Structural Characterization and In Vitro Antioxidant Activity of Metallothionein from Oratosquilla oratoria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Purification of O. oratoria MT-1
2.2. Molecular Weight Determination
2.3. Fluorescence Derivatization of Sulfhydryl Groups
2.4. Analysis of Metal Stoichiometries
2.5. Amino Acid Composition
2.6. Peptide Sequence Analysis
2.7. Spectroscopic Characteristics of O. oratoria MT-1
2.7.1. IR(Infrared) Spectroscopy
2.7.2. CD (Circular Dichroism) Spectroscopy
2.8. In Vitro Antioxidant Activity
3. Materials and Methods
3.1. Raw Materials
3.2. Preparation of O. oratoria MT-1
3.2.1. Buffer Extraction
3.2.2. Purification
3.3. Composition Analysis of O. oratoria MT-1
3.3.1. SDS-PAGE
3.3.2. MALDI-TOF
3.3.3. Derivatization of Sulfhydryl Group
3.3.4. Determination of Bound Metal Element
3.3.5. Composition Analysis of Amino Acids
3.3.6. Peptide Sequence Analysis
3.4. Spectroscopy Characteristics
3.4.1. IR Spectroscopy
3.4.2. CD Spectroscopy
3.5. In Vitro Antioxidant Activity
3.5.1. DPPH Radical Scavenging Capacity
3.5.2. OH Radical Scavenging Capacity
3.5.3. Reducing Power
3.6. Statistical Analysis of Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Atrian, S.; Capdevila, M. Metallothionein-protein interactions. Biomol. Concepts 2013, 4, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Vallee, B.L. Introduction to metallothionein. Methods Enzymol. 1991, 205, 3–7. [Google Scholar] [PubMed]
- Kimura, T.; Kambe, T. The functions of metallothionein and ZIP and ZnT transporters: An overview and perspective. Int. J. Mol. Sci. 2016, 17, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirumoorthy, N.; Kumar, K.M.; Sundar, A.S.; Panayappan, L.; Chatterjee, M. Metallothionein: An overview. World J. Gastroenterol. 2007, 13, 993–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagi, J.H. Overview of metallothionein. Methods Enzymol. 1991, 205, 613–626. [Google Scholar]
- Amiard, J.C.; Amiard-Triquet, C.; Barka, S.; Pellerin, J.; Rainbow, P.S. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use as biomarkers. Aquat. Toxicol. 2006, 76, 160–202. [Google Scholar] [CrossRef] [PubMed]
- Durkalec, M.; Kolenda, R.; Owczarek, T.; Szkoda, J.; Nawrocka, A.; Grzegrzółka, J.; Dzięgiel, P.; Socha, P.; Kołacz, R.; Schierack, P.; et al. Expression of metallothionein in the liver and kidneys of the red deer (Cervus elaphus L.) from an industrial metal smelting area of Poland. Ecotoxicol. Environ. Saf. 2017, 137, 121–129. [Google Scholar] [CrossRef]
- Mahmood, K.; Yang, J.S.; Chen, D.; Wang, M.; Yang, F.; Yang, W.J. Response of metallothionein gene-1 to laboratory exposure to heavy metals and thermal stress in the freshwater prawn Macrobrachium rosenbergii. J. Hazard. Mater. 2009, 167, 523–530. [Google Scholar] [CrossRef]
- Attig, H.; Kamel, N.; Sforzini, S.; Dagnino, A.; Jamel, J.; Boussetta, H.; Viarengo, A.; Banni, M. Effects of thermal stress and nickel exposure on biomarkers responses in Mytilus galloprovincialis (Lam). Mar. Environ. Res. 2014, 94, 65–71. [Google Scholar] [CrossRef]
- Klein, R.D.; Borges, V.D.; Rosa, C.E.; Colares, E.P.; Robaldo, R.B.; Martinez, P.E.; Bianchini, A. Effects of increasing temperature on antioxidant defense system and oxidative stress parameters in the Antarctic fish Notothenia coriiceps and Notothenia rossii. J. Therm. Biol. 2017, 68, 110–118. [Google Scholar] [CrossRef]
