Glycerol Valorization—The Role of Biochar Catalysts
Abstract
:1. Introduction
2. Glycerol Conversion Using Biochar Catalysts
2.1. Transesterification
2.2. Esterification
2.3. Etherification
2.4. Acetalization/Ketalization
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availabilitys
References
- United Nations. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 18 March 2022).
- Ribeiro, A.P.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Carbon dioxide-to-methanol single-pot conversion using a C-scorpionate iron(ii) catalyst. Green Chem. 2017, 19, 4811–4815. [Google Scholar] [CrossRef]
- Bartoli, M.; Rosi, L.; Frediani, M. Introductory Chapter: A Brief Insight about Glycerol, Glycerine Production and Transformation—An Innovative Platform for Sustainable Biorefinery and Energy; IntechOpen: London, UK, 2019. [Google Scholar]
- Adeniyi, A.G.; Ighalo, J.O. A review of steam reforming of glycerol. Chem. Pap. 2019, 73, 2619–2635. [Google Scholar] [CrossRef]
- Adeniyi, A.; Ighalo, J.O.; Eletta, O.A.A. Process Integration and Feedstock Optimisation of a Two-Step Biodiesel Production Process from Jatropha Curcas Using Aspen Plus. Chem. Prod. Process Model. 2018, 14, 20180055. [Google Scholar] [CrossRef]
- Okoye, P.U.; Longoria, A.; Sebastian, P.; Wang, S.; Li, S.; Hameed, B. A review on recent trends in reactor systems and azeotrope separation strategies for catalytic conversion of biodiesel-derived glycerol. Sci. Total Environ. 2019, 719, 134595. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 2016; Available online: https://doi.org/10.1787/agr_outlook-2016-en (accessed on 1 May 2022).
- Abdul Raman, A.A.; Tan, H.W.; Buthiyappan, A. Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process. Front. Chem. 2019, 7, 774. [Google Scholar] [CrossRef]
- Bagnato, G.; Iulianelli, A.; Sanna, A.; Basile, A. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. Membranes 2017, 7, 17. [Google Scholar] [CrossRef]
- Semkiv, M.; Dmytruk, K.; Abbas, C.; Sibirny, A. Biotechnology of Glycerol Production and Conversion in Yeasts BT-Biotechnology of Yeasts and Filamentous Fungi; Sibirny, A.A., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 117–148. ISBN 978-3-319-58829-2. [Google Scholar]
- Semkiv, M.V.; Ruchala, J.; Dmytruk, K.V.; Sibirny, A.A. 100 Years Later, What Is New in Glycerol Bioproduction? Trends Biotechnol. 2020, 38, 907–916. [Google Scholar] [CrossRef]
- Global Bio-Based Chemicals Market Forecast. 2018. Available online: https://www.prnewswire.com/newsreleases/global-bio-based-chemicals-market-forecast-2018-2026-300646520.html (accessed on 31 January 2022).
