Aprotic Ionic Liquids: A Framework for Predicting Vaporization Thermodynamics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental Vaporization Thermodynamics of Pyridinium Based ILs
3.2. Comparison of the Vaporization Enthalpies Derived from the Theoretical and Empirical Methods
3.2.1. Molecular Dynamic (MD)
3.2.2. COSMO
3.2.3. CRDS Method
3.2.4. Gas Chromatographic Method (GC)
3.2.5. Empirical Model
3.3. Validation of the Vaporization Enthalpies
3.3.1. Structure–Property Correlations: Chain-Length Dependence
3.3.2. Correlation of the Vaporization Enthalpies with the Surface Tension
3.4. Group Additivity to Predict the Vaporization Enthalpies of Ionic Liquids Using Contributions from Molecular Liquids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Weingärtner, H. Understanding Ionic Liquids at the molecular level: Facts, problems, and controversies. Angew. Chem. Int. Ed. 2008, 47, 654–670. [Google Scholar] [CrossRef] [PubMed]
- Endres, F.; Zein El Abedin, S. Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 2006, 8, 2101–2116. [Google Scholar] [CrossRef] [PubMed]
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef] [PubMed]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Ventura, S.P.M.; e Silva, F.A.; Quental, M.V.; Mondal, D.; Freire, M.G.; Coutinho, J.A.P. Ionic-Liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends. Chem. Rev. 2017, 117, 6984–7052. [Google Scholar] [CrossRef]
- Fumino, K.; Ludwig, R. Analyzing the interaction energies between cation and anion in ionic liquids: The subtle balance between Coulomb forces and hydrogen bonding. J. Mol. Liq. 2014, 192, 94–102. [Google Scholar] [CrossRef]
- Fumino, K.; Reimann, S.; Ludwig, R. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces. Phys. Chem. Chem. Phys. 2014, 16, 21903–21929. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, R.; Kragl, U. Do we understand the volatility of Ionic Liquids? Angew. Chemie Int. Ed. 2007, 46, 6582–6584. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Kondratev, S.O.; Zaitsau, D.H.; Zherikova, K.V.; Ludwig, R. Quantification and understanding of non-covalent interactions in molecular and ionic systems: Dispersion interactions and hydrogen bonding analysed by thermodynamic methods. J. Mol. Liq. 2021, 343, 117547. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Neumann, J.; Niemann, T.; Strate, A.; Paschek, D.; Verevkin, S.P.; Ludwig, R. Isolating the role of hydrogen bonding in hydroxyl-functionalized ionic liquids by means of vaporization enthalpies, infrared spectroscopy and molecular dynamics simulations. Phys. Chem. Chem. Phys. 2019, 21, 20308–20314. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Konnova, M.E.; Turovtsev, V.V.; Riabchunova, A.V.; Pimerzin, A.A. Weaving a network of reliable thermochemistry around lignin building blocks: Methoxy-phenols and methoxy-benzaldehydes. Ind. Eng. Chem. Res. 2020, 59, 22626–22639. [Google Scholar] [CrossRef]