- Si, M.; Lang, J. The roles of metallothioneins in carcinogenesis. J. Hematol. Oncol. 2018, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.; Philcox, J.C.; Carey, L.C.; Rofe, A.M. Metallothionein: The multipurpose protein. Cell. Mol. Life Sci. 2002, 59, 627–647. [Google Scholar] [CrossRef] [PubMed]
- Haq, F.; Mahoney, M.; Koropatnick, J. Signaling events for metallothionein induction. Mutat. Res. 2003, 533, 211–226. [Google Scholar] [CrossRef]
- Hongfang, G.; Guanghui, C.; Khan, R.; Huanxia, J.; Jianxin, Z.; Abbas Raza, S.H.; Ayaz, M.; Shafiq, M.; Zan, L. Review: Molecular structure and functions of zinc binding metallothionein-1 protein in mammalian body system. Pak. J. Pharm. Sci. 2020, 33, 1719–1726. [Google Scholar] [PubMed]
- Ziller, A.; Fraissinet-Tachet, L. Metallothionein diversity and distribution in the tree of life: A multifunctional protein. Metallomics 2018, 10, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Vassallo, M.; Mazzola, A.; Brundo, M.V.; Pecoraro, R.; Grasso, A.; Copat, C. In vivo exposure of the marine sponge Chondrilla nucula Schmidt, 1862 to cadmium (Cd), copper (Cu) and lead (Pb) and its potential use for bioremediation purposes. Chemosphere 2018, 193, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.A.; El-Sikaily, A.; Kassem, H. Metallothionein and glutathione content as biomarkers of metal pollution in mussels and local fishermen in Abu Qir bay, Egypt. J. Health Pollut. 2016, 6, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Duarte-Gutiérrez, J.; Leyva-Carrillo, L.; Martínez-Téllez, M.A.; Méndez-Estrada, R.O.; Felix-Portillo, M.; Yepiz-Plascencia, G. Cloning, expression, purification and biochemical characterization of recombinant metallothionein from the white shrimp Litopenaeus vannamei. Protein Expr. Purif. 2020, 166, 105511. [Google Scholar] [CrossRef]
- Lavradas, R.T.; Hauser-Davis, R.A.; Lavandier, R.C.; Rocha, R.C.; Saint’ Pierre, T.D.; Seixas, T.; Kehrig, H.A.; Moreira, I. Metal, metallothionein and glutathione levels in blue crab (Callinectes sp.) specimens from southeastern Brazil. Ecotoxicol. Environ. Saf. 2014, 107, 55–60. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Nicosia, A.; Costa, S.; Cuttitta, A.; Gianguzza, F. Metallothionein gene family in the sea Urchin Paracentrotus lividus: Gene structure, differential expression and phylogenetic analysis. Int. J. Mol. Sci. 2017, 18, 812. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Oh, C.W.; Kang, J.C. Antioxidant responses, neurotoxicity, and metallothionein gene expression in juvenile Korean Rockfish Sebastes schlegelii under dietary lead exposure. J. Aquat. Anim. Health. 2017, 29, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Hauser-Davis, R.A.; Comarú, M.W.; Lopes, R.M. Metallothionein determination can be applied to learn about aquatic metal pollution and oxidative stress detoxification mechanisms through Problem-based Learning. Biochem. Mol. Biol. Educ. 2020, 48, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Jose, D.; Allen, A.L.; Blakley, B.; Al-Dissi, A. Evaluation of metallothionein and Ki-67 expression in chronic cholangiohepatitis in cats. Can. J. Vet. Res. 2021, 85, 36–44. [Google Scholar] [PubMed]