- Quispe, C.A.G.; Coronado, C.J.R.; Carvalho, J.A., Jr. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 2013, 27, 475–493. [Google Scholar] [CrossRef]
- Veluturla, S.; Archna, N.; Rao, D.S.; Hezil, N.; Indraja, I.; Spoorthi, S. Catalytic valorization of raw glycerol derived from biodiesel: A review. Biofuels 2016, 9, 305–314. [Google Scholar] [CrossRef]
- da Silva Ruy, A.D.; Ferreira, A.L.F.; Bresciani, A.É.; de Brito Alves, R.M.; Pontes, L.A.M. Market Prospecting and Assessment of the Economic Potential of Glycerol from Biodiesel; IntechOpen: London, UK, 2020. [Google Scholar]
- Parker, H.L.; Sherwood, J.; Hunt, A.J.; Clark, J.H. Cyclic Carbonates as Green Alternative Solvents for the Heck Reaction. ACS Sustain. Chem. Eng. 2014, 2, 1739–1742. [Google Scholar] [CrossRef]
- Beattie, C.; North, M.; Villuendas, P. Proline-Catalysed Amination Reactions in Cyclic Carbonate Solvents. Molecules 2011, 16, 3420–3432. [Google Scholar] [CrossRef]
- Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Guerin, W.; Diallo, A.K.; Kirilov, E.; Helou, M.; Slawinski, M.; Brusson, J.-M.; Carpentier, J.-F.; Guillaume, S.M. Enantiopure Isotactic PCHC Synthesized by Ring-Opening Polymerization of Cyclohexene Carbonate. Macromolecules 2014, 47, 4230–4235. [Google Scholar] [CrossRef]
- Wang, P.; Liu, S.; Zhou, F.; Yang, B.; Alshammari, A.S.; Lu, L.; Deng, Y. Two-step synthesis of dimethyl carbonate from urea, ethylene glycol and methanol using acid–base bifunctional zinc-yttrium oxides. Fuel Process. Technol. 2014, 126, 359–365. [Google Scholar] [CrossRef]
- Alper, E.; Orhan, O.Y. CO2 utilization: Developments in conversion processes. Petroleum 2017, 3, 109–126. [Google Scholar] [CrossRef]
- Tamura, M.; Honda, M.; Nakagawa, Y.; Tomishige, K. Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. J. Chem. Technol. Biotechnol. 2013, 89, 19–33. [Google Scholar] [CrossRef]
- Lopes, E.; Ribeiro, A.; Martins, L. New Trends in the Conversion of CO2 to Cyclic Carbonates. Catalysts 2020, 10, 479. [Google Scholar] [CrossRef]
- Ribeiro, A.; Goodrich, P.; Martins, L. Efficient and Reusable Iron Catalyst to Convert CO2 into Valuable Cyclic Carbonates. Molecules 2021, 26, 1089. [Google Scholar] [CrossRef]
- Uno, M.; Kitsuki, T.; Kita, K.; Fujikura, Y.; Okutsu, A. Amine Derivative and Detergent Composition Containing The Same. U.S. Patent US0058O1270A, 14 November 1994. [Google Scholar]
- Yoo, J.; Mouloungui, Z.; Gaset, A. Method for Producing an Epoxide, in Particular of Glycidol, and Installation for Implementation. U.S. Patent US6316641B1, 6 March 1998. [Google Scholar]
- Nda-Umar, U.I.; Ramli, I.; Taufiq-Yap, Y.H.; Muhamad, E.N. An Overview of Recent Research in the Conversion of Glycerol into Biofuels, Fuel Additives and other Bio-Based Chemicals. Catalysts 2019, 9, 15. [Google Scholar] [CrossRef]
- Szőri, M.; Giri, B.R.; Wang, Z.; Dawood, A.E.; Viskolcz, B.; Farooq, A. Glycerol carbonate as a fuel additive for a sustainable future. Sustain. Energy Fuels 2018, 2, 2171–2178. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Wang, Y.; Wang, S.; Mei, F.; Li, T.; Li, G. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by NaOH/γ-Al2O3. Fuel Process. Technol. 2013, 106, 209–214. [Google Scholar] [CrossRef]
- Algoufi, Y.; Hameed, B. Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over K-zeolite derived from coal fly ash. Fuel Process. Technol. 2014, 126, 5–11. [Google Scholar] [CrossRef]
- Christy, S.; Noschese, A.; Lomelí-Rodriguez, M.; Greeves, N.; Lopez-Sanchez, J.A. Recent progress in the synthesis and applications of glycerol carbonate. Curr. Opin. Green Sustain. Chem. 2018, 14, 99–107. [Google Scholar] [CrossRef]
- Guan, J.; Song, Y.; Lin, Y.; Yin, X.; Zuo, M.; Zhao, Y.; Tao, X.; Zheng, Q. Progress in Study of Non-Isocyanate Polyurethane. Ind. Eng. Chem. Res. 2011, 50, 6517–6527. [Google Scholar] [CrossRef]
- Mazaheri, H.; Ong, H.; Amini, Z.; Masjuki, H.; Mofijur, M.; Su, C.; Badruddin, I.A.; Khan, T. An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective. Energies 2021, 14, 3950. [Google Scholar] [CrossRef]
- Changmai, B.; Laskar, I.B.; Rokhum, L. Microwave-assisted synthesis of glycerol carbonate by the transesterification of glycerol with dimethyl carbonate using Musa acuminata peel ash catalyst. J. Taiwan Inst. Chem. Eng. 2019, 102, 276–282. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Shikhaliyev, K.; Okoye, P.; Hameed, B. Transesterification of biodiesel byproduct glycerol and dimethyl carbonate over porous biochar derived from pyrolysis of fishery waste. Energy Convers. Manag. 2018, 165, 794–800. [Google Scholar] [CrossRef]
- Dimethyl Carbonate. Available online: https://www.sigmaaldrich.com/PT/en/product/sial/517127 (accessed on 8 July 2022).