- Verevkin, S.P. Imidazolium based ionic liquids: Unbiased recovering of vaporization enthalpies from infinite-dilution activity coefficients. Molecules 2021, 26, 5873. [Google Scholar] [CrossRef] [PubMed]
- Verevkin, S.P.; Zherikova, K.V.; Martynenko, E.A. Molecular versus ionic liquids: Development of a thermodynamic framework for predicting vaporization thermodynamics. J. Mol. Liq. 2022, 350, 118576. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Zaitsau, D.H.; Emel´yanenko, V.; Heintz, A. A new method for the determination of vaporization enthalpies of ionic liquids at low temperatures. J. Phys. Chem. B 2011, 115, 12889–12895. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Yermalayeu, A.V.; Emel´yanenko, V.N.; Verevkin, S.P.; Welz-Biermann, U.; Schubert, T. Structure-property relationships in ILs: A study of the alkyl chain length dependence in vaporisation enthalpies of pyridinium based ionic liquids. Sci. China Chem. 2012, 55, 1525–1531. [Google Scholar] [CrossRef]
- Rocha, M.A.A.; Santos, L.M.N.B.F. First volatility study of the 1-alkylpyridinium based ionic liquids by Knudsen effusion. Chem. Phys. Lett. 2013, 585, 59–62. [Google Scholar] [CrossRef]
- Wang, C.; Luo, H.; Li, H.; Dai, S. Direct UV-spectroscopic measurement of selected ionic-liquid vapors. Phys. Chem. Chem. Phys. 2010, 12, 7246–7250. [Google Scholar] [CrossRef]
- Deyko, A.; Lovelock, K.R.J.; Corfield, J.-A.; Taylor, A.W.; Gooden, P.N.; Villar-Garcia, I.J.; Licence, P.; Jones, R.G.; Krasovskiy, V.G.; Chernikova, E.A.; et al. Measuring and predicting DvapH298 values of ionic liquids. Phys. Chem. Chem. Phys. 2009, 11, 8544–8555. [Google Scholar] [CrossRef]
- Vilas, M.; Rocha, M.A.A.; Fernandes, A.M.; Tojo, E.; Santos, L.M.N.B.F. Novel 2-alkyl-1-ethylpyridinium ionic liquids: Synthesis, dissociation energies and volatility. Phys. Chem. Chem. Phys. 2015, 17, 2560–2572. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, K.G.; Jaeger, V.W.; Pfaendtner, J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J. Phys. Chem. B 2015, 119, 5882–5895. [Google Scholar] [CrossRef]
- Voroshylova, I.V.; Chaban, V.V. Atomistic force field for pyridinium-based ionic liquids: Reliable transport properties. J. Phys. Chem. B 2014, 118, 10716–10724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borodin, O. Relation between heat of vaporization, iIon transport, molar volume, and cation−anion binding energy for ionic liquids. J. Phys. Chem. B 2009, 113, 12353–12357. [Google Scholar] [CrossRef] [PubMed]