- Takahashi, S. Molecular functions of metallothionein and its role in hematological malignancies. J. Hematol. Oncol. 2012, 5, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebadi, M.; Iversen, P.L. Metallothionein in carcinogenesis and cancer chemotherapy. Gen. Pharmacol. 1994, 25, 1297–1310. [Google Scholar] [CrossRef]
- Jiao, Y.; Yang, L.; Kong, Z.; Shao, L.; Wang, G.; Ren, X.; Liu, Y. Evaluation of trace metals and rare earth elements in mantis shrimp Oratosquilla oratoria collected from Shandong Province, China, and its potential risks to human health. Mar. Pollut. Bull. 2021, 162, 111815. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Zhou, Y.Y.; Zhang, L. Application of stable isotopes (δ13C and δ15N) in studies on heavy metals bioaccumulation in Daya bay food web. Ying Yong Sheng Tai Xue Bao 2017, 28, 2327–2338. [Google Scholar]
- Li, Y.K.; Zhang, R.; Zhang, S.; Zhang, H. Assessment of heavy metal bioaccumulation in food web of the coastal waters of Jiangsu Province, China, based on stable isotope values (δ(13)C and δ(15)N). Ying Yong Sheng Tai Xue Bao 2019, 30, 2415–2425. [Google Scholar]
- He, Y.J.; Wang, L.; Ma, W.L.; Lu, X.X.; Li, Y.L.; Liu, J.P. Secretory expression, immunoaffinity purification and metal-binding ability of recombinant metallothionein (ShMT) from freshwater crab Sinopotamon henanense. Ecotoxicol. Environ. Saf. 2019, 169, 457–463. [Google Scholar] [CrossRef]
- Yang, J.; Sun, H.; Zhang, H.; Zhou, H. Expression, purification of metallothionein genes from freshwater crab (Sinopotamon yangtsekiense) and development of an anti-metallothionein ELISA. PLoS ONE 2017, 12, e0174482. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Li, B.; Wu, F.; Yang, L.J.; Li, S.W.; Li, H.B.; Wu, D.H.; Cui, T.X.; Tang, D.Q. High level expression, efficient purification, and bioactivity of recombinant human metallothionein 3 (rhMT3) from methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 2014, 101, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.Y.; Wang, K.W.; Zhang, X.J.; Zhu, X.Y. Purification, secondary structure and antioxidant activity of metallothionein zinc-binding proteins from Arca subcrenata. Protein Expr. Purif. 2021, 182, 105838. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.Y.; Wang, K.W.; Zhang, X.J.; Zhu, X.Y. Purification and structure analysis of zinc-binding protein from Mizuhopecten yessoensis. J. Food Biochem. 2021, 45, e13756. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; He, Y.; Yan, T.; Wang, L. Tissue-specific copper accumulation, zinc levels, induction, and purification of metallothionein in freshwater crab Sinopotamon henanense exposed to subacute waterborne copper. Environ. Toxicol. 2014, 29, 407–417. [Google Scholar] [CrossRef]
- Nordberg, M. Metallothioneins: Historical review and state of knowledge. Talanta 1998, 46, 243–254. [Google Scholar] [CrossRef]
- Kojima, Y.; Hunziker, P.E. Amino acid analysis of metallothionein. Methods Enzymol. 1991, 205, 419–421. [Google Scholar]
- Mounaji, K.; Erraiss, N.E.; Wegnez, M. Identification of metaflothionein in Pleurodeles waltl. Z. Naturforsch. C J. Biosci. 2002, 57, 727–731. [Google Scholar] [CrossRef]
- Valenzuela, J.G.; Francischetti, I.M.; Pham, V.M.; Garfield, M.K.; Mather, T.N.; Ribeiro, J.M. Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 2002, 205, 2843–2864. [Google Scholar] [CrossRef]