- Shikhaliyev, K.; Hameed, B.; Okoye, P. Utilization of biochars as sustainable catalysts for upgrading of glycerol from biodiesel production. J. Environ. Chem. Eng. 2020, 9, 104768. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Okoye, P.U.; Chen, S.; Li, X.; Duan, L.; Zhou, H.; Li, S.; Tang, T.; Zhang, L.; et al. Application of corncob residue-derived catalyst in the transesterification of glycerol with dimethyl carbonate to synthesize glycerol carbonate. BioResources 2019, 15, 142–158. [Google Scholar] [CrossRef]
- Algoufi, Y.; Akpan, U.; Kabir, G.; Asif, M.; Hameed, B. Upgrading of glycerol from biodiesel synthesis with dimethyl carbonate on reusable Sr–Al mixed oxide catalysts. Energy Convers. Manag. 2017, 138, 183–189. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, M.; Fan, M.; Jiang, P.; Dong, Y. Rare earth-doped calcium-based magnetic catalysts for transesterification of glycerol to glycerol carbonate. J. Chin. Chem. Soc. 2018, 66, 164–170. [Google Scholar] [CrossRef]
- Zada, B.; Kwon, M.; Kim, S.-W. Current Trends in Acetins Production: Green versus Non-Green Synthesis. Molecules 2022, 27, 2255. [Google Scholar] [CrossRef]
- Ferreira, P.; Fonseca, I.; Ramos, A.; Vital, J.; Castanheiro, J. Acetylation of glycerol over heteropolyacids supported on activated carbon. Catal. Commun. 2010, 12, 573–576. [Google Scholar] [CrossRef]
- Lou, S.; Jia, L.; Guo, X.; Wu, P.; Gao, L.; Wang, J. Preparation of diethylene glycol monomethyl ether monolaurate catalyzed by active carbon supported KF/CaO. SpringerPlus 2015, 4, 686. [Google Scholar] [CrossRef]
- Galhardo, T.S.; Simone, N.; Gonçalves, M.; Figueiredo, F.C.A.; Mandelli, D.; Carvalho, W.A. Preparation of Sulfonated Carbons from Rice Husk and Their Application in Catalytic Conversion of Glycerol. ACS Sustain. Chem. Eng. 2013, 1, 1381–1389. [Google Scholar] [CrossRef]
- Ekinci, E.K.; Oktar, N. Production of value-added chemicals from esterification of waste glycerol over MCM-41 supported catalysts. Green Process. Synth. 2018, 8, 128–134. [Google Scholar] [CrossRef]
- de la Calle, C.; Fraile, J.M.; García-Bordejé, E.; Pires, E.; Roldán, L. Biobased catalyst in biorefinery processes: Sulphonated hydrothermal carbon for glycerol esterification. Catal. Sci. Technol. 2015, 5, 2897–2903. [Google Scholar] [CrossRef]
- Nda-Umar, U.I.; Ramli, I.; Muhamad, E.N.; Azri, N.; Taufiq-Yap, Y.H. Optimization and Characterization of Mesoporous Sulfonated Carbon Catalyst and Its Application in Modeling and Optimization of Acetin Production. Molecules 2020, 25, 5221. [Google Scholar] [CrossRef]
- Nda-Umar, U.I.; Ramli, I.; Muhamad, E.N.; Taufiq-Yap, Y.H.; Azri, N. Synthesis and characterization of sulfonated carbon catalysts derived from biomass waste and its evaluation in glycerol acetylation. Biomass-Convers. Biorefin. 2020, 12, 2045–2060. [Google Scholar] [CrossRef]