- Preiss, U. Quantum Chemical Studies of Weakly Coordinated Ionic Systems: Predictions of Chemical and Physical Properties, Freiburg. 2010. Available online: https://www.amazon.de/Quantum-Chemical-Studies-Coordinated-Systems/dp/3838120647 (accessed on 1 February 2022).
- Schröder, B.; Coutinho, J.A.P. Predicting enthalpies of vaporization of aprotic ionic liquids with COSMO-RS. Fluid Phase Equilib. 2014, 370, 24–33. [Google Scholar] [CrossRef]
- Deyko, A.; Hessey, S.G.; Licence, P.; Chernikova, E.A.; Krasovskiy, V.G.; Kustov, L.M.; Jones, R.G. The enthalpies of vaporisation of ionic liquids: New measurements and predictions. Phys. Chem. Chem. Phys. 2012, 14, 3181–3193. [Google Scholar] [CrossRef] [PubMed]
- Ban, T.; Li, X.P.; Li, C.L.; Wang, Q. Measurements of the solubility parameter and enthalpies of vaporization in N-alkyl-pyridinium bis((trifluoromethyl)sulfonyl)imide ([CnPY][NTF2], n = 4,6,8) ionic liquid. Fluid Phase Equilib. 2019, 485, 94–100. [Google Scholar] [CrossRef]
- Ogura, T.; Akai, N.; Kawai, A.; Shibuya, K. Gas phase electronic absorption spectroscopy of room temperature ionic liquids: N-Ethyl-3-methylpyridinium or 1-butyl-3-methylimidazolium cation with bis(trifluoromethylsulfonyl)amido anion. Chem. Phys. Lett. 2013, 555, 110–114. [Google Scholar] [CrossRef]
- Köddermann, T.; Paschek, D.; Ludwig, R. Ionic liquids: Dissecting the enthalpies of vaporization. ChemPhysChem 2008, 9, 549–555. [Google Scholar] [CrossRef]
- Köddermann, T.; Paschek, D.; Ludwig, R. Molecular dynamic simulations of ionic liquids: A reliable description of structure, thermodynamics and dynamics. ChemPhysChem 2007, 8, 2464–2470. [Google Scholar] [CrossRef]
- Domańska, U.; Marciniak, A. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)-imide. J. Chem. Thermodyn. 2009, 41, 1350–1355. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Zaitsau, D.H.; Emel´yanenko, V.; Yermalayeu, A.V.; Schick, C.; Liu, H.; Maginn, E.J.; Bulut, S.; Krossing, I.; Kalb, R.; et al. Making sense of enthalpy of vaporization trends for ionic liquids: New experimental and simulation data show a simple linear relationship and help reconcile previous data. J. Phys. Chem. B 2013, 117, 6473–6486. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Plechkova, N.; Verevkin, S.P. Vaporization thermodynamics of ionic liquids with tetraalkylphosphonium cations. J. Chem. Thermodyn. 2019, 130, 204–212. [Google Scholar] [CrossRef]
- Benito, J.; García-Mardones, M.; Pérez-Gregorio, V.; Gascón, I.; Lafuente, C. Physicochemical study of n-ethylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquid. J. Solution Chem. 2014, 43, 696–710. [Google Scholar] [CrossRef]