- Pitt-Rivers, R.; Impiombato, F.S. The binding of sodium dodecyl sulphate to various proteins. Biochem. J. 1968, 109, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Peroza, E.A.; Freisinger, E. Metal ion binding properties of Triticum aestivum Ec-1 metallothionein: Evidence supporting two separate metal thiolate clusters. J. Biol. Inorg. Chem. 2007, 12, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Miyairi, S.; Shibata, S.; Naganuma, A. Determination of metallothionein by high-performance liquid chromatography with fluorescence detection using an isocratic solvent system. Anal. Biochem. 1998, 258, 168–175. [Google Scholar] [CrossRef] [PubMed]
- El Ghazi, I.; Menge, S.; Miersch, J.; Chafik, A.; Benhra, A.; Elamrani, M.K.; Krauss, G.J. Quantification of metallothionein-like proteins in the mussel Mytilus galloprovincialis using RP-HPLC fluorescence detection. Environ. Sci. Technol. 2003, 37, 5739–5744. [Google Scholar] [CrossRef]
- Luvonga, C.; Rimmer, C.A.; Yu, L.L.; Lee, S.B. Determination of total arsenic and hydrophilic arsenic species in seafood. J. Food Compos. Anal. 2020, 96, 103729. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, P.K.; Qurban, M.A.; Stiboller, M.; Nachman, K.E.; Joydas, T.V.; Manikandan, K.P.; Mushir, S.A.; Francesconi, K.A. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment. Sci. Total Environ. 2016, 566, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Hirata, S.; Toshimitsu, H. Determination of arsenic species and arsenosugars in marine samples by HPLC-ICP-MS. Anal. Bioanal. Chem. 2005, 383, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rafael, S.; Monteiro, F.; Dallinger, R.; Atrian, S.; Palacios, O.; Capdevila, M. Cantareus aspersus metallothionein metal binding abilities: The unspecific CaCd/CuMT isoform provides hints about the metal preference determinants in metallothioneins. Biochim. Biophys. Acta 2014, 1844, 1694–1707. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Z.; Wang, L.; He, Y.J.; Jing, W.X.; Ma, W.L.; Chen, C.M.; Wang, L. Analysis of spectrometry and thermodynamics of the metallothionein in freshwater crab Sinopotamon henanense for its binding ability with different metals. Chemosphere 2020, 246, 125670. [Google Scholar] [CrossRef]
- Robbins, A.H.; McRee, D.E.; Williamson, M.; Collett, S.A.; Xuong, N.H.; Furey, W.F.; Wang, B.C.; Stout, C.D. Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution. J. Mol. Biol. 1991, 221, 1269–1293. [Google Scholar]
- Beghi, S.; Cavaliere, F.; Buschini, A. Gene polymorphisms in calcium-calmodulin pathway: Focus on cardiovascular disease. Mutat. Res. Rev. Mutat. Research. 2020, 786, 108325. [Google Scholar] [CrossRef]
- Hassan, M.; Coutsias, E.A. Protein secondary structure motifs: A kinematic construction. J. Comput. Chem. 2021, 42, 271–292. [Google Scholar] [CrossRef]
- López-Lorente, Á.I.; Mizaikoff, B. Mid-infrared spectroscopy for protein analysis: Potential and challenges. Anal. Bioanal. Chem. 2016, 408, 2875–2889. [Google Scholar] [CrossRef] [PubMed]
- Fellows, A.P.; Casford, M.T.L.; Davies, P.B. Spectral analysis and deconvolution of the amide I band of proteins presenting with high-frequency noise and baseline shifts. Appl. Spectrosc. 2020, 74, 597–615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Xia, W.S. Effects of trehalose on actomyosin of salted pike eel muscle. Food Sci. 2007, 28, 39–43. [Google Scholar]