- Rafi, J.M.; Rajashekar, A.; Srinivas, M.; Rao, B.V.S.K.; Prasad, R.B.N.; Lingaiah, N. Esterification of glycerol over a solid acid biochar catalyst derived from waste biomass. RSC Adv. 2015, 5, 44550–44556. [Google Scholar] [CrossRef]
- Okoye, P.; Abdullah, A.; Hameed, B. Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst. Fuel 2017, 209, 538–544. [Google Scholar] [CrossRef]
- Tao, M.-L.; Guan, H.-Y.; Wang, X.-H.; Liu, Y.-C.; Louh, R.-F. Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esterification. Fuel Process. Technol. 2015, 138, 355–360. [Google Scholar] [CrossRef]
- Sánchez, J.A.; Hernández, D.L.; Moreno, J.A.; Mondragón, F.; Fernández, J.J. Alternative carbon based acid catalyst for selective esterification of glycerol to acetylglycerols. Appl. Catal. A Gen. 2011, 405, 55–60. [Google Scholar] [CrossRef]
- Nda-Umar, U.I.; Ramli, I.B.; Muhamad, E.N.; Azri, N.; Amadi, U.F.; Taufiq-Yap, Y.H. Influence of Heterogeneous Catalysts and Reaction Parameters on the Acetylation of Glycerol to Acetin: A Review. Appl. Sci. 2020, 10, 7155. [Google Scholar] [CrossRef]
- Konwar, L.J.; Mäki-Arvela, P.; Begum, P.; Kumar, N.; Thakur, A.J.; Mikkola, J.-P.; Deka, R.C.; Deka, D. Shape selectivity and acidity effects in glycerol acetylation with acetic anhydride: Selective synthesis of triacetin over Y-zeolite and sulfonated mesoporous carbons. J. Catal. 2015, 329, 237–247. [Google Scholar] [CrossRef]
- Konwar, L.J.; Mäki-Arvela, P.; Kumar, N.; Mikkola, J.-P.; Sarma, A.K.; Deka, D. Selective esterification of fatty acids with glycerol to monoglycerides over –SO3H functionalized carbon catalysts. React. Kinet. Mech. Catal. 2016, 119, 121–138. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Romero, A.; Santos, A. Improved Etherification of Glycerol with Tert-Butyl Alcohol by the Addition of Dibutyl Ether as Solvent. Catalysts 2019, 9, 378. [Google Scholar] [CrossRef]
- Gonçalves, M.; Souza, V.C.; Galhardo, T.S.; Mantovani, M.; Figueiredo, F.C.A.; Mandelli, D.; Carvalho, W.A. Glycerol Conversion Catalyzed by Carbons Prepared from Agroindustrial Wastes. Ind. Eng. Chem. Res. 2013, 52, 2832–2839. [Google Scholar] [CrossRef]
- Gonçalves, M.; Soler, F.C.; Isoda, N.; Carvalho, W.A.; Mandelli, D.; Sepúlveda, J. Glycerol conversion into value-added products in presence of a green recyclable catalyst: Acid black carbon obtained from coffee ground wastes. J. Taiwan Inst. Chem. Eng. 2016, 60, 294–301. [Google Scholar] [CrossRef]
- Goncalves, M.; Castro, C.S.; Oliveira, L.C.; Carvalho, W. Green acid catalyst obtained from industrial wastes for glycerol etherification. Fuel Process. Technol. 2015, 138, 695–703. [Google Scholar] [CrossRef]
- Estevez, R.; Aguado-Deblas, L.; Montes, V.; Caballero, A.; Bautista, F. Sulfonated carbons from olive stones as catalysts in the microwave-assisted etherification of glycerol with tert-butyl alcohol. Mol. Catal. 2020, 488, 110921. [Google Scholar] [CrossRef]