- Klomfar, J.; Součková, M.; Pátek, J. Surface tension and density for members of four ionic liquid homologous series containing a pyridinium based-cation and the bis(trifluoromethylsulfonyl)imide anion. Fluid Phase Equilib. 2017, 431, 24–33. [Google Scholar] [CrossRef]
- Domańska, U.; Skiba, K.; Zawadzki, M.; Paduszyński, K.; Krolikowski, M. Synthesis, physical, and thermodynamic properties of 1-alkyl- cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide ionic liquids. J. Chem. Thermodyn. 2013, 56, 153–161. [Google Scholar] [CrossRef]
- Liu, Q.S.; Yang, M.; Li, P.P.; Sun, S.S.; Welz-Biermann, U.; Tan, Z.C.; Zhang, Q.G. Physicochemical properties of ionic liquids [C3py][NTf2] and [C6py][NTf2]. J. Chem. Eng. Data 2011, 56, 4094–4101. [Google Scholar] [CrossRef]
- García-Mardones, M.; Bandrés, I.; López, M.C.; Gascón, I.; Lafuente, C. Experimental and theoretical study of two pyridinium-based ionic liquids. J. Solut. Chem. 2012, 41, 1836–1852. [Google Scholar] [CrossRef]
- Carvalho, P.J.; Neves, C.M.S.S.; Coutinho, J.A.P. Surface tensions of bis(trifluoromethylsulfonyl)imide anion-based ionic liquids. J. Chem. Eng. Data 2010, 55, 3807–3812. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel´yanenko, V.N.; Diky, V.; Muzny, C.D.; Chirico, R.D.; Frenkel, M. New group-contribution approach to thermochemical properties of organic compounds: Hydrocarbons and oxygen-containing compounds. J. Phys. Chem. Ref. Data 2013, 42, 33102. [Google Scholar] [CrossRef] [Green Version]
- Verevkin, S.P.; Turovtsev, V.V.; Andreeva, I.V.; Orlov, Y.D.; Pimerzin, A.A. Webbing a network of reliable thermochemistry around lignin building blocks: Tri-methoxy-benzenes. RSC Adv. 2021, 11, 10727–10737. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Andreeva, I.V.; Zherikova, K.V.; Pimerzin, A.A. Prediction of thermodynamic properties: Centerpiece approach—How do we avoid confusion and get reliable results? J. Therm. Anal. Calorim. 2021, 1–10. [Google Scholar] [CrossRef]
- Benson, S.W. Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters; Wiley: New York, NY, USA, 1976; ISBN 0471067814. [Google Scholar]
- Majer, V.V.; Svoboda, V.V.; Kehiaian, H.V. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation; Blackwell Scientific Publications: Oxford, UK, 1985; ISBN 0632015292. [Google Scholar]
- Zaitsau, D.H.; Ludwig, R.; Verevkin, S.P. Determination of the dispersion forces in the gas phase structures of ionic liquids using exclusively thermodynamic methods. Phys. Chem. Chem. Phys. 2021, 23, 7398–7406. [Google Scholar] [CrossRef] [PubMed]