- Pelton, J.T.; McLean, L.R. Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 2000, 277, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Morrisett, J.D.; David, J.S.; Pownall, H.J.; Gotto, A.M., Jr. Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine. Biochemistry 1973, 12, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
- Jeddou, K.B.; Bouaziz, F.; Helbert, C.B.; Nouri-Ellouz, O.; Maktouf, S.; Ellouz-Chaabouni, S.; Ellouz-Ghorbel, R. Structural, functional, and biological properties of potato peel oligosaccharides. Int. J. Biol. Macromol. 2018, 112, 1146–1155. [Google Scholar] [CrossRef]
- Fleming, A.M.; Burrows, C.J. On the irrelevancy of hydroxyl radical to DNA damage from oxidative stress and implications for epigenetics. Chem. Soc. Rev. 2020, 49, 6524–6528. [Google Scholar] [CrossRef]
- Meir, S.; Kanner, J.; Akiri, B.; Philosoph-Hadas, S. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J. Agric. Food Chem. 1995, 43, 1813–1819. [Google Scholar] [CrossRef]
- Gordon, M.H. Food and nutritional analysis/Antioxidants and preservatives. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 225–230. [Google Scholar]
- Huang, X.; Tu, Z.; Xiao, H.; Wang, H.; Zhang, L.; Hu, Y.; Zhang, Q.; Niu, P. Characteristics and antioxidant activities of ovalbumin glycated with different saccharides under heat moisture treatment. Food Res. Int. 2012, 48, 866–872. [Google Scholar] [CrossRef]
- Han, M.M.; Yi, Y.; Wang, H.X.; Huang, F. Investigation of the Maillard reaction between polysaccharides and proteins from longan pulp and the improvement in activities. Molecules 2017, 22, 938. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Jin, M.K.; Hayat, K.; Xia, S.; Feng, B.; Zhang, X. Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein–glucose model system. Food Chem. 2009, 117, 48–54. [Google Scholar] [CrossRef]
Protein Name | Metal Content (in Molar Ratio, mol/mol. Protein) a | ||||
---|---|---|---|---|---|
Cu | Zn | As | Cd | Pb | |
Rabbit liver MT-1 | 0.48 ± 0.033 | 5.56 ± 0.12 | ND b | 0.00076 ± 0.00002 | 0.0070 ± 0.0005 |
O. oratoria MT-1 | 0.55 ± 0.048 | 3.97 ± 0.09 | 0.00024 ± 0.00001 | 0.0013 ± 0.00003 | 0.0004 ± 0.00002 |
Metal Name | Cu | Zn | As | Cd | Pb | Cr |
---|---|---|---|---|---|---|
Content a, mg/kg | 15.54 ± 2.55 | 28.45 ± 4.26 | 16.66 ± 2.92 | 2.78 ± 0.43 | 0.072 ± 0.0011 | 0.28 ± 0.022 |
Amino Acid | O. oratoria MT-1 | Rabbit Liver MT-1 | ||
---|---|---|---|---|
Content a (g/100 g) | Proportion b (%) | Content (g/100 g) | Proportion (%) | |
Cys | 32.07 ± 2.23 | 32.69 | 31.61 ± 3.24 | 31.99 |
Asp | 11.48 ± 1.87 | 11.70 | 6.36 ± 0.64 | 6.44 |
Thr | 5.52 ± 0.45 | 5.63 | 6.54 ± 0.59 | 6.62 |
Ser | 5.04 ± 0.62 | 5.14 | 14.32 ± 1.68 | 14.49 |
Glu | 12.16 ± 1.34 | 12.40 | 3.11 ± 0.22 | 3.15 |
Pro | 2.21 ± 0.30 | 2.25 | 3.45 ± 0.32 | 3.49 |
Gly | 5.80 ± 0.37 | 5.91 | 6.49 ± 0.55 | 6.57 |
Ala | 5.70 ± 0.54 | 5.81 | 9.81 ± 1.07 | 9.93 |
Val | 1.51 ± 0.17 | 1.54 | ND c | ND |
Met | 1.88 ± 0.28 | 1.92 | 1.53 ± 0.11 | 1.55 |
lle | 3.66 ± 0.62 | 3.73 | 1.37 ± 0.09 | 1.39 |
Lys | 10.93 ± 1.01 | 11.14 | 14.21 ± 1.22 | 14.38 |
His | 0.14 ± 0.018 | 0.14 | ND | ND |
Accession | Coverage (%) | Peptides | Unique | PTM a | Avg. Mass | Description |
---|---|---|---|---|---|---|