- Frusteri, L.; Cannilla, C.; Bonura, G.; Chuvilin, A.L.; Perathoner, S.; Centi, G.; Frusteri, F. Carbon microspheres preparation, graphitization and surface functionalization for glycerol etherification. Catal. Today 2016, 277, 68–77. [Google Scholar] [CrossRef]
- Chiosso, M.E.; Casella, M.L.; Merlo, A.B. Synthesis and catalytic evaluation of acidic carbons in the etherification of glycerol obtained from biodiesel production. Catal. Today 2020, 372, 107–114. [Google Scholar] [CrossRef]
- Samoilov, V.; Borisov, R.; Stolonogova, T.; Zarezin, D.; Maximov, A.; Bermeshev, M.; Chernysheva, E.; Kapustin, V. Glycerol to renewable fuel oxygenates. Part II: Gasoline-blending characteristics of glycerol and glycol derivatives with C3-C4 alkyl(idene) substituents. Fuel 2020, 280, 118585. [Google Scholar] [CrossRef]
- Rodrigues, R.; Gonçalves, M.; Mandelli, D.; Pescarmona, P.P.; Carvalho, W.A. Solvent-free conversion of glycerol to solketal catalysed by activated carbons functionalised with acid groups. Catal. Sci. Technol. 2014, 4, 2293–2301. [Google Scholar] [CrossRef]
- Reddy, P.S.; Sudarsanam, P.; Mallesham, B.; Raju, G.; Reddy, B.M. Acetalisation of glycerol with acetone over zirconia and promoted zirconia catalysts under mild reaction conditions. J. Ind. Eng. Chem. 2011, 17, 377–381. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Mallesham, B.; Prasad, A.N.; Reddy, P.S.; Reddy, B.M. Synthesis of bio–additive fuels from acetalization of glycerol with benzaldehyde over molybdenum promoted green solid acid catalysts. Fuel Process. Technol. 2012, 106, 539–545. [Google Scholar] [CrossRef]
- Nanda, M.R.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Poirier, M.-A.; Xu, C. Catalytic conversion of glycerol to oxygenated fuel additive in a continuous flow reactor: Process optimization. Fuel 2014, 128, 113–119. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Z.; Ao, Y. Design of highly efficient Zn-, Cu-, Ni- and Co-promoted M-AlPO4 solid acids: The acetalization of glycerol with acetone. Appl. Catal. A Gen. 2015, 496, 32–39. [Google Scholar] [CrossRef]
- Khayoon, M.; Hameed, B. Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresour. Technol. 2011, 102, 9229–9235. [Google Scholar] [CrossRef]
- Gonçalves, M.; Rodrigues, R.; Galhardo, T.S.; Carvalho, W.A. Highly selective acetalization of glycerol with acetone to solketal over acidic carbon-based catalysts from biodiesel waste. Fuel 2016, 181, 46–54. [Google Scholar] [CrossRef]
- Kaur, J.; Sarma, A.K.; Jha, M.K.; Gera, P. Rib shaped carbon catalyst derived from Zea mays L. cob for ketalization of glycerol. RSC Adv. 2020, 10, 43334–43342. [Google Scholar] [CrossRef] [PubMed]
- Ballotin, F.C.; da Silva, M.J.; Teixeira, A.P.D.C.; Lago, R.M. Amphiphilic acid carbon catalysts produced by bio-oil sulfonation for solvent-free glycerol ketalization. Fuel 2020, 274, 117799. [Google Scholar] [CrossRef]
Catalyst | Feedstock | Glycerol Conversion Yield (%) | Reuse Cycles | Glycerol Conversion Yield after the Last Reuse (%) | Catalyst-to-Feed Ratio | Ref. |