- Zaitsau, D.H.; Emel’yanenko, V.N.; Stange, P.; Verevkin, S.P.; Ludwig, R. Dissecting the vaporization enthalpies of ionic liquids by exclusively experimental methods: Coulomb interaction, hydrogen bonding, and dispersion forces. Angew. Chemie Int. Ed. 2019, 58, 8589–8592. [Google Scholar] [CrossRef] [PubMed]
- Zaitsau, D.H.; Emel´yanenko, V.N.; Stange, P.; Schick, C.; Verevkin, S.P.; Ludwig, R. Dispersion and hydrogen bonding rule: Why the vaporization enthalpies of aprotic ionic liquids are significantly larger than those of protic ionic liquids. Angew. Chemie. Int. Ed. 2016, 55, 11682–11686. [Google Scholar] [CrossRef] [PubMed]
- Fumino, K.; Wulf, A.; Verevkin, S.P.; Heintz, A.; Ludwig, R. Estimating enthalpies of vaporization of imidazolium-based ionic liquids from far-infrared measurements. ChemPhysChem 2010, 11, 1623–1626. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, R. Thermodynamic properties of ionic liquids—A cluster approach. Phys. Chem. Chem. Phys. 2008, 10, 4333–4339. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Yermalayeu, A.V.; Emel´yanenko, V.N.; Butler, S.; Schubert, T.; Verevkin, S.P. Thermodynamics of imidazolium-based ionic liquids containing PF6 anions. J. Phys. Chem. B 2016, 120, 7949–7957. [Google Scholar] [CrossRef]
- Dzida, M.; Musiał, M.; Zorębski, E.; Zorębski, M.; Jacquemin, J.; Goodrich, P.; Wojnarowska, Z.; Paluch, M. Comparative study of effect of alkyl chain length on thermophysical characteristics of five N-alkylpyridinium bis(trifluoromethylsulfonyl)imides with selected imidazolium-based ionic liquids. J. Mol. Liq. 2019, 278, 401–412. [Google Scholar] [CrossRef]
- Rocha, M.A.A.; Vilas, M.; Rodrigues, A.S.M.C.; Tojo, E.; Santos, L.M.N.B.F. Physicochemical properties of 2-alkyl-1-ethylpyridinium based ionic liquids. Fluid Phase Equilib. 2016, 428, 112–120. [Google Scholar] [CrossRef]
- Heintz, A.; Kulikov, D.V.; Verevkin, S.P. Thermodynamic Properties of Mixtures Containing Ionic Liquids. 1. Activity Coefficients at Infinite Dilution of Alkanes, Alkenes, and Alkylbenzenes in 4-Methyl-n-butylpyridinium Tetrafluoroborate Using Gas−Liquid Chromatography. J. Chem. Eng. Data 2001, 46, 1526–1529. [Google Scholar] [CrossRef]
- Hansen, C.M. 50 Years with solubility parameters—past and future. Prog. Org. Coat. 2004, 51, 77–84. [Google Scholar] [CrossRef]
- Yoo, B.; Afzal, W.; Prausnitz, J.M. Solubility parameters for nine ionic liquids. Ind. Eng. Chem. Res. 2012, 51, 9913–9917. [Google Scholar] [CrossRef]
Ionic Liquids | Trange | Tav | ||||
---|---|---|---|---|---|---|
K | K | kJ·mol−1 | kJ·mol−1 | J·mol−1·K−1 | kJ·mol−1 | |
[1-C8-Py][NTf2] | 383.2–430.4 | 406.2 | 76.5 ± 1.5 | 142.4 ± 1.0 | −100 | 153.2 ± 2.4 |
[3-Me-1-C3-Py][NTf2] | 357.9–407.5 | 385.2 | 71.7 ± 1.5 | 126.3 ± 1.0 | −70 | 132.4 ± 1.6 |
[3-CN-1-C4-Py][NTf2] e | 400.3–448.1 | 424.8 | 78.5 ± 1.5 | 141.8 ± 1.0 | −75 | 151.2 ± 2.1 |
