid membrane. Membranes 2021, 11, 854. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.M.; Huang, J.; Liu, T.; Shi, Q.H. Optimization of vanadium (IV) extraction from stone coal leaching solution by emulsion liquid membrane using response surface methodology. Chem. Eng. Res. Des. 2017, 123, 111–119. [Google Scholar] [CrossRef]
- Duan, L.; Dou, L.L.; Guo, L.; Li, P.; Liu, E.H. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain. Chem. Eng. 2016, 4, 2405–2411. [Google Scholar] [CrossRef]
- Zuo, J.; Ma, P.; Geng, S.; Kong, Y.; Li, X.; Fan, Z.; Zhang, Y.; Dong, A.; Zhou, Q. Optimization of the extraction process of flavonoids from trollius ledebouri with natural deep eutectic solvents. J. Sep. Sci. 2021, 45, 717–727. [Google Scholar] [CrossRef]
- Nayl, A.; Hamed, M.M.; Rizk, S. Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries. J. Taiwan Inst. Chem. Eng. 2015, 55, 119–125. [Google Scholar] [CrossRef]
- Ling, Y.W.; Man, S.L. Separation of Co(II) and Ni(II) from chloride leach solution of nickel laterite ore by solvent extraction with Cyanex. Int. J. Miner. Process. 2017, 166, 45–52. [Google Scholar]
- Roy, S.; Basu, S.; Anitha, M.; Singh, D.K. Synergistic extraction of Nd(III) with mixture of 8-hydroxyquinoline and its derivative with di-2-ethyl hexyl phosphoric acid in different diluents. Korean J. Chem. Eng. 2017, 34, 1740–1747. [Google Scholar] [CrossRef]
- Ju, J.; Feng, Y.; Li, H.; Wu, H.; Liu, S.; Xu, C.; Li, X. Separation of Cu, Co, Ni and Mn from acid leaching solution of ocean cobalt-rich crust using precipitation with Na2S and solvent extraction with N235. Korean J. Chem. Eng. 2022, 39, 706–716. [Google Scholar] [CrossRef]
- Mariani, A.; Bonomo, M.; Gao, X.; Centrella, B.; Nucara, A.; Buscaino, R.; Barge, A.; Barbero, N.; Gontrani, L.; Passerini, S. The unseen evidence of Reduced Ionicity: The elephant in (the) room temperature ionic liquids. J. Mol. Liq. 2021, 324, 115069. [Google Scholar] [CrossRef]
- Zhang, L.; Hessel, V.; Peng, J.; Wang, Q.; Zhang, L. Co and Ni extraction and separation in segmented micro-flow using a coiled flow inverter. Chem. Eng. J. 2017, 307, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Wu, Z.; Zhao, D.; Li, S.; Kong, F.; Chu, Y. Environmentally friendly extraction and recovery of cobalt from simulated solution of spent ternary lithium batteries using the novel ionic liquids of [C8H17NH2][Cyanex 272]. ACS Sustain. Chem. Eng. 2021, 9, 2475–2485. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, S.; He, Y. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. Waste Manag. 2017, 64, 219–227. [Google Scholar] [CrossRef] [PubMed]
No. | Variables | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
A | pHini | 1.50 | 3.75 | 6.00 |
B | te (min) | 15.00 | 52.50 | 90.00 |
C | Te(K) | 298.15 | 315.65 | 333.15 |
Run No. | pHini | te/min | Te/K | βCo/Ni |
---|---|---|---|---|
1 | 3.75 | 52.50 | 315.65 | 64.41 |
2 | 1.50 | 52.50 | 333.15 | 54.72 |
3 | 3.75 | 52.50 | 315.65 | 63.27 |
4 | 3.75 | 90.00 | 333.15 | 48.67 |
5 | 3.75 | 15.00 | 298.15 | 29.71 |
6 | 3.75 | 90.00 | 298.15 | 40.21 |
7 | 3.75 | 52.50 | 315.65 | 65.51 |
8 | 6.00 | 52.50 | 333.15 | 55.82 |
9 | 1.50 | 52.50 | 298.15 | 42.26 |
10 | 6.00 | 15.00 | 315.65 | 27.21 |
11 | 6.00 | 90.00 | 315.65 | 38.27 |
12 | 1.50 | 90.00 | 315.65 | 34.46 |
13 | 1.50 | 15.00 | 315.65 | 22.87 |
14 | 3.75 | 52.50 | 315.65 | 64.72 |
15 | 6.00 | 52.50 | 298.15 | 44.15 |
16 | 3.75 | 52.50 | 315.65 | 63.89 |
17 | 3.75 | 15.00 | 333.15 | 36.42 |
Scheme | F-Value | p-Value (Prob > F) |
---|---|---|
Equation (5) | 159.5146 | <0.0001 a |
A | 6.691242 | 0.0361 |
B | 111.1343 | <0.0001 |
C | 83.27631 | <0.0001 |
AB | 0.030291 | 0.8668 |
AC | 0.067301 | 0.8028 |
BC | 0.33025 | 0.5835 |
A2 | 243.8083 | <0.0001 |
B2 | 884.7419 | <0.0001 |
C2 | 22.71165 | 0.0020 |
Extractants | Diluent | Main Conclusion |
---|---|---|
Cyphos IL 104 [4] | Exxsol D80 or toluene | βCo/Ni is about 14 with optimized extraction conditions, i.e., 0.2M Cyphos IL 104, O/A = 1:1, te of 15 min, and Te of 296 ± 2 K |
Cyanex 301 [39] | Kerosene | βCo/Ni is about 1.8 with optimized extraction conditions, i.e., 1.5M Cyanex 301, O/A = 1:1, pHini of 1, te of 30 min, and Te of 298 ± 1 K |
Primene JMT-Cyanex 272 [13] | Exxol D100 | βCo/Ni is about 45.3 with optimized extraction conditions, i.e., 1:1 percentage composition of JMT-Cy272, 0.4M chloride solution, te of 20 min, and Te of 296 ± 3 K |
[C4H9NH3][Cyanex 272] (Paperwork) | n-Hexane | βCo/Ni is about 67.2 with optimized extraction conditions, i.e., 0.24M [C4H9NH3][Cyanex 272], O/A = 1:1, pHini of 3.7, te of 55.8 min, and Te of 330.4 K, |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, X.; Sun, Z.; Zhao, D.; Sun, H.; Ren, J. Single-Stage Extraction and Separation of Co2+ from Ni2+ Using Ionic Liquid of [C4H9NH3][Cyanex 272]. Molecules 2022, 27, 4806. https://doi.org/10.3390/molecules27154806
Jing X, Sun Z, Zhao D, Sun H, Ren J. Single-Stage Extraction and Separation of Co2+ from Ni2+ Using Ionic Liquid of [C4H9NH3][Cyanex 272]. Molecules. 2022; 27(15):4806. https://doi.org/10.3390/molecules27154806
Chicago/Turabian StyleJing, Xiaohua, Zhumei Sun, Dandan Zhao, Huimin Sun, and Jie Ren. 2022. "Single-Stage Extraction and Separation of Co2+ from Ni2+ Using Ionic Liquid of [C4H9NH3][Cyanex 272]" Molecules 27, no. 15: 4806. https://doi.org/10.3390/molecules27154806
APA StyleJing, X., Sun, Z., Zhao, D., Sun, H., & Ren, J. (2022). Single-Stage Extraction and Separation of Co2+ from Ni2+ Using Ionic Liquid of [C4H9NH3][Cyanex 272]. Molecules, 27(15), 4806. https://doi.org/10.3390/molecules27154806