A0A3S8FSK5 | 60 | 18 | 18 | Y | 16,866 | Calmodulin OS = Macrobrachium rosenbergii OX = 79,674 PE = 2 SV = 1 |
Peptide a | −10lgP | Mass | Length | ppm | m/z | RT | Area Sample 1 | Start | End |
---|---|---|---|---|---|---|---|---|---|
K.EAFSLFDKDGDGTITTK.E | 49.53 | 1843.884 | 17 | 1.3 | 615.6345 | 49.07 | 3.02 × 107 | 15 | 31 |
R.VFDKDGNGFISAAELR.H | 48.76 | 1737.869 | 16 | −0.4 | 869.9412 | 49.05 | 7.48 × 105 | 92 | 107 |
L.FDKDGDGTITTK.E | 43.86 | 1296.62 | 12 | −2 | 649.3159 | 9.36 | 9.15 × 106 | 20 | 31 |
F.SLFDKDGDGTITTK.E | 39.51 | 1496.736 | 14 | −1.2 | 749.3743 | 27.28 | 4.82 × 107 | 18 | 31 |
R.EADIDGDGQ(+.98)VNYEEFVR.M | 33.82 | 1955.838 | 17 | 7.7 | 978.934 | 50.72 | 0 | 128 | 144 |
K.LTDEEVDEM(+15.99)IR.E | 31.76 | 1364.613 | 11 | −0.9 | 683.3131 | 24.88 | 6.02 × 107 | 117 | 127 |
K.DTDSEEEIREAFR.V | 30.14 | 1595.706 | 13 | −1.2 | 798.8594 | 37.23 | 6.64 × 106 | 79 | 91 |
R.VFDKDGN(+.98)GFISAAELR.H | 28.96 | 1738.853 | 16 | 11.6 | 580.6315 | 48.98 | 0 | 92 | 107 |
R.EADIDGDGQVNYE.E | 28.76 | 1423.574 | 13 | −0.4 | 712.7939 | 28.32 | 9.86 × 105 | 128 | 140 |
F.DKDGDGTITTK.E | 26.53 | 1149.551 | 11 | −1.1 | 575.7823 | 6.91 | 3.59 × 105 | 21 | 31 |
R.EADIDGDGQVNYEE.F | 25.55 | 1552.617 | 14 | −0.4 | 777.3152 | 29.47 | 0 | 128 | 141 |
K.EAFSLFDK.D | 24.15 | 955.465 | 8 | −0.3 | 478.7396 | 48.62 | 6.73 × 106 | 15 | 22 |
R.VFDKDGNGFISAA.E | 24.11 | 1339.641 | 13 | −0.4 | 670.8274 | 41.29 | 1.29 × 108 | 92 | 104 |
K.DTDSEEEIR.E | 22.51 | 1092.457 | 9 | −1 | 547.2352 | 9.33 | 1.66 × 107 | 79 | 87 |
R.EADIDGDGQVN(+.98)YEE.F | 21.4 | 1553.601 | 14 | 11.5 | 777.8165 | 29.45 | 2.34 × 105 | 128 | 141 |
K.DTDSEEEIREAF.R | 20.78 | 1439.605 | 12 | −0.8 | 720.8093 | 44.39 | 6.85 × 106 | 79 | 90 |
R.VFDKDGNGFISAAE.L | 20.11 | 1468.683 | 14 | −0.9 | 735.3483 | 42.11 | 1.03 × 107 | 92 | 105 |
K.ELGTVMR.S | 19.12 | 804.4164 | 7 | −0.3 | 403.2153 | 15.62 | 0 | 32 | 38 |
L.TEEQIAEFK.E | 17.42 | 1093.529 | 9 | 0.5 | 547.7721 | 22.94 | 0 | 6 | 14 |
F.SLFDKDGDGTITT.K | 16.04 | 1368.641 | 13 | −1.5 | 685.3267 | 39.09 | 9.65 × 106 | 18 | 30 |
Protein | Secondary Structure a | |||
---|---|---|---|---|
α-Helix | β-Sheet | β-Turn | Random Coil | |
O. oratoria MT-1 | 0.6 | 39.9 | 2.0 | 57.6 |
Rabbit liver MT-1 | 6.5 | 28.0 | 7.3 | 58.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, G.-M.; Wu, X.-H.; Zhang, X.-J.; Gu, J.; Fang, Y.; Meng, C.-Y.; Yang, W.-G. Structural Characterization and In Vitro Antioxidant Activity of Metallothionein from Oratosquilla oratoria. Molecules 2022, 27, 2320. https://doi.org/10.3390/molecules27072320
Mei G-M, Wu X-H, Zhang X-J, Gu J, Fang Y, Meng C-Y, Yang W-G. Structural Characterization and In Vitro Antioxidant Activity of Metallothionein from Oratosquilla oratoria. Molecules. 2022; 27(7):2320. https://doi.org/10.3390/molecules27072320
Chicago/Turabian StyleMei, Guang-Ming, Xiao-Hua Wu, Xiao-Jun Zhang, Jie Gu, Yi Fang, Chun-Ying Meng, and Wen-Ge Yang. 2022. "Structural Characterization and In Vitro Antioxidant Activity of Metallothionein from Oratosquilla oratoria" Molecules 27, no. 7: 2320. https://doi.org/10.3390/molecules27072320
APA StyleMei, G. -M., Wu, X. -H., Zhang, X. -J., Gu, J., Fang, Y., Meng, C. -Y., & Yang, W. -G. (2022). Structural Characterization and In Vitro Antioxidant Activity of Metallothionein from Oratosquilla oratoria. Molecules, 27(7), 2320. https://doi.org/10.3390/molecules27072320