[3-CN-1-C6-Py][NTf2] | 402.9–450.6 | 426.2 | 79.6 ± 1.5 | 151.3 ± 1.0 | −84 | 162.1 ± 2.4 |
[4-CN-1-C6-Py][NTf2] | 405.4–448.1 | 427.5 | 78.3 ± 1.5 | 147.9 ± 1.0 | −81 | 158.4 ± 2.3 |
[3-CN-1-C8-Py][NTf2] | 407.9–455.7 | 434.8 | 79.7 ± 1.5 | 152.9 ± 1.0 | −91 | 165.3 ± 2.7 |
IL | M a | Tav | Ref. | |||
---|---|---|---|---|---|---|
K | kJ·mol−1 | J·mol−1·K−1 | kJ·mol−1 | |||
[1-C2-Py][NTf2] | L-QCM | 400.6 | 125.3 ± 1.0 | −61 | 131.5 ± 1.6 | [15] |
K-QCM | 498.6 | 120.1 ± 1.2 | 132.4 ± 2.8 | [16] | ||
131.7 ± 1.4e | average | |||||
[1-C3-Py][NTf2] | L-QCM | 398.2 | 128.0 ± 1.0 | −66 | 134.6 ± 1.7 | [15] |
K-QCM | 504.5 | 124.1 ± 1.0 | 137.7 ± 2.9 | [16] | ||
135.4 ± 1.5e | average | |||||
[1-C4-Py][NTf2] | L-QCM | 399.5 | 131.1 ± 1.0 | −70 | 138.2 ± 1.7 | [15] |
553.0 | 119.8 ± 2.2 | 137.6 ± 4.2 | [17] | |||
K-QCM | 506.8 | 121.9 ± 1.7 | 136.5 ± 3.4 | [16] | ||
137.8 ± 1.4e | average | |||||
[1-C5-Py][NTf2] | L-QCM | 400.6 | 134.2 ± 1.0 | −73 | 141.7 ± 1.8 | [15] |
[1-C6-Py][NTf2] | L-QCM | 405.7 | 137.3 ± 1.0 | −77 | 145.6 ± 1.9 | [15] |
TPD | 440.0 | 138.6 ± 4.0 | −77 | 149.5 ± 3.0 | [18] | |
146.1 ± 1.8e | average | |||||
[1-C8-Py][NTf2] | L-QCM | 406.2 | 142.4 ± 1.0 | −100 | 153.2 ± 2.4 | Table 1 |
Ionic Liquid | Tava | |||
---|---|---|---|---|
K | kJ·mol−1 | J·mol−1·K−1 | kJ·mol−1 | |
[2-Et-1-C2-Py][NTf2] | 508.0 | 124.6 ± 1.4 | −73 | 139.9 ± 3.4 |
[2-Et-1-C3-Py][NTf2] | 510.4 | 121.0 ± 0.8 | −76 | 137.2 ± 3.3 |
[2-Et-1-C4-Py][NTf2] | 503.0 | 122.3 ± 0.6 | −80 | 138.7 ± 3.3 |
[2-Et-1-C5-Py][NTf2] | 510.5 | 127.3 ± 1.4 | −84 | 145.1 ± 3.8 |
[2-Et-1-C6-Py][NTf2] | 505.5 | 128.3 ± 0.6 | −88 | 146.5 ± 3.7 |
[2-Et-1-C7-Py][NTf2] | 508.2 | 131.4 ± 2.8 | −92 | 150.7 ± 4.8 |
[2-Et-1-C8-Py][NTf2] | 505.5 | 138.5 ± 1.7 | −96 | 158.4 ± 4.3 |
[2-Et-1-C9-Py][NTf2] | 522.8 | 139.7 ± 1.3 | −100 | 162.1 ± 4.7 |
[2-Et-1-C10-Py][NTf2] | 520.4 | 144.5 ± 1.6 | −104 | 167.5 ± 4.9 |
Method | [1-C2Py] | [1-C3Py] | [1-C4Py] | [1-C6Py] | [1-C8Py] |
---|---|---|---|---|---|
GAFF [20] | - | 125.0 | - | - | - |
CL&P FF original [21] | - | - | 167.0 | - | - |
CL&P FF refined [21] | - | - | 141.0 | - | - |
MD [22] | - | - | 137.3 | - | - |
COSMO-therm [23] | - | - | - | 142.0 | - |
COSMO-RS [24] | 143.9 ± 10 | 143.1 ± 10 | 145.8 ± 10 | - | - |
Empiric [25] | - | - | 154.0 | 153.0 | - |
based (see text) [26] | - | - | 139.0 ± 4.2 | 147.5 ± 4.4 | 153.6 ± 4.6 |
Experiment a | 131.7 ± 1.4 | 135.4 ± 1.9 | 137.8 ± 1.4 | 146.1 ± 1.8 | 153.2 ± 2.4 |
Method | Method | Ref. | |
---|---|---|---|
[3-Me-1-C2-Py][NTf2] | CRDS a | 172 ± 35 | [27] |
additivity | 131.2 ± 1.6 | Table S5 | |
[2-Et-1-C2-Py][NTf2] | COSMO-RS | 143.2 ± 10 | [24] |
K-QCM | 139.9 ± 3.4 | Table 3 | |