---|---|---|---|---|---|---|
CCR-500 | Corncob | 98 | 4 | 78 | 0.12 | [39] |
K-zeolite | KOH, coal fly ash | 100 | 4 | 94 | n.a. | [40] |
NiFe2O4@(CaO-La2O3) | Ni(NO3)2, Fe(NO3)3, CaCl2 and La(NO3)3 | 99 | 6 | 95 | n.a. | [41] |
Catalyst Feedstock | Catalyst Loading (wt.%) | G:DMC Molar Ratio | T (°C) | Time (min) | G Conversion (%) | GC Yield (%) | Catalyst-to-Feed Ratio | Ref. |
---|---|---|---|---|---|---|---|---|
musa acuminata peel ash (MAPA) | 6 | 1:2 | 75 | 15 | 99 | 99.5 | 0.59 | [34] |
Fishmeal (FMB) | 2 | 1:2 | 85 | 60 | 100 | 99.5 | 0.02 | [36] |
Cow dung (CDB) | 3 | 1:1 | 85 | 90 | 100 | 97.1 | 0.03 | [38] |
Fish scale (FSB) | 2 | 1:2 | 85 | 60 | 100 | 99.6 | 0.02 | |
Corncob residue (CCR-500) | 3 | 1:3 | 80 | 90 | 98 | 94.1 | 0.12 | [39] |
Catalyst Feedstock | Carbonization T (°C) | T (°C) | Time (h) | G:AA Molar Ratio | Glycerol Conversion (%) | MAG (%) | DAG (%) | TAG (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|
D-glucose | 195 | 115 | 10 | 1:9 | 98 | 5 | 38 | 57 | [47] |
Palm kernel shell biomass | 800 | 126 | 3 | 1:10.4 | 97 | 4.9 | 27.8 | 66.5 | [48] |
800 | 120 | 3 | 1:6 | 97 | 5.8 | 32.2 | 58.9 | [49] | |
Karanja seed shells | 400 | 120 | 4 | 1:5 | 89 | 56 | 40 | 4 | [50] |
Crude glycerol | - | 110 | 3 | 3 | 99 | 12 | 88 | [51] | |
Sucrose | 400 | 180 | 4 | 1:9 | >99 | - | - | 50 | [53] |
Catkins from willow | 90 | 120 | 2 | 1:5 | 98.4 | 32.8 | 54.5 | 12.7 | [52] |
Catalyst Feedstock | T (°C) | Time (h) | G:Solvent Molar Ratio | Glycerol Conversion (%) | MTBG (%) | DTBG (%) | TTBG (%) | Ref. |
---|---|---|---|---|---|---|---|---|
Sugar cane bagasse | 120 | 4 | 1:4 | 80 | - | 21.3 | [58] | |
Waste coffee ground | 120 | 4 | 1:4 | ~70 | ~42 a | ~20 a | [59] | |
Waste coffee ground | 120 | 8 | 1:4 | >65 | >80 | >30 | ~10 | [60] |
Polyethylene terephthalate (PET) | 80 | 70 | <30 | <5 | ||||
Crude glycerine | 79 | 68 | 25 | 7 | ||||
Olive stones | 75 | 15 min | 1:4 | 84 | 74 | 26 | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.R.P.; Ribeiro, A.P.C.; Orišková, S.; Martins, L.M.D.R.S.; Cristino, A.F.; dos Santos, R.G. Glycerol Valorization—The Role of Biochar Catalysts. Molecules 2022, 27, 5634. https://doi.org/10.3390/molecules27175634
Gonçalves ARP, Ribeiro APC, Orišková S, Martins LMDRS, Cristino AF, dos Santos RG. Glycerol Valorization—The Role of Biochar Catalysts. Molecules. 2022; 27(17):5634. https://doi.org/10.3390/molecules27175634
Chicago/Turabian StyleGonçalves, Ana R. P., Ana P. C. Ribeiro, Sofia Orišková, Luísa M. D. R. S. Martins, Ana F. Cristino, and Rui Galhano dos Santos. 2022. "Glycerol Valorization—The Role of Biochar Catalysts" Molecules 27, no. 17: 5634. https://doi.org/10.3390/molecules27175634
APA StyleGonçalves, A. R. P., Ribeiro, A. P. C., Orišková, S., Martins, L. M. D. R. S., Cristino, A. F., & dos Santos, R. G. (2022). Glycerol Valorization—The Role of Biochar Catalysts. Molecules, 27(17), 5634. https://doi.org/10.3390/molecules27175634