additivity | 132.5 ± 1.6 | Table S5 | |
[3-Me-1-C3-Py][NTf2] | COSMO-RS | 138.6 ± 10 | [24] |
additivity | 134.9 ± 1.7 | Table S5 | |
L-QCM | 132.4 ± 1.6 | Table 1 | |
[4-Me-1-C3-Py][NTf2] | COSMO-RS | 143.4 ± 10 | [24] |
additivity | 135.2 ± 1.7 | Table S5 | |
[4-Me-1-C4-Py][NTf2] | based | 135.7 ± 3.0 | Table S6 |
additivity | 137.6 ± 1.6 | Table S5 |
Ionic Liquid | NC | σ298(exp) | σ298(est) a | Δ b |
---|---|---|---|---|
[1-C2-Py][NTf2] | 2 | 37.4 [33] | 37.2 | 0.2 |
[1-C3-Py][NTf2] | 3 | 35.4 [34] | 35.9 | −0.5 |
[1-C4-Py][NTf2] | 4 | 34.8 [35] | 34.5 | 0.3 |
[1-C5-Py][NTf2] | 5 | - | 33.1 | - |
[1-C6-Py][NTf2] | 6 | 31.7 [36] | 31.7 | 0.0 |
[1-C8-Py][NTf2] | 8 | - | 29.0 | - |
Ionic Liquid | σ298 | Δ c | ||
---|---|---|---|---|
mN⋅m−1 | kJ⋅mol−1 | kJ⋅mol−1 | ||
[1-C2-Py][NTf2] | 37.4 [33] | 131.7 ± 1.4 | 131.0 | 0.7 |
[1-C3-Py][NTf2] | 35.4 [34] | 135.4 ± 1.5 | 136.2 | −0.8 |
[1-C4-Py][NTf2] | 34.8 [35] | 137.8 ± 1.4 | 137.8 | 0.0 |
[1-C5-Py][NTf2] | 33.1d | 141.7 ± 1.8 | 142.2 | −0.5 |
[1-C6-Py][NTf2] | 31.7 [36] | 146.1 ± 1.8 | 145.9 | 0.2 |
[1-C8-Py][NTf2] | 29.0 d | 153.2 ± 2.4 | 153.0 | 0.2 |
Ionic Liquid | σ298(exp) | Δ c | ||
---|---|---|---|---|
mN⋅m−1 | kJ⋅mol−1 | kJ⋅mol−1 | ||
[1-C2-Py][NTf2] | 37.4 [33] | 131.7 ± 1.4 | 130.2 | 1.5 |
[1-C3-Py][NTf2] | 35.4 [34] | 135.4 ± 1.5 | 135.7 | −0.3 |
[1-C4-Py][NTf2] | 34.8 [35] | 137.8 ± 1.4 | 137.3 | 0.5 |
[1-C5-Py][NTf2] | 33.1 [Table 6] | 141.7 ± 1.8 | 141.9 | −0.2 |
[1-C6-Py][NTf2] | 31.7 [36] | 146.1 ± 1.8 | 145.7 | 0.4 |
[1-C8-Py][NTf2] | 29.0 [Table 6] | 153.2 ± 2.4 | 153.1 | 0.1 |
[2-Me-1-C2-Py][NTf2] | 38.5 [37] | - | 127.2 | - |
[2-Me-1-C3-Py][NTf2] | 36.9 [37] | - | 131.6 | - |
[3-Me-1-C3-Py][NTf2] | 35.8 [38] | 132.4 ± 1.6 | 134.6 | −2.2 |
[4-Me-1-C3-Py][NTf2] | 35.2 [34] | - | 136.2 | - |
[2-Me-1-C4-Py][NTf2] | 36.3 [35] | - | 133.2 | - |
[3-Me-1-C4-Py][NTf2] | 35.5 [35] | - | 135.4 | - |
[4-Me-1-C4-Py][NTf2] | 35.0 [35] | - | 136.8 | - |
Ionic Liquid | σ298(exp) | Δ c | ||
---|---|---|---|---|
mN⋅m−1 | kJ⋅mol−1 | kJ⋅mol−1 | ||
[3-CN-1-C4-Py][NTf2] | 32.00 [35] | 151.0 ± 2.1 | 151.5 | −0.5 |
[3-CN-1-C6-Py][NTf2] | 29.37 [35] | 162.1 ± 2.4 | 162.4 | −0.3 |
[4-CN-1-C6-Py][NTf2] | 30.60 [35] | 158.4 ± 2.3 | 157.3 | 1.1 |
[3-CN-1-C8-Py][NTf2] | 28.65 [35] | 165.3 ± 2.7 | 165.4 | −0.1 |
R1 | |
---|---|
2-methyl- | 2.3 ± 0.2 |
3-methyl- | 4.4 ± 0.3 |
4-methyl- | 4.7 ± 0.3 |
2-cyano- | 18.4 ± 0.4 |
3-cyano- | 15.6 ± 0.7 |
4-cyano- | 13.8 ± 0.8 |
2-ethyl- | 5.7 ± 0.2 b |
IL | Δ e | ||||
---|---|---|---|---|---|
[3-Me-1-C3-Py][NTf2] | 4.4 ± 0.3 | 135.4 ± 1.5 | 138.9 ± 1.6 | 132.4 ± 1.6 [Table 1] | −6.5 ± 2.3 |
[2-Me-1-C2-Py][NTf2] | 2.3 ± 0.2 | 131.7 ± 1.4 | 134.0 ± 2.4 | 127.2 ± 2.0 [Table 1] | −6.8 ± 3.2 |
[2-Me-1-C3-Py][NTf2] | 2.3 ± 0.2 | 135.4 ± 1.5 | 137.7 ± 2.5 | 131.6 ± 2.0 [Table 7] | −6.1 ± 3.2 |
[3-Me-1-C3-Py][NTf2] | 4.4 ± 0.3 | 135.4 ± 1.5 | 139.8 ± 2.5 | 134.6 ± 2.0 [Table 7] | −5.2 ± 3.2 |
[4-Me-1-C3-Py][NTf2] | 4.7 ± 0.3 | 135.4 ± 1.5 | 140.1 ± 2.5 | 136.2 ± 2.0 [Table 7] | −3.9 ± 3.2 |
[2-Me-1-C4-Py][NTf2] | 2.3 ± 0.2 | 137.8 ± 1.4 | 140.1 ± 2.4 | 133.2 ± 2.0 [Table 7] | −6.9 ± 3.2 |
[3-Me-1-C4-Py][NTf2] | 4.4 ± 0.3 | 137.8 ± 1.4 | 142.2 ± 2.5 | 135.4 ± 2.0 [Table 7] | −6.8 ± 3.2 |
[4-Me-1-C4-Py][NTf2] | 4.7 ± 0.3 | 137.8 ± 1.4 | 142.5 ± 2.5 | 136.8 ± 2.0 [Table 7] | −5.7 ± 3.2 |
[3-CN-1-C4-Py][NTf2] | 15.6 ± 0.7 | 137.8 ± 1.4 | 153.4 ± 2.6 | 151.2 ± 2.1 [Table 1] | −2.2 ± 3.4 |
[3-CN-1-1-C6-Py][NTf2] | 15.6 ± 0.7 | 146.1 ± 1.8 | 161.7 ± 3.1 | 162.1 ± 2.4 [Table 1] | 0.4 ± 3.9 |
[4-CN-1-C6-Py][NTf2] | 13.8 ± 0.8 | 146.1 ± 1.8 | 159.9 ± 3.0 | 158.4 ± 2.3 [Table 1] | −1.5 ± 3.8 |
[3-CN-1-C8-Py][NTf2] | 15.6 ± 0.7 | 153.2 ± 2.4 | 168.8 ± 3.7 | 165.3 ± 2.7 [Table 1] | −3.5 ± 4.6 |
[2-Et-1-C3-Py][NTf2] | 5.7 ± 0.2 | 135.4 ± 1.5 | 141.1 ± 3.6 | 137.2 ± 3.3 [Table 3] | −3.9 ± 4.9 |
[2-Et-1-C4-Py][NTf2] | 5.7 ± 0.2 | 137.8 ± 1.4 | 143.5 ± 3.6 | 138.7 ± 3.3 [Table 3] | −4.8 ± 4.9 |
[2-Et-1-C5-Py][NTf2] | 5.7 ± 0.2 | 141.7 ± 1.8 | 147.4 ± 4.2 | 145.1 ± 3.8 [Table 3] | −2.3 ± 5.7 |
[2-Et-1-C6-Py][NTf2] | 5.7 ± 0.2 | 146.1 ± 1.8 | 151.8 ± 4.1 | 146.5 ± 3.7 [Table 3] | −5.3 ± 5.5 |
[2-Et-1-C7-Py][NTf2] | 5.7 ± 0.2 | 149.4 ± 2.0 e | 155.1 ± 5.2 | 150.7 ± 4.8 [Table 3] | −4.4 ± 7.1 |
[2-Et-1-C8-Py][NTf2] | 5.7 ± 0.2 | 153.2 ± 2.4 | 158.9 ± 4.9 | 158.4 ± 4.3 [Table 3] | −0.5 ± 6.5 |
[3-Me-1-C4-Py][BF4] | 4.4 ± 0.3 | 149.9 ± 2.3 [31] | 154.3 ± 3.3 | 149.5 ± 2.3 [31] | −4.8 ± 4.0 |
[4-Me-1-C4-Py][BF4] | 4.7 ± 0.3 | 149.9 ± 2.3 [31] | 154.6 ± 3.0 | 148.9 ± 2.1 [31] | −5.7 ± 3.8 |
average: | −4.9 ± 0.8 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verevkin, S.P.; Zaitsau, D.H.; Ludwig, R. Aprotic Ionic Liquids: A Framework for Predicting Vaporization Thermodynamics. Molecules 2022, 27, 2321. https://doi.org/10.3390/molecules27072321
Verevkin SP, Zaitsau DH, Ludwig R. Aprotic Ionic Liquids: A Framework for Predicting Vaporization Thermodynamics. Molecules. 2022; 27(7):2321. https://doi.org/10.3390/molecules27072321
Chicago/Turabian StyleVerevkin, Sergey P., Dzmitry H. Zaitsau, and Ralf Ludwig. 2022. "Aprotic Ionic Liquids: A Framework for Predicting Vaporization Thermodynamics" Molecules 27, no. 7: 2321. https://doi.org/10.3390/molecules27072321
APA StyleVerevkin, S. P., Zaitsau, D. H., & Ludwig, R. (2022). Aprotic Ionic Liquids: A Framework for Predicting Vaporization Thermodynamics. Molecules, 27(7), 2321. https://doi.org/10.3390/molecules